Nonlinear Differential Equations Arising from Boole Numbers and their Applications

Taekyun Kim ${ }^{\text {a }}$, Dae San Kim ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
${ }^{b}$ Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

Abstract

In this paper, we study nonlinear differential equations satisfied by the generating function of Boole numbers. In addition, we derive some explicit and new interesting identities involving Boole numbers and higher-order Boole numbers arising from our nonlinear differential equations.

1. Introduction

The Boole polynomials, $B l_{n}(x \mid \lambda),(n \geq 0)$, are given by the generating function

$$
\begin{equation*}
\frac{1}{1+(1+t)^{\lambda}}(1+t)^{x}=\sum_{n=0}^{\infty} B l_{n}(x \mid \lambda) \frac{t^{n}}{n!}, \quad(\text { see }[7-10]) \tag{1}
\end{equation*}
$$

where we assume that $\lambda \neq 0$.
When $x=0, B l_{n}(\lambda)=B l_{n}(0 \mid \lambda),(n \geq 0)$, are called the Boole numbers. The higher-order Boole polynomials (also called Peters polynomials) are defined by the generating function

$$
\begin{equation*}
\left(\frac{1}{1+(1+t)^{\lambda}}\right)^{r}(1+t)^{x}=\sum_{n=0}^{\infty} B l_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!}, \quad(r \in \mathbb{N}), \quad(\text { see [16] }) \tag{2}
\end{equation*}
$$

The first few Boole and higher-order Boole polynomials are as follows:

$$
B l_{0}(x \mid \lambda)=\frac{1}{2}, \quad B l_{1}(x \mid \lambda)=\frac{1}{4}(2 x-\lambda), \quad B l_{2}(x \mid \lambda)=\frac{1}{4}(2 x(x-\lambda-1)+\lambda)
$$

and

$$
\begin{aligned}
& B l_{0}^{(r)}(x \mid \lambda)=2^{-r}, \quad B l_{1}^{(r)}(x \mid \lambda)=2^{-(r+1)}(2 x-\lambda) \\
& B l_{2}^{(r)}(x \mid \lambda)=2^{-(r+2)}\left(4 x(x-1)+(2-4 x) \lambda r+r(r-1) \lambda^{2}\right), \cdots
\end{aligned}
$$

[^0]Boole numbers and polynomials have been studied by several authors (see [7-9, 15]). For ApostolBernoulli, Apostol-Euler, and Apostol-Genocchi polynomials, one is referred to [1-5, 11-14, 17-19]).

The purpose of this paper is to give some explicit and new identities for the Boole numbers and the higher-order Boole numbers arising from nonlinear differential equations.

The following Theorems A and B are the main results of this paper which are stated as Theorems 2.2 and 2.3 , respectively.

Theorem A. The family of nonlinear differential equations

$$
\begin{equation*}
F^{(N)}=\frac{(-1)^{N} \lambda}{(1+t)^{N}} \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) F^{i}, \quad(N \in \mathbb{N}), \tag{3}
\end{equation*}
$$

have a solution $F=F(t, \lambda)=\frac{1}{(1+t)^{\lambda}+1^{1}}$,
where $a_{0}(N ; \lambda)=(N+\lambda-1)_{N-1}, a_{N}(N ; \lambda)=(-1)^{N} \lambda^{N-1} N!$, and with $a_{j}(N ; \lambda)(1 \leq j \leq n-1)$ as in (26)
Theorem B. For $N \in \mathbb{N}$ and $k \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
B l_{k+N}(\lambda)=(-1)^{N} \lambda \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) \sum_{k=0}^{k}\binom{k}{l}(-1)^{l}(N+l-1)_{l} B l_{k-l}^{(i)}(\lambda) . \tag{4}
\end{equation*}
$$

2. Nonlinear Differential Equations Arising from the Generating Function of Boole Numbers

Let

$$
\begin{equation*}
F=F(t ; \lambda)=\frac{1}{(1+t)^{\lambda}+1} . \tag{5}
\end{equation*}
$$

Then, by (5), we get

$$
\begin{align*}
F^{(1)} & =\frac{d}{d t} F(t) \tag{6}\\
& =\left(\frac{1}{(1+t)^{\lambda}+1}\right)^{2} \frac{(-1) \lambda}{(1+t)}(1+t)^{\lambda} \\
& =\frac{(-1) \lambda}{1+t} \frac{1}{\left((1+t)^{\lambda}+1\right)^{2}}\left((1+t)^{\lambda}-1+1\right) \\
& =\frac{(-1) \lambda}{1+t}\left(F-F^{2}\right),
\end{align*}
$$

and

$$
\begin{align*}
F^{(2)} & =\frac{d F^{(1)}}{d t} \tag{7}\\
& =\frac{(-1)^{2} \lambda}{(1+t)^{2}}\left(F-F^{2}\right)-\frac{\lambda}{1+t}\left(F^{(1)}-2 F F^{(1)}\right) \\
& =\frac{(-1)^{2} \lambda}{(1+t)^{2}}\left(F-F^{2}\right)+\frac{(-1)^{2} \lambda^{2}}{(1+t)^{2}}(1-2 F)\left(F-F^{2}\right) \\
& =\frac{(-1)^{2} \lambda}{(1+t)^{2}}\left\{(1+\lambda) F-(1+3 \lambda) F^{2}+2 \lambda F^{3}\right\} .
\end{align*}
$$

Continuing this process, we set

$$
\begin{equation*}
F^{(N)}=\left(\frac{d}{d t}\right)^{N} F(t)=\frac{(-1)^{N} \lambda}{(1+t)^{N}} \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) F^{i} \tag{8}
\end{equation*}
$$

where $N=0,1,2, \ldots$.
From (8), we have

$$
\begin{align*}
& F^{(N+1)} \tag{9}\\
= & \frac{d}{d t} F^{(N)} \\
= & \frac{(-1)^{N+1} \lambda N}{(1+t)^{N+1}} \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) F^{i}+\frac{(-1)^{N} \lambda}{(1+t)^{N}} \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) i F^{i-1} F^{(1)} \\
= & \frac{(-1)^{N+1} \lambda N}{(1+t)^{N+1}} \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) F^{i}+\frac{(-1)^{N+1} \lambda^{2}}{(1+t)^{N+1}} \sum_{i=1}^{N+1} i a_{i-1}(N ; \lambda) F^{i-1}\left(F-F^{2}\right) \\
= & \frac{(-1)^{N+1} \lambda}{(1+t)^{N+1}}\left\{\sum_{i=1}^{N+1}(N+i \lambda) a_{i-1}(N ; \lambda) F^{i}-\sum_{i=2}^{N+2}(i-1) \lambda a_{i-2}(N ; \lambda) F^{i}\right\} \\
= & \frac{(-1)^{N+1} \lambda}{(1+t)^{N+1}}\left\{(N+\lambda) a_{0}(N ; \lambda) F-(N+1) \lambda a_{N}(N ; \lambda) F^{N+2}\right. \\
& \left.+\sum_{i=2}^{N+1}\left((N+i \lambda) a_{i-1}(N ; \lambda)-(i-1) \lambda a_{i-2}(N ; \lambda) F^{i}\right)\right\} .
\end{align*}
$$

On the other hand, replacing N by $N+1$ in (8), we get

$$
\begin{equation*}
F^{(N+1)}=\frac{(-1)^{N+1} \lambda}{(1+t)^{N+1}} \sum_{i=1}^{N+2} a_{i-1}(N+1 ; \lambda) F^{i} . \tag{10}
\end{equation*}
$$

From (9) and (10), we can derive the following relations:

$$
\begin{align*}
a_{0}(N+1 ; \lambda) & =(N+\lambda) a_{0}(N ; \lambda), \tag{11}\\
a_{N+1}(N+1 ; \lambda) & =-(N+1) \lambda a_{N}(N ; \lambda) \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
a_{i-1}(N+1 ; \lambda)=-(i-1) \lambda a_{i-2}(N ; \lambda)+(N+i \lambda) a_{i-1}(N ; \lambda) \tag{13}
\end{equation*}
$$

where $2 \leq i \leq N+1$.
By (5) and (8), it is easy to show that

$$
\begin{equation*}
F=F^{(0)}=\lambda a_{0}(0 ; \lambda) F \tag{14}
\end{equation*}
$$

By comparing the coefficients on both sides of (14), we have

$$
\begin{equation*}
a_{0}(0 ; \lambda)=\frac{1}{\lambda} \tag{15}
\end{equation*}
$$

From (6) and (8), we note that

$$
\begin{align*}
\frac{(-1) \lambda}{1+t}\left(F-F^{2}\right) & =F^{(1)} \tag{16}\\
& =\frac{(-1) \lambda}{1+t}\left(a_{0}(1 ; \lambda) F+a_{1}(1 ; \lambda) F^{2}\right) .
\end{align*}
$$

Thus, by (16), we get

$$
\begin{align*}
& a_{0}(1 ; \lambda)=1, \text { and } a_{1}(1 ; \lambda)=-1 \\
& \begin{aligned}
a_{0}(N+1 ; \lambda) & =(N+\lambda) a_{0}(N ; \lambda) \\
& =(N+\lambda)(N+\lambda-1) a_{0}(N-1 ; \lambda) \\
& \vdots \\
& =(N+\lambda)(N+\lambda-1) \cdots(1+\lambda) a_{0}(1 ; \lambda) \\
& =(N+\lambda)(N+\lambda-1) \cdots(1+\lambda) \cdot 1 \\
& =(N+\lambda)_{N},
\end{aligned} \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
a_{N+1}(N+1 ; \lambda) & =-(N+1) \lambda a_{N}(N ; \lambda) \tag{18}\\
& =(-1)^{2} \lambda^{2}(N+1) N a_{N-1}(N-1 ; \lambda) \\
& \vdots \\
& =(-1)^{N} \lambda^{N}(N+1) N \cdots 2 a_{1}(1 ; \lambda) \\
& =(-1)^{N+1} \lambda^{N}(N+1)!,
\end{align*}
$$

where

$$
(x)_{n}=x(x-1)(x-2) \cdots(x-n+1), \quad(n \geq 0)
$$

From (13), we can derive the following equations:

$$
\begin{aligned}
& a_{1}(N+1 ; \lambda) \\
&=-\lambda a_{0}(N ; \lambda)+(N+2 \lambda) a_{1}(N ; \lambda) \\
&=-\lambda a_{0}(N ; \lambda)+(N+2 \lambda)\left\{-\lambda a_{0}(N-1 ; \lambda)+((N-1)+2 \lambda) a_{1}(N-1 ; \lambda)\right\} \\
&=-\lambda\left(a_{0}(N ; \lambda)+(N+2 \lambda) a_{0}(N-1 ; \lambda)\right)+(N+2 \lambda)(N+2 \lambda-1) a_{1}(N-1 ; \lambda) \\
&=-\lambda\left(a_{0}(N ; \lambda)+(N+2 \lambda) a_{0}(N-1 ; \lambda)\right) \\
&+(N+2 \lambda)(N+2 \lambda-1)\left\{-\lambda a_{0}(N-2 ; \lambda)+(N+2 \lambda-2) a_{1}(N-2 ; \lambda)\right\} \\
&=-\lambda\left\{a_{0}(N ; \lambda)+(N+2 \lambda) a_{0}(N-1 ; \lambda)+(N+2 \lambda)(N+2 \lambda-1) a_{0}(N-2 ; \lambda)\right\} \\
&+(N+2 \lambda)(N+2 \lambda-1)(N+2 \lambda-2) a_{1}(N-2 ; \lambda) \\
& \vdots \\
&=-\lambda \sum_{i=0}^{N-1}(N+2 \lambda)_{i} a_{0}(N-i ; \lambda)+(N+2 \lambda)_{N} a_{1}(1 ; \lambda) \\
&=-\lambda \sum_{i=0}^{N}(N+2 \lambda)_{i} a_{0}(N-i ; \lambda),
\end{aligned}
$$

Similarly to $i=1$ case, for $i=2$ and $i=3$, we obtain

$$
\begin{equation*}
a_{2}(N+1 ; \lambda)=-2 \lambda \sum_{i=0}^{N-1}(N+3 \lambda)_{i} a_{1}(N-i ; \lambda) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}(N+1 ; \lambda)=-3 \lambda \sum_{i=0}^{N-2}(N+4 \lambda)_{i} a_{2}(N-i ; \lambda) . \tag{21}
\end{equation*}
$$

Proceeding in this way, we get

$$
\begin{equation*}
a_{k}(N+1 ; \lambda)=-k \lambda \sum_{i_{1}=0}^{N-k+1}(N+(k+1) \lambda)_{i_{1}} a_{k-1}\left(N-i_{1} ; \lambda\right), \tag{22}
\end{equation*}
$$

where $1 \leq k \leq N$.
Therefore, we obtain the following theorem.
Theorem 2.1. We have the following recurrence relations:
(i) $a_{0}(0 ; \lambda)=\frac{1}{\lambda}, a_{0}(1 ; \lambda)=1, a_{1}(1 ; \lambda)=-1$,
(ii) $a_{0}(N+1 ; \lambda)=(N+\lambda)_{N}, a_{N+1}(N+1 ; \lambda)=(-1)^{N+1} \lambda^{N}(N+1)$!,
(iii) $a_{k}(N+1 ; \lambda)=-k \lambda \sum_{i_{1}=0}^{N-k+1}(N+(k+1) \lambda)_{i_{1}} a_{k-1}\left(N-i_{1} ; \lambda\right)$,
for $1 \leq k \leq N$.
Now, we observe that

$$
\begin{align*}
a_{1}(N+1 ; \lambda) & =-\lambda \sum_{i_{1}=0}^{N}(N+2 \lambda)_{i_{1}} a_{0}\left(N-i_{1} ; \lambda\right) \tag{23}\\
& =-\lambda \sum_{i_{1}=0}^{N}(N+2 \lambda)_{i_{1}}\left(N+\lambda-i_{1}-1\right)_{N-i_{1}-1}
\end{align*}
$$

Continuing this process, we have

$$
\begin{align*}
& a_{j}(N+1 ; \lambda) \tag{24}\\
= & (-1)^{j} j!\lambda^{j} \\
& \times \sum_{i_{j}=0}^{N-j+1} \sum_{i_{j-1}=0}^{N-j+1-i_{j}} \cdots \sum_{i_{1}=0}^{N-j+1-i_{j}-\cdots-i_{2}}(N+(j+1) \lambda)_{i_{j}}\left(N+j \lambda-i_{j}-1\right)_{i_{j-1}} \\
& \times \cdots \times\left(N+2 \lambda-i_{j}-\cdots-i_{2}-(j-1)\right)_{i_{1}} \\
& \times\left(N+\lambda-i_{j}-\cdots-i_{1}-j\right)_{N-i_{j}-\cdots-i_{1}-j^{\prime}}
\end{align*}
$$

where $1 \leq j \leq N$.
From (24), we note that the matrix $\left(a_{i}(j ; \lambda)\right)_{0 \leq i, j \leq N}$ is given by

$$
\begin{gathered}
\\
0 \\
1 \\
2 \\
3 \\
N
\end{gathered}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & & N \\
\begin{array}{ccccc}
\frac{1}{\lambda} & 1 & (1+\lambda) & (2+\lambda)_{2} & \cdots
\end{array} & (N+\lambda-1)_{N-1} \\
& -1 & & & & \\
& & (-1)^{2} \lambda 2! & & & \\
& & & (-1)^{3} \lambda^{2} 3! & & \\
& 0 & & & \ddots & \\
& & & & & (-1)^{N} \lambda^{N-1} N!
\end{array}\right]
$$

Therefore, by Theorem 1, (8), and (24), we obtain the following theorem.

Theorem 2.2. The family of nonlinear differential equations

$$
F^{(N)}=\frac{(-1)^{N} \lambda}{(1+t)^{N}} \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) F^{i}, \quad(N \in \mathbb{N})
$$

have a solution $F=F(t, \lambda)=\frac{1}{(1+t)^{\lambda}+1}$,
where $a_{0}(N ; \lambda)=(N+\lambda-1)_{N-1}, a_{N}(N ; \lambda)=(-1)^{N} \lambda^{N-1} N!$,

$$
\begin{align*}
& a_{j}(N ; \lambda) \\
&=(-1)^{j} j!\lambda^{j} \sum_{i_{j}=0}^{N-j} \sum_{i_{j-1}=0}^{N-j-i_{j}} \cdots \sum_{i_{1}=0}^{N-j-i_{j}-\cdots-i_{2}}(N+(j+1) \lambda-1)_{i_{j}} \\
& \times\left(N+j \lambda-\lambda_{j}-2\right)_{i_{j-1}} \cdots\left(N+2 \lambda-i_{j}-\cdots-i_{2}-j\right)_{i_{1}} \\
& \quad \times\left(N+\lambda-i_{j}-\cdots-i_{1}-j-1\right)_{N-i_{j} \cdots \cdots-i_{1}-j-1}, \quad(1 \leq j \leq N-1) . \tag{26}
\end{align*}
$$

Recall that the Boole numbers, $B l_{k}(\lambda),(k \geq 0)$, are given by the generating function

$$
\begin{equation*}
\frac{1}{(1+t)^{\lambda}+1}=\sum_{k=0}^{\infty} B l_{k}(\lambda) \frac{t^{k}}{k!} \tag{27}
\end{equation*}
$$

From (2), Theorem 2.2 and (27), we have

$$
\begin{align*}
& \sum_{k=0}^{\infty} B l_{k+N}(\lambda) \frac{t^{k}}{k!} \tag{28}\\
= & F^{(N)} \\
= & \frac{(-1)^{N} \lambda}{(1+t)^{N}} \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda)\left(\frac{1}{(1+t)^{\lambda}+1}\right)^{i} \\
= & (-1)^{N} \lambda(1+t)^{-N} \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda)\left(\frac{1}{(1+t)^{\lambda}+1}\right)^{i} \\
= & (-1)^{N} \lambda\left(\sum_{l=0}^{\infty}(-1)^{l}(N+l-1)_{l} \frac{t^{l}}{l!}\right)\left(\sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) \sum_{m=0}^{\infty} B l_{m}^{(i)}(\lambda) \frac{t^{m}}{m!}\right) \\
= & (-1)^{N} \lambda \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda)\left(\sum_{l=0}^{\infty}(-1)^{l}(N+l-1)_{l} \frac{t^{l}}{l!}\right)\left(\sum_{m=0}^{\infty} B l_{m}^{(i)}(\lambda) \frac{t^{m}}{m!}\right) \\
= & (-1)^{N} \lambda \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda)\left(\sum_{k=0}^{\infty} \sum_{l=0}^{k}\binom{k}{l}(-1)^{l}(N+l-1)_{l} B l_{k-l}^{(i)}(\lambda)\right) \frac{t^{k}}{k!} \\
= & \sum_{k=0}^{\infty}\left\{(-1)^{N} \lambda \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) \sum_{l=0}^{k}\binom{k}{l}(-1)^{l}(N+l-1)_{l} B l_{k-l}^{(i)}(\lambda)\right) \frac{t^{k}}{k!}
\end{align*}
$$

where $N \in \mathbb{N}$.
By comparing the coefficients on both sides of (28), we obtain the following theorem.
Theorem 2.3. For $N \in \mathbb{N}$ and $k \in \mathbb{N} \cup\{0\}$, we have

$$
B l_{k+N}(\lambda)=(-1)^{N} \lambda \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) \sum_{k=0}^{k}\binom{k}{l}(-1)^{l}(N+l-1)_{l} B l_{k-l}^{(i)}(\lambda) .
$$

As is well known, Euler numbers are given by the generating function

$$
\begin{equation*}
\left(\frac{2}{e^{t}+1}\right)=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} . \tag{29}
\end{equation*}
$$

By (2) and (29), we easily get

$$
\begin{align*}
\sum_{n=0}^{\infty} 2^{i} B l_{n}^{(i)}(\lambda) \frac{t^{n}}{n!} & =\left(\frac{2}{(1+t)^{\lambda}+1}\right)^{i} \\
& =\left(\frac{2}{e^{\lambda \log (1+t)}+1}\right)^{i} \\
& =\sum_{k=0}^{\infty} E_{k}^{(i)} \frac{1}{k!} \lambda^{k}(\log (1+t))^{k} \tag{30}\\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} E_{k}^{(i)} \lambda^{k} S_{1}(n, k)\right) \frac{t^{n}}{n!}, \quad(i \in \mathbb{N}) .
\end{align*}
$$

From (30), we have

$$
\begin{equation*}
2^{i} B l_{n}^{(i)}(\lambda)=\sum_{k=0}^{n} E_{k}^{(i)} \lambda^{k} S_{1}(n, k), \quad(n \geq 0, i \in \mathbb{N}) \tag{31}
\end{equation*}
$$

Therefore, by Theorem 2.3 and (31), we obtain the following theorem.
Theorem 2.4. For $k \in \mathbb{N} \cup\{0\}$ and $N \in \mathbb{N}$, we have

$$
\begin{aligned}
& \frac{1}{2} \sum_{n=0}^{k+N} E_{n} \lambda^{n} S_{1}(k+N, n) \\
& =(-1)^{N} \lambda \sum_{i=1}^{N+1} a_{i-1}(N ; \lambda) \sum_{l=0}^{k}\binom{k}{l}(-1)^{l}(N+l-1) \sum_{n=0}^{k-l} 2^{-i} E_{n}^{(i)} \lambda^{n} S_{1}(k-l, n)
\end{aligned}
$$

References

[1] A. Bayad and J. Chikhi, Apostol-Euler polynomials and asymptotics for negative binomial reciprocals, Adv. Stud. Contemp. Math. (Kyungshang) 24 (2014), no. 1, 33-37.
[2] J. Choi, P. J. Anderson, H. M. Srivastava, Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz Zeta function, Appl. Math. Comput., 199 (2008), 723737.
[3] R. Dere, Y. Simsek, H. M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, 133 (2013), 32453263
[4] M. Garg, K. Jain and H. M. Srivastava Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct. 17 (2006), 803815.
[5] Y. He, S. Araci, H. M. Srivastava, M. Acikgoz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Appl. Math. Comput., 262 (2015), 3141
[6] D. Kang, J. Jeong, S.-J. Lee, and S.-H. Rim, A note on the Bernoulli polynomials arising from a non-linear differential equation, Proc. Jangjeon Math. Soc. 16 (2013), no. 1, 37-43.
[7] D. S. Kim and T. Kim, A note on Boole polynomials, Integral Transforms Spec. Funct. 25 (2014), no. 8, 627-633. MR 3195946
[8] D. S. Kim and T. Kim, Some identities of Boole and Euler polynomials, Ars Combin. 118 (2015), 349-356.
[9] D. S. Kim, T. Kim, and J. J. Seo, A note on q-analogue of Boole polynomials, Appl. Math. Inf. Sci. 9 (2015), no. 6, 3135-3158. MR 3386346
[10] T. Kim, Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory 132 (2012), no. 12, 2854-2865. MR 2965196
[11] D.-Q. Lu and H. M. Srivastava, Some series identities involving generalized Apostol type and related polynomials, Comput. Math. Appl. 62 (2011), pp. 35913602.
[12] Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290302.
[13] Q.-M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 51 (2006), no. 3-4, 631642 MR 2207447(2006k:42050),
[14] Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput. 217, 5702-5728 (2011)
[15] A. Osipov, On a G. Boole's identity for rational functions and some trace formulas, Complex Anal. Oper. Theory 5 (2011), no. 3, 889-900. MR 2836331 (2012i:47047)
[16] S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. MR 741185 (87c:05015)
[17] E. Şen, Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 337-345. MR 3088764
[18] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 5, 390444 (2011).
[19] H. M. Srivastava, zarslan, M. A., Kaanoglu, C., Some generalized Lagrange-based Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Russ. J. Math. Phys. 20, no. 1 (2013), 110-120.

[^0]: 2010 Mathematics Subject Classification. Primary 05A19; Secondary 11B68, 11B83, 34A34
 Keywords. Boole numbers, higher-order Boole numbers, non-linear differential equation
 Received: 05 January 2016; Accepted: 16 May 2016
 Communicated by Hari M. Srivastava
 Email addresses: tkkim@kw.ac.kr (Taekyun Kim), dskim@sogang.ac.kr (Dae San Kim)

