
Filomat 31:8 (2017), 2477–2497
DOI 10.2298/FIL1708477S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Orthogonal Polynomials Associated with an Inverse
Spectral Transform. The Cubic Case

Mabrouk Sghaiera, Lamaa Khaledb

aHigher Institute of Computer Medenine, City Iben Khaldoun Av. Djerba km 3, Medenine - 4119, Tunisia.
bFaculty of Sciences of Gabes, City Riadh, Zirig 6072 Gabes, Tunisia.

Abstract. The purpose of this work is to give some new algebraic properties of the orthogonality of a
monic polynomial sequence {Qn}n≥0 defined by

Qn(x) = Pn(x) + snPn−1(x) + tnPn−2(x) + rnPn−3(x), n ≥ 1,

where rn , 0,n ≥ 3, and {Pn}n≥0 is a given sequence of monic orthogonal polynomials. Essentially, we
consider some cases in which the parameters rn, sn, and tn can be computed more easily. Also, as a
consequence, a matrix interpretation using LU and UL factorization is done. Some applications for Laguerre,
Bessel and Tchebychev orthogonal polynomials of second kind are obtained.

1. Introduction and Preliminaries

Let {Pn}n≥0 be a sequence of monic orthogonal polynomials with respect to a regular linear functional u.
We define a new sequence of monic polynomials {Qn}n≥0 by the M-N type linear structure relation

Qn(x) +

M−1∑
i=1

ai,nQn−i(x) = Pn(x) +

N−1∑
i=1

bi,nPn−i(x), n ≥ 1,

where M and N are fixed positive integer numbers, and {ai,n}n and {bi,n}n are sequences of complex numbers
with aM−1,nbN−1,n , 0. The study of the regularity of the sequence {Qn}n≥0 is said to be an inverse problem.
This problem has been studied in some particular cases. Indeed, the relations of types 1-2 and 2-1 have
been studied in [9], the 1-3 type relation in [2], the 2-2 type relation in [4] and the 2-3 type relation in [1]. In
addition, the 1-N type relation with constant coefficients has been analyzed in [3].
Recently, in [8] and for M = 1, N = 4, F. Marcelln and S. Varma determine necessary and sufficient conditions
such that {Qn}n≥0 becomes also orthogonal.
This article is a continuation of [8]. It deals with some new results about the sequence {Qn}n≥0 defined by

Qn(x) = Pn(x) + snPn−1(x) + tnPn−2(x) + rnPn−3(x), rn , 0, n ≥ 3.
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Firstly, we give some new results concerning the regularity conditions of the sequence {Qn}n≥0. In particular,
we obtain a new characterization of the orthogonality of this sequence with respect to a linear functional
v, in terms of the coefficients of a cubic polynomial q such that q(x)v = u. Indeed, it is known [17] that up
to some natural conditions the M - N type structure relation leads to a rational transformation Φu = Ψv
where Φ and Ψ are polynomials. Secondly, since the cases 1-2 and 1-3 type structure relation have been
already considered in previous works (see [2, 9]), we obtain necessary and sufficient conditions so that the
above 1-4 relation can be decomposed in three 1-2 relations or two relations of types 1-2 and 1-3 and then
proceed by iteration. This study is based on the factorization of q(x). We will study the case when {Pn}n≥0 is
symmetric and {Qn}n≥0 is quasi-antisymmetric. In any situation, the matrix interpretation of this problem
in terms of monic Jacobi matrices is done carefully. Finally, we give a detailed study of three examples.

Now, we are going to introduce some basic definitions and results. The field of complex numbers is
denoted by C. The vector space of polynomials with coefficients in C is denoted by P and its dual space is
presented as P′. We will simply call polynomial every element of P and linear functional to the elements
in P′. We denote by

〈
u, f

〉
the action of u ∈ P′ on f ∈ P. In particular, we denote by (u)n := 〈u, xn

〉 ,n ≥ 0 ,
the moments of u.
For any linear functional v and any polynomial h let hv, δc, and (x − c)−1v be the linear functionals defined

by:
〈
hv, f

〉
:=

〈
v, h f

〉
,

〈
δc, f

〉
:= f (c) and

〈
(x − c)−1v, f

〉
:=

〈
v, θc f

〉
where

(
θc f

)
(x) =

f (x) − f (c)
x − c

, c ∈ C,

f ∈ P. Then, it is straightforward to prove that for c ∈ C, and v ∈ P′ , we have [15]

(x − c)−1((x − c)v) = v − (v)0δc, (1.1)

(x − c)((x − c)−1v) = v. (1.2)

A linear functional u is called regular if there exists a sequence of polynomials {Pn}n≥0 (deg Pn ≤ n) such
that 〈u,PnPm〉 = rnδn,m , rn , 0, n ≥ 0.
Then deg Pn = n,n ≥ 0 and we can always suppose each Pn is monic. In such a case, the sequence {Pn}n≥0
is unique. It is said to be the sequence of monic orthogonal polynomials with respect to u. In the sequel
it will be denoted as SMOP. It is a very well known fact that the sequence {Pn}n≥0 satisfies the recurrence
relation (see, for instance, the monograph by Chihara [6])

Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x) , n ≥ 0 ,
P1(x) = x − β0 , P0(x) = 1 ,

(1.3)

with
(
βn, γn+1

)
∈ C × C − {0} , n ≥ 0 . By convention we set γ0 = (u)0.

The linear functional u is said to be normalized if (u)0 = 1. In this paper, we suppose that any linear
functional will be normalized.

2. Some Algebraic Properties

In the sequel {Pn}n≥0 denotes a SMOP with respect to a regular linear functional u. By giving three
sequences of complex numbers {sn}n≥1, {tn}n≥2, and {rn}n≥3, we define a new sequence of monic polynomials
{Qn}n≥0 such that

Q1(x) = P1(x) + s1,

Q2(x) = P2(x) + s2P1(x) + t2,

Qn(x) = Pn(x) + snPn−1(x) + tnPn−2(x) + rnPn−3(x), n ≥ 3, with rn , 0, n ≥ 3.
(2.1)

Let us recall the following result:
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Theorem 2.1. [8] {Qn}n≥0 is an SMOP if and only if as well as γ̃1γ̃2γ̃3 , 0 with

sn−1γ̃n = snγn−1 + tn(βn−2 − β̃n) + rn − rn+1, n ≥ 2, (2.2)

tn−1γ̃n = tnγn−2 + rn(βn−3 − β̃n), n ≥ 3, (2.3)

rn−1γ̃n = rnγn−3, n ≥ 4, (2.4)

where

β̃n = βn + sn − sn+1, n ≥ 0, (2.5)

γ̃n = γn + tn − tn+1 + sn(βn−1 − βn − sn + sn+1), n ≥ 1, (2.6)

with s0 = t0 = t1 = r0 = r1 = r2 = 0.
Furthermore, {Qn}n≥0 satisfies the three-term recurrence relation

Qn+2(x) = (x − β̃n+1)Qn+1(x) − γ̃n+1Qn(x), n ≥ 0,
Q1(x) = x − β̃0, Q0(x) = 1.

(2.7)

Remark 1. When {Qn}n≥0 is an SMOP, then (2.2)-(2.4) can be written as

r3 = t2(β1 − β2 − s2 + s3) + s2γ1 − s1[γ2 + t2 − t3 + s2(β1 − β2 − s2 + s3)],
r4 = r3 + t3(β2 − β3 − s3 + s4) + s3γ2 − s2[γ3 + t3 − t4 + s3(β2 − β3 − s3 + s4)],

(2.8)

sn+5 = sn+4 + βn+4 − βn+1 +
tn+3

rn+3
γn+1 −

tn+4

rn+4
γn+2, n ≥ 0, (2.9)

tn+5 = tn+4 + sn+4(βn+3 − βn+4 − sn+4 + sn+5) −
rn+4

rn+3
γn+1 + γn+4, n ≥ 0, (2.10)

rn+5 = rn+4

(
1 − sn+3

rn+3
γn+1

)
+ sn+4γn+3 + tn+4(βn+2 − βn+4 − sn+4 + sn+5), n ≥ 0, (2.11)

where the initial conditions are

(a) t2, t3, t4, s1, s2, s3, and

 s4 = s3 + β3 − β0 −
t3
r3
γ1, if t2 = 0,

s4 =
t3γ1+r3(β0−β3−s3)−t2(γ3+t3−t4+s3(β2−β3−s3))

t2s3−r3
, if t2 , 0, t2s3 − r3 , 0.

(b) t2, t3, s1, s2, s3, s4, and t4 = s3(β2 − β3 − s3) + γ3 + t3 −
t3γ1 + r3(β0 − β3 − s3)

t2
, if t2 , 0, r3 = t2s3.

Furthermore, t2, t3, t4, s1, s2, s3, s4 verify


γ1 − t2 + s1(β0 − β1 − s1 + s2) , 0,
γ2 + t2 − t3 + s2(β1 − β2 − s2 + s3) , 0,
γ3 + t3 − t4 + s3(β2 − β3 − s3 + s4) , 0.

Theorem 2.2. The following statements are equivalent:

(i) {Qn}n≥0 is an SMOP with (β̃n)n and (γ̃n)n given by (2.5) and (2.6) the corresponding sequences of recurrence
coefficients.

(ii) It holds γ̃1γ̃2γ̃3 , 0 together with the initial conditions (2.8) and

t2(γ3 + t3 − t4 + s3(β2 − β3 − s3 + s4)) = t3γ1 + r3(β2 − β3 − s3 + s4). (2.12)
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and there exist three complex numbers a, b and c such that, for n ≥ 1

An :=
tn+2

rn+2
γn − βn − βn+1 − βn+2 + sn+3 = a, (2.13)

Bn :=
1

rn+2
γn

[
sn+2γn+1 + tn+2(sn+3 − βn+2 − βn+1)

]
− γn+1 − γn+2 − γn+3 + tn+4

− (sn+1 − βn+2 − βn+1)(βn+1 + βn) + sn+3(sn+3 − sn+4 − βn+2 − βn+3) − β2
n+1 = b, (2.14)

Cn :=
1

rn+2
γn

[
γn+1

(
γn+2 + sn+2(sn+3 − βn+2)

)
+ tn+2

(
sn+3(βn+3 − βn+2 + sn+3 − sn+4)

+ βn+1(βn+2 − sn+3) − γn+2 − γn+3 + tn+4

)]
+ γn+1(βn+2 − sn+3)

+ (sn+4 − βn+3)(βn+2βn+1 − γn+2) + βn+1(γn+3 − tn+4) + rn+4 = c. (2.15)

Furthermore, if u and v are the linear functionals associated with the sequences {Pn}n≥0 and {Qn}n≥0, respectively,
then

q(x)v = −ku, (2.16)

with q(x) = x3 + ax2 + bx + c, k ∈ C − {0}.

Proof. Notice that, by Remark 1, {Qn}n≥0 is an SMOP if and only if the condition γ̃1γ̃2γ̃3 , 0 and the initial
conditions (2.8), (2.12) and the above Eqs (2.9)-(2.11) hold. To conclude the proof we need to show that Eqs.
(2.13)-(2.15) are equivalent to (2.9)-(2.11).
•We first prove that (2.9)-(2.11)⇒ (2.13)-(2.15). Using (2.9), we get,

An+1 = An+2, n ≥ 0. (2.17)

Hence (2.13). Now, we will deduce (2.14).
Multiplying the expression (2.11) by γn+2/rn+4, we obtain

sn+3

rn+3
γn+1γn+2 +

tn+4

rn+4
γn+2(sn+4 − βn+2 − βn+3) =

sn+4

rn+4
γn+3γn+2 +

tn+4

rn+4
γn+2(sn+5 − βn+3 − βn+4)

+
(
1 −

rn+5

rn+4

)
γn+2.

Besides, from (2.10) we have, for n ≥ 0

sn+3

rn+3
γn+1γn+2 +

tn+4

rn+4
γn+2(sn+4 − βn+2 − βn+3) =

sn+4

rn+4
γn+3γn+2 +

tn+4

rn+4
γn+2(sn+5 − βn+3 − βn+4)

+ γn+2 − γn+5 − tn+5 + tn+6 − sn+5(βn+4 − βn+5 − sn+5 + sn+6). (2.18)

Using (2.17) in the expression of tn+4γn+2

rn+4
which appears in the right hand side of the above formula, we

obtain

Bn+2 = Bn+1, n ≥ 0. (2.19)

Hence (2.14). Now, we will deduce (2.15).
Multiplying (2.10) by γn+2γn+3/rn+4, we get

γn+1γn+2γn+3

rn+3
+ (sn+4 − βn+3)

sn+4

rn+4
γn+2γn+3 =

γn+2γn+3γn+4

rn+4
+ (sn+5 − βn+4)

sn+4

rn+4
γn+2γn+3

+
[ tn+4 − tn+5

rn+4

]
γn+2γn+3.
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Using (2.9) and (2.10), we have, for n ≥ 0

tn+5γn+3

rn+4
γn+2 = [γn+5 + tn+5 − tn+6 + sn+5(βn+4 − βn+5 − sn+5 + sn+6)]

[
tn+4

rn+4
γn+2 − βn+2 + βn+5 − sn+5 + sn+6],

and, therefore, for n ≥ 0

γn+1γn+2γn+3

rn+3
+ (sn+4 − βn+3)

sn+4

rn+4
γn+2γn+3 =

γn+2γn+3γn+4

rn+4
+ (sn+5 − βn+4)

sn+4

rn+4
γn+2γn+3

+
tn+4

rn+4
γn+2

[
γn+3 − γn+5 − tn+5 + tn+6 − sn+5(βn+4 − βn+5 − sn+5 + sn+6)

]
+ (βn+2 − βn+5 − sn+5 + sn+6)[γn+5 + tn+5 − tn+6 + sn+5(βn+4 − βn+5 − sn+5 + sn+6)].

Using (2.18) in the expression sn+4γn+2γn+3

rn+4
for n ≥ 0, the last equation becomes

γn+1γn+2γn+3

rn+3
+ (sn+4 − βn+3)

sn+3

rn+3
γn+1γn+2 +

tn+4

rn+4
γn+2

[
sn+4(sn+4 − sn+5 − βn+3 − βn+2 + βn+4) + βn+3βn+2

−γn+3 − γn+4 + tn+5

]
=
γn+2γn+3γn+4

rn+4
+ (sn+5 − βn+4)

sn+4

rn+4
γn+2γn+3

+
tn+4

rn+4
γn+2

[
sn+5(sn+5 − sn+6 − βn+4 − βn+3 + βn+5) + βn+4βn+3 − γn+4 − γn+5 + tn+6

]
+ γn+2(sn+4 − βn+3)

+ (βn+2 − βn+5 + βn+3 − sn+5 + sn+6 − sn+4)
[
γn+5 + tn+5 − tn+6 + sn+5(βn+4 − βn+5 − sn+5 + sn+6)

]
.

Using (2.17), for n + 1 instead of n, in the expression tn+4
rn+4
γn+2 which appears in the right hand side of the

above formula, we obtain

Cn+2 = Cn+1, n ≥ 0. (2.20)

Hence (2.15).
• Next we show that (2.13)-(2.15)⇒ (2.9)-(2.11).

Notice first that (2.13)-(2.15) are equivalent to (2.17), (2.18) and (2.20).
From (2.17), we can derive (2.9).

Taking into account the new expression of sn+3γn+2γn+1

rn+3
obtained from (2.18) and tn+5γn+3

rn+5
obtained from (2.17)

written for n + 1 instead of n, we can reformulate (2.20)

γn+2γn+3

rn+3

(
γn+1 +

rn+3

rn+4
[−sn+4(sn+5 − βn+4 − sn+4 − βn+3) − tn+4 + tn+5 − γn+4]

)
= 0.

Then, we deduce (2.10).
Taking into account the new expression of tn+4

rn+4
γn+2 obtained from (2.17), the (2.18) reads as

γn+2

rn+4

[ rn+4

rn+3
sn+3γn+1 − sn+4γn+3 − tn+4(sn+5 − βn+4 + βn+2 − sn+4) − rn+4

]
= −γn+5 − tn+5 + tn+4 − sn+5(βn+4 − βn+5 − sn+5 + sn+6).

From (2.4) and (2.6), we have

γn+2

rn+4

[
sn+3γ̃n+4 − sn+4γn+3 − tn+4(sn+5 − βn+4 + βn+2 − sn+4) − rn+4 + rn+5

]
= 0,

therefore (2.11) holds.



M. Sghaier, L. Khaled / Filomat 31:8 (2017), 2477–2497 2482

To conclude the proof, it remains to deduce the relation between the functionals u and v in terms of
the constants a, b and c. If we expand the linear functional u in the dual basis { Q jv

〈v, Q2
j 〉
} j≥0 of the polynomials

{Q j} j≥0 (see [15]) and taking into account (2.1), then

u =

3∑
j=0

〈u, Q j〉

〈v, Q2
j 〉

Q jv =

(
r3

γ̃1γ̃2γ̃3
Q3 +

t2

γ̃1γ̃2
Q2 +

s1

γ̃1
Q1 + 1

)
v.

Introducing the polynomials Q3, Q2 and Q1 given by (2.1) and the explicit expression of the polynomials
P1, P2 and P3 given by recurrence relation, we obtain

u =
r3

γ̃1γ̃2γ̃3

[
x3 +

( t2γ̃3

r3
− β0 − β1 − β2 + s3

)
x2 +

( s1γ̃2γ̃3

r3
− (β0 + β1 − s2)

t2

r3
γ̃3 + β1β2

+ β0(β1 + β2) − γ1 − γ2 − s3(β0 + β1) + t3

)
x +

γ̃1γ̃2γ̃3

r3
+ (s1 − β0)

s1

r3
γ̃2γ̃3

+ (β0β1 − γ1 + t2 − s2β0)
t2

r3
γ̃3 − β0β1β2 + γ1β2 + γ2β0 + s3(β0β1 − γ1) − t3β0 + r3

]
v.

Taking into account, (2.2) where n = 2, 3, (2.3) for n = 3 and (2.6) with n = 1, 2, 3, we get

t2γ̃3

r3
− β0 − β1 − β2 + s3 = A1, (2.21)

s1γ̃2γ̃3

r3
− (β0 + β1 − s2)

t2

r3
γ̃3 + β1β2 + β0(β1 + β2) − γ1 − γ2 − s3(β0 + β1) + t3 = B1, (2.22)

γ̃1γ̃2γ̃3

r3
+ (s1 − β0)

s1

r3
γ̃2γ̃3 + (β0β1 − γ1 + t2 − s2β0)

t2

r3
γ̃3 − β0β1β2 + γ1β2 + γ2β0

+ s3(β0β1 − γ1) − t3β0 + r3 = C1. (2.23)

Then −ku = (x3 + A1x2 + B1x + C1)v = (x3 + ax2 + bx + c)v, with k = −
γ̃1γ̃2γ̃3

r3
. �

Remark 2. The converse problem, i.e. the analysis of the regularity of a linear functional v such that there
exists a polynomial q(x) such that q(x)v = −ku, k ∈ C− {0}, has been studied by many authors. In particular,
in [10], [11] and [12] the cases q(x) = x4 and q(x) = x3 have been deeply analyzed.

3. Reducible Cases

The next Theorem will play an important role in the sequel.

Theorem 3.1. [9] Let {Sn}n≥0, be a SMOP with respect to a linear functional w, {µn}n≥1 a sequence of complex
parameters and {Zn}≥0 a simple set of monic polynomials, such that

Zn = Sn + µnSn−1, n ≥ 1, with µn , 0. (3.1)

Suppose also that (εn, ρn)n≥0 is the set of parameters of the recurrence relation of the sequence {Sn}n≥0. Then, {Zn}n≥0
is an SMOP with respect to a linear functional ϑ if and only there exist complex numbers x1 , ε0 − µ1 such that, for
n ≥ 1,

εn − µn+1 −
ρn

µn
= x1, n ≥ 1. (3.2)

Furthermore,

(x − x1)ϑ = (ε0 − x1 − µ1)w. (3.3)
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Notice that if {Qn}n≥0 satisfies (2.1), then the polynomials Qn cannot be represented as a linear
combination of the at most three consecutive polynomials Pn, Pn−1 and Pn−2 . A natural question arises:
Can the SMOP {Qn}n≥0 be generated from {Pn}n≥0 in two or three steps with the help of some intermediate
SMOPs? The interest of this question is to simplify the computation of the parameters sn, tn and rn, in each
case via one of the other parameters noted an, bn and cn.

From now on, let {Pn}n≥0 and {Qn}n≥0 be two SMOPs with respect to the regular linear functionals u and v,
respectively which are related by (2.1).

3.1. The split of a 1-4 relation in three 1-2 relations.

Proposition 3.2. Let {an}n≥0, {bn}n≥0 and {cn}n≥0 be three sequences of nonzero complex numbers. The representation
(2.1) can be written as, for n ≥ 1

Qn = R̃n + cnR̃n−1,

R̃n = Rn + bnRn−1,

Rn = Pn + anPn−1,

(3.4)

where , {Rn}n≥0 and {R̃n}n≥0 are two SMOPs, if and only if there exist two complex numbers
α, β , such that

Dn : = βn − an+1 −
γn

an
= α, n ≥ 1,

En : = βn + an − an+1 − bn+1 −
γn + an(βn−1 − βn − an + an+1)

bn
= β, n ≥ 1,

(3.5)

and

an+1 = sn+1 −
tn+1

an
+

(sn+1 − an+1 − bn+1)bn

an
, n ≥ 1,

bn+2 = sn+2 − an+2 −
rn+2

bn+1an
, n ≥ 1,

cn = sn − an − bn, n ≥ 1,

(3.6)

with a1 , s1 − b1, a2 , s2 − b2.

Under such conditions, α and β are two of the zeros of q(x) := x3 + ax2 + bx + c.

Furthermore, q(x)
x−αv and q(x)

(x−α)(x−β) v are the linear functionals respect to which {Rn}n≥0 and {R̃n}n≥0 are orthogonal,
respectively.

Proof. From Theorem 3.1 and the two first equations of (3.4), we have (3.5) and

(x − α)w1 = −λu, (x − β)w2 = −εw1, (3.7)

where α, β , λ and ε are certain complex numbers, λ, ε , 0, w1 and w2 are the linear functionals with
respect to which {Rn}n≥0 and {R̃n}n≥0 are orthogonal, respectively. Substituting Rn and R̃n in (2.1), we get

Q1 = R̃1 + s1 − a1 − b1,

Q2 = R̃2 + (s2 − a2 − b2)R̃1 + [t2 − a1(s2 − a2) − b1(s2 − a2 − b2)],

Qn = R̃n + (sn − an − bn)R̃n−1 + [tn − an−1(sn − an) − bn−1(sn − an − bn)]Rn−2

+ [rn − an−2[tn − an−1(sn − an)]Pn−3, n ≥ 3,

then we also have tn = (sn − an − bn)bn−1 + an−1(sn − an) for all n ≥ 2 and rn = an−2(sn − an − bn)bn−1 for all
n ≥ 3, thus, sn , an + bn for every n ≥ 3. Hence (3.6) follows and, furthermore s1 , a1 + b1, s2 , a2 + b2 hold.
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Moreover, since {R̃n}n≥0 is an SMOP with respect to w2, being {Qn}n≥0 an SMOP with respect to v, then using
Theorem 3.1, we find

(x − γ)v = −µw2, (3.8)

where γ and µ are complex numbers, µ , 0. Thus,

q(x)v = −µλε(x − α)(x − β)(x − γ)v.

Since v is regular this gives k = µλε and α, β and γ are the zeros of q(x).
Conversely, from Theorem 3.1, (3.5) implies that the sequence {Rn}n≥0 defined by Rn = Pn +anPn−1, n ≥ 1,

and R̃n = Rn + bnRn−1, n ≥ 1, are SMOPs with respect to the linear functionals w1 and w2 such that
(x − α)w1 = ku and (x − β)w2 = k′w1 where k, k′ ∈ C − {0}, respectively.

We have sn , an + bn, n ≥ 1. Taking tn = (sn − an − bn)bn−1 + an−1(sn − an), n ≥ 2, and rn = an−2(sn − an −

bn)bn−1, n ≥ 3, we obtain

R̃n = Pn + (bn + an)Pn−1 + bnan−1Pn−2, n ≥ 2,
Qn = Pn + snPn−1 + ((sn − an − bn)bn−1 + an−1(sn − an))Pn−2 + an−2(sn − an − bn)bn−1Pn−3, n ≥ 3,

Qn = R̃n + (sn − an − bn)R̃n−1, n ≥ 1.

�

A matrix interpretation. If w1, w2 and v denote the corresponding linear functionals for {Rn}n≥0, {R̃n}n≥0
and {Qn}n≥0, respectively, defined by (3.4), (3.7) and (3.8), then it is well known (see [7]) that

(x − α)Pn = Rn+1 + dnRn,
(x − β)Rn = R̃n+1 + d′nR̃n,

(x − γ)R̃n = Qn+1 + d′′n Qn, n ≥ 0,
(3.9)

with dnd′nd′′n , 0.
Lets P = (P0,P1, ...)T, R = (R0,R1, ...)T, R̃ = (R̃0, R̃1, ...)T, and Q = (Q0,Q1, ...)T and JP, JR, J

R̃
and JQ the

corresponding monic Jacobi matrices. Then, the recurrence relations for such SMOPs read

xP = JPP, xR = JRR, xR̃ = J
R̃
H , xQ = JQQ. (3.10)

On the other hand , from (3.4) and (3.9) we have the matrix representations

R = L1P, (x − α)P = U1R,
R̃ = L2R, (x − β)R = U2H ,
Q = L3R̃, (x − γ)R̃ = U3Q,

(3.11)

where L1, L2 and L3 are three lower bidiagonal matrices with 1 as entries in the diagonal and U1, U2 and
U3 are upper bidiagonal matrices with 1 as entries in the upper diagonal given explicitly by

L1 =



1
a1 1

a2 1

a3
. . .

. . .


, L2 =



1
b1 1

b2 1

b3
. . .

. . .


, L3 =



1
s1 − a1 − b1 1

s2 − a2 − b2 1
. . .

. . .

. . .


,

U1 =



d0 1
d1 1

d2 1

d3
. . .

. . .


, U2 =



d′0 1
d′1 1

d′2 1

d′3
. . .

. . .


and U3 =



d′′0 1
d′′1 1

d′′2 1

d′′3
. . .

. . .


.
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Notice that from (3.10) and (3.11), we get

JP − αI = U1L1, (3.12)
JR − αI = L1U1, (3.13)
JR − βI = U2L2, (3.14)
J
R̃
− βI = L2U2, (3.15)

J
R̃
− γI = U3L3, (3.16)

JQ − γI = L3U3. (3.17)

As a consequence we can summarize the process as follows.
Step 1. Given JP, from L1 and (3.12) we get U1.
Step 2. From (3.13) we get JR.
Step 3. Given JR, from L2 and (3.14) we get U2.
Step 4. From (3.15) we get J

R̃
.

Step 5. Given J
R̃

, from L3 and (3.16) we get U3.
Step 6. From (3.17) we get JQ.

Notice that this is essentially the iteration of canonical Geronimus transformations (see [18]).

3.2. The split of a 1-4 relation in two relations of types 1-2 and 1-3 .
We have to consider two subcases:

3.2.1. 1-2 relation and then 1-3 relation.
Proposition 3.3. Let {an}n≥0, {bn}n≥0 and {cn}n≥0 be sequences of complex numbers,
an , 0, n ≥ 1 and cn , 0, n ≥ 2. The representation (2.1) can be written as

Rn = Pn + anPn−1, n ≥ 1,
Qn = Rn + bnRn−1 + cnRn−2, n ≥ 2,

(3.18)

where {Rn}n≥0 is an SMOP if and only if there exists a complex number α such that

Dn := βn − an+1 −
γn

an
= α, n ≥ 1, (3.19)

and

tn+2 = an+1(sn+2 − an+2) + rn+2
an
, n ≥ 1,

bn = sn − an, n ≥ 1,
cn = tn − (sn − an)an−1, n ≥ 2,

(3.20)

with t2 , a1(s2 − a2).

Furthermore, α is a zero of q(x) and q(x)
x−αv is the corresponding linear functional of the SMOP {Rn}n≥0.

Proof. From Theorem 3.1 and the first equation of (3.18), we have (3.19) and

(x − α)w = −λu, (3.21)

where α and λ are certain complex numbers, λ , 0, and w is the linear functional with respect to which
{Rn}n≥0 is orthogonal. Replacing Rn in (2.1), we get

Q1 = R1 + s1 − a1,

Q2 = R2 + (s2 − a2)R1 + t2 − (s2 − a2)a1,

Qn = Rn + (sn − an)Rn−1 + [tn − (sn − an)an−1]Rn−2 + [rn − (tn − (sn − an)an−1)an−2]Pn−3, n ≥ 3.
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Then we have rn − (tn − (sn − an)an−1)an−2 = 0 for all n ≥ 3 and the conditions tn , an−1(sn − an) for each
n ≥ 3. Hence (3.20) follows and, furthermore t2 , (s2 − a2)a1 holds. Moreover, since {Rn}n≥0 is an SMOP
with respect to w, being {Qn}n≥0 an SMOP with respect to v, then using Theorem 2.2 in [2] we find

(x2 + βx + γ)v = µw, (3.22)

where β, γ and µ are complex numbers, µ , 0. Thus,

q(x)v =
k
µλ

(x2 + βx + γ)(x − α)v.

Since v is regular, this gives k = µλ and α is a zero of q(x).
Conversely, given {an}n≥1 in the above conditions, from Theorem 3.1, (3.19) implies that the sequence

{Rn}n≥0 defined by Rn = Pn + anPn−1, n ≥ 1, is an SMOP with respect to a linear functional w such that
(x − α)w = ku where k ∈ C − {0}.

Taking rn = (tn − (sn − an)an−1)an−2, n ≥ 3, we have tn , (sn − an)an−1, n ≥ 2. So, we can write

Qn = Pn + snPn−1 + tnPn−2 + (tn − (sn − an)an−1)an−2Pn−3

= Rn + (sn − an)Rn−1 + (tn − (sn − an)an−1)Rn−2, n ≥ 2.

�

A matrix interpretation. In the sequel, we present a matrix interpretation of these results in terms of the
monic Jacobi matrices associated with the SMOPs {Pn}n≥0, {Rn}n≥0 and {Qn}n≥0, respectively.

Let P = (P0, P1, ...)T, R = (R0, R1, ...)T and Q = (Q0, Q1, ...)T be the column vectors associated with
these orthogonal families, and JP, JR and JQ the corresponding monic Jacobi matrices. Then, the recurrence
relations for such SMOPs read xP = JPP, xR = JRR and xQ = JQQ.

If w denotes the corresponding linear functional for {Rn}n≥0, given by (3.21), then it is well known (see
[7]) that

(x − α)Pn = Rn+1 + dnRn, n ≥ 0, with, dn , 0.

Then, from the first equation of (3.18), we get

R = LP, (x − α)P = UR, (3.23)

where L is a lower bidiagonal matrix with 1 as diagonal entries and U is an upper bidiagonal matrix with 1
as entries in the upper diagonal given explicitly by

L =


1
a1 1

a2 1
a3 1

. . .
. . .


and U =



d0 1
d1 1

d2 1

d3
. . .
. . .


.

Thus, we get

JP − αI = UL (3.24)

and

JR − αI = LU. (3.25)

The previous process is known as Darboux transformation and JR is said to be the Darboux transform of JP
(see[5]).
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On the other hand, from (3.22) and the classical Christoffel formula (see [7]) we can express (x2 + βx + γ)R
using the matrix representation

(x2 + βx + γ)R = NQ,

where N is a banded upper triangular matrix such that nk,k+2 = 1 and nk, j = 0 for j − k > 2. Next, we will
describe a method to find the matrix JQ using the matrix JR and the polynomial x2 + βx + γ. From the first
equation of (3.18), we may write Q =MR where

M =



1 0 0 . . . . . . . . . . . . . . .
b1 1 0 0 . . . . . . . . . . . .

c2 b2
. . .

. . . 0 . . . . . . . . .

0
. . .

. . .
. . .

. . .
. . . . . . . . .

...
. . . cn bn 1 0 0 . . .

0 . . . 0
. . .

. . .
. . .

. . .
. . .


,

with, bn = sn − an, n ≥ 1 and cn = tn − (sn − an)an−1, n ≥ 2, then xMR = JQMR and, as a consequence,
JRR =M−1 JQMR. Thus, we get

MJR = JQM.

Thus (x2 + βx + γ)R = NMR, and then

J2
R

+ βJR + γI = NM. (3.26)

But, from (x2 + βx + γ)Q =MNQ, we get

J2
Q

+ βJQ + γI =MN . (3.27)

As a conclusion, we can summarize our process as follows.
Step 1. Given JP , from L and (3.24) we get U.
Step 2. From (3.25) we get JR.
Step 3. Given JR , we find the polynomial matrix J2

R
+ βJR + γI.

Step 4. FromM and (3.26) we findN .
Step 5. From (3.27) we obtain the polynomial matrix J2

Q
+ βJQ + γI.

Step 6. Taking into account that JQ is a tridiagonal matrix, from step 3 we can deduce JQ, since (JQ +
β
2 I)2 =

MN − (γ − β2

4 )I.

3.2.2. 1-3 relation and then 1-2 relation.
Proposition 3.4. Given three sequences of complex numbers {an}n≥0, {bn}n≥0 and {cn}n≥0, bn , 0, n ≥ 2 and
cn , 0, n ≥ 1, then (2.1) can be written as

Rn = Pn + anPn−1 + bnPn−2, n ≥ 2,
Qn = Rn + cnRn−1, n ≥ 1,

(3.28)

where {Rn}n≥0 is a SMOP, if and only if γi + bi − bi+1 + ai(βi−1 − βi − ai + ai+1) , 0, for i = 1, 2 and there exist two
complex numbers α, β , such that

Dn :
an

bn+1
[γn+1 + bn+1 − bn+2 + an+1(βn − βn+1 − an+1 + an+2)] + an+1 − βn−1 − βn

= α, n ≥ 1,

En :
1

bn+1
[γn+1 − bn+2 + an+1(βn − βn+1 − an+1 + an+2)][γn + bn − bn+1 + an(an+1 − βn)]

+bn − γn−1 + (an+1 − βn)(an − βn−1) = β, n ≥ 1,

(3.29)
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and

an+1 = sn+1 −
rn+1
bn
, n ≥ 2,

bn+1 = tn+1 − (an+1 − sn+1)an, n ≥ 1,
cn = sn − an, n ≥ 1,

(3.30)

with a1 , s1, a2 , s2.

In this case q(x) = (x− x1)(x2 +αx + β) where x1 ∈ C and (x− x1)v is the linear functional associated with the SMOP
{Rn}n≥0.

Proof. From Theorem 2.2 in [2], we have (3.29) and

(x2 + αx + β)w = λu, (3.31)

where α, β and λ are certain complex numbers, λ , 0, and w is the regular functionals with respect to
which {Rn}n≥0 is orthogonal. Replacing Rn in (2.1), we get

Q1 = R1 + s1 − a1,

Q2 = R2 + (s2 − a2)R1 + t2 − b2 − (s2 − a2)a1,

Qn = Rn + (sn − an)Rn−1 + [tn − bn − (sn − an)an−1]Pn−2 + [rn − (sn − an)bn−1]Pn−3, n ≥ 3.

Therefore tn − bn + (sn − an)an−1 = 0 for all n ≥ 2 and rn − (sn − an)bn−1 = 0 for all n ≥ 3. Then an , sn, n ≥ 3.
Hence (3.30) follows and, furthermore, a1 , s1 and a2 , s2 hold. Using the second equation of (3.28) and
Theorem 3.1, we have

(x − γ)v = −k1w, (3.32)

where γ and k1 are complex numbers, k1 , 0. Thus, since by hypothesis we also have

q(x)v =
k

k1λ
(x − γ)(x2 + αx + β)v.

This gives k = k1λ and then γ is one of the zeros of q(x) := x3 + ax2 + bx + c because v is regular.
Conversely, given {an}n≥1 and {bn}n≥2 in the above conditions, from Theorem 2.2 in [2], (3.29) implies

that the sequence {Rn}n≥0 defined by R0 = 1, R1 = P1 + a1P0, Rn = Pn + anPn−1 + bnPn−2, n ≥ 2, is an SMOP
with respect to a regular linear functional w such that (x2 + αx + β)w = ku where k ∈ C − {0}.

Taking tn = bn + (sn − an)an−1, n ≥ 2 and rn = (sn − an)bn−1, n ≥ 3. So, we can write

Qn = Pn + snPn−1 + (bn + (sn − an)an−1)Pn−2 + (sn − an)bn−1Pn−3 = Rn + (sn − an)Rn−1, n ≥ 1.

�

When {Pn}n≥0 is symmetric.

Assume that the sequence {Pn}n≥0 is orthogonal with respect to a symmetric linear functional u (i.e. (u)2n+1 =
0,n ≥ 0). Then βn = 0,n ≥ 0, and there exist two polynomial sequences {Vn}n≥0 and {V∗n}n≥0 such that for all
n, P2n(x) = Vn(x2) and P2n+1 = xV∗n(x2).

It is known (see [6]) that {Vn}n≥0 and {V∗n}n≥0 are SMOPs with respect to the linear functionals σu and
xσu where (σu, xn) = (u, x2n), n ≥ 0.

It’s clear that the polynomials Qn defined by (2.1) can not be symmetric because rn , 0 for all
n ≥ 3. Suppose that the sequence {Qn}n≥0 is orthogonal with respect to a linear functional v such that xv is
symmetric and regular, then v is said to be quasi-antisymmetric (for more information about these linear
functionals please see [14] and [16]). From (2.16), we obtain (ax + c)σxv = 0 then a = c = 0 because σxv is
regular. Therefore, the relation between the linear functionals u and v is (x2 + b)xv = −ku. Noting w = xv,
then (x2 + b)w = −ku and from Proposition 2.1 in [13], there exists a symmetric sequence {Rn}n≥0 orthogonal
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with respect to w and satisfying (3.28). Thus an = 0. From Proposition 3.4, we obtain bn = tn and sn+1 = rn+1
tn

.
Furthermore, there exist {Gn}n≥0 and {G∗n}n≥0 SMOPs with respect to σxv and xσxv, respectively, satisfying

Q2n(x) = Gn(x2) + θnxG∗n−1(x2), Q2n+1(x) = λnGn(x2) + xG∗n(x2), n ≥ 0,

with θn , 0 and λn , 0 , n ≥ 0. In this case, from (3.28), we have for n ≥ 0, Qn = Rn + snRn−1, θn = s2n,
λn = s2n+1 and

R2n(x) = Gn(x2), R2n+1(x) = xG∗n(x2),

where

Gn(x) = Vn(x) + t2nVn−1(x), G∗n(x) = V∗n(x) + t2n+1V∗n−1(x).

The coefficients sn, t2n and t2n+1 can be computed using Theorem 3.1.
Moreover, the parameters β̃n and γ̃n of the recurrence relation of the sequence {Qn}n≥0 are defined by

β̃n = sn − sn+1, n ≥ 0, (3.33)

γ̃n = −s2
n, n ≥ 1. (3.34)

Indeed, taking βn = 0 in (2.5) and a = 0 in (2.13) , we get (3.33) and

tn+2

rn+2
= −sn+3.

Using (2.3) for n + 2 instead of n, we obtain

1
rn+2

[tn+1γ̃n+2 − rn+2(sn+3 − sn+2)] = −sn+3,

and introducing tn+1 = rn+2
sn+2

, that is, for n ≥ 1

γ̃n+2 = −s2
n+2. (3.35)

From (2.23) and (3.35), for n=1, we obtain

−s2
3
γ̃1γ̃2

r3
− s2

3s2
1
γ̃2

r3
− s2

3(t2 − γ̃1)
t2

r3
− s3γ1 + r3.

Inserting t2 = r3
s3

, we obtain

−
s2

3

r3
γ̃2[γ̃1 + s2

1] = 0.

Then, we deduce γ̃1 = −s2
1.

Using (2.15) and (2.2)-(2.6), we get

γ̃2γ̃3γ̃4

r4
+ (s2 − β1)

s2

r4
γ̃3γ̃4 − [s3β1 + γ1 + γ2 − t3 − β1β2]

t3

r4
γ̃4

+ (β2 − β0 + β3 − s4)γ1 − (s4 − β3)γ2 + γ3β1 − β1t4 + β1β2s4 − β1β2β3 + r4 = C2.

From βn = 0, γ̃3 = −s2
3, γ̃4 = −s2

4 and t3 = r4
s4

, we obtain

γ̃2s2
3s2

4

r4
+

s2
2s2

3s2
4

r4
= 0.

Therefore γ̃2 = −s2
2.
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A matrix interpretation. We will describe a method to find the matrix JR using the matrix JP and the
polynomial x2 + αx + β.
Taking into account the first equation of (3.28) we may write R =MP where M = (mk, j) is a banded lower
triangular matrix such that mk,k = 1, and mk, j = 0 for k − j > 2,

M =



1 0 0 . . . . . . . . .
a1 1 0 0 . . . . . .

b2 a2 1
. . . 0 . . .

0
. . .

. . .
. . .

. . .
. . .

...
. . . bn an 1 0

0 . . . 0
. . .

. . .
. . .


,

then xMP = JRMP and, as a consequence, JPP =M−1 JRMP. Thus, we get

MJP = JRM.

On the other hand, from (3.31) and the classical Christoffel formula (see [7]) we can express (x2 + αx + β)P
using the matrix representation

(x2 + αx + β)P = NR,

whereN is a banded upper triangular matrix such that nk,k+2 = 1 and nk, j = 0 for j − k > 2.
Thus (x2 + αx + β)P = NMP, and then

J2
P

+ αJP + βI = NM. (3.36)

But, from (x2 + αx + β)R =MNR, we get

J2
R

+ αJR + βI =MN . (3.37)

By (3.32), it is well known (see [7]) that

(x − γ)Rn = Qn+1 + dnQn, n ≥ 0, with, dn , 0.

Then, from the second equation of (3.28), we obtain

Q = LR, (x − γ)R = UQ, (3.38)

where

L =


1
c1 1

c2 1
c3 1

. . .
. . .


and U =



d0 1
d1 1

d2 1

d3
. . .
. . .


.

Thus, we get

JR − γI = UL (3.39)

and

JQ − γI = LU. (3.40)

As a conclusion, we can summarize our process as follows.
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Step 1. Given JP , we find the polynomial matrix J2
P

+ αJP + βI.
Step 2. FromM and (3.36) we findN .
Step 3. From (3.37) we obtain the polynomial matrix J2

R
+ αJR + βI.

Step 4. Taking into account that JR is a tridiagonal matrix, from step 3 we can deduce JR, since (JR + α
2 I)2 =

MN − (β − α2

4 )I.
Step 5. Given JR , from L and (3.39) we get U.
Step 6. From (3.40) we get JQ.

4. Illustrative Examples

(1) Let {Pn = L(α)
n }n≥0 be the sequence of monic Laguerre polynomials orthogonal with respect to the

linear functional u defined by the weight function xαe−xχ(0,+∝) with α > 1. We can take the auxiliary
polynomials Rn(x) = L(α−1)

n (x) and R̃n(x) = L(α−2)
n (x) orthogonal, respectively with respect to w1 and w2.

These polynomials satisfy Rn(x) = L(α)
n (x) + nL(α)

n−1(x), and R̃n(x) = L(α−1)
n (x) + nL(α−1)

n−1 (x) (see [6]). Furthermore,
we have the following equations

xw1 = αu, xw2 = (α − 1)w1.

Then, the new sequence {Qn}n≥0 such that Qn(x) = R̃n(x) + cnR̃n−1(x) is orthogonal with respect to the linear
functional v satisfying xv = (α − 1 − c1)w2 . Thus

x3v = ku, k = α(α − 1)(α − 1 − c1).

According to Proposition 3.2, the polynomials Qn satisfy the relation (2.1) where sn = cn + 2n, tn = (2n −
2)sn − 3n(n− 1), n ≥ 1 and rn = (n− 1)(n− 2)(sn − 2n), n ≥ 1. It is well known that the recurrence coefficients
of L(α−2)

n , α > 1, are βn = 2n + α − 1, n ≥ 0 and γn = n(n + α − 2), n ≥ 1 (see [6]) .
Using formula (3.2) for this case, having x1 = 0 and c2 = 1 +α− α−1

c1
, by induction we can derive that,

for α > 1, and α , 2, the values of the parameters cn in terms of c1 are

cn = n
Γ(α − 1)(α − 1 − c1) + (c1 − 1) Γ(n+α−1)

Γ(n+1)

Γ(α − 1)(α − 1 − c1) + (c1 − 1) Γ(n−2+α)
Γ(n)

, n ≥ 1, (4.1)

and then v is regular if and only if

Γ(n)Γ(α − 1)(α − 1 − c1) + (c1 − 1)Γ(n − 2 + α) , 0, n ≥ 1.

Notice that if α ∈N − {2} then cn is a rational function of n, namely,

cn = n
Γ(α − 1)(α − 1 − c1) + (c1 − 1)(α + n − 2)...(n + 1)

Γ(α − 1)(α − 1 − c1) + (c1 − 1)(α + n − 3)...n
, n ≥ 1.

If α = 2, then, by induction, we can also obtain, for n ≥ 2

cn = n
(c1 − 1)(1 + 1

2 + ... 1n ) + 1

(c1 − 1)(1 + 1
2 + ... + 1

n−1 ) + 1
, (4.2)

and v is regular if and only if

(c1 − 1)(1 +
1
2

+ ...
1
n

) + 1 , 0, n ≥ 1.

We have

v = (α − c1 − 1)x−1w2 + δ0. (4.3)
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In particular for α > 2, we can write

(α − 2)v = (α − c1 − 1)w3 + (c1 − 1)δ0, (4.4)

where w3 is the corresponding linear functional for monic Laguerre polynomials {L(α−3)
n }n≥0.

A matrix interpretation. If Pn = L(α)
n , α > 1, and an = bn = n, we obtain

(JP)n+1 =



α + 1 1 0 . . . 0

α + 1 α + 3
. . .

. . .
...

0 2(α + 2)
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . 0 n(n + α) 2n + α + 1


(4.5)

and (L1)n+1 = (L2)n+1 =


1
1 1

2
. . .

. . .
n 1


. (4.6)

From (3.12), we obtain

(U1)n+1 =


α 1

α + 1 1
α + 2 1

. . .
. . .
α + n


,

thus,

(JR)n+1 = (L1)n+1(U1)n+1 =



α 1
α α + 2 1

. . .
. . .

. . .
. . .

. . . 1

n(n + α − 1) α + 2n


.

Using (3.14), we obtain

(U2)n+1 =


α − 1 1

α 1
α + 1 1

. . .
. . .

α + n − 1


.

Then by (3.15), we get

(J
R̃

)n+1 = (L2)n+1(U2)n+1 =



α − 1 1
α − 1 α + 1 1

. . .
. . .

. . .
. . .

. . . 1
n(n + α − 2) α − 1 + 2n


.
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From (3.16), we have

(U3)n+1 =


α − 1 − c1 1

α + 1 − c2
. . .
. . . 1

2n + α − 1 − cn+1

 .

With cn = sn − 2n satisfies cn+1 = 2n + α − 1 − n(n+α−2)
cn

, n ≥ 1. Then cn is defined by (4.1) and (4.2).
Using (3.17), we get

(JQ)n+1 = (L3)n+1(U3)n+1 =



α − 1 − c1 1
c1(α − 1 − c1) c1 + α−1

c1
1

. . .
. . .

. . .

. . .
. . . 1

cn(2n + α − 3 − cn) cn + n(n+α−2)
cn


. (4.7)

(2) Let {Pn =Un}n≥0 be the sequence of monic Chebyshev polynomials of the second kind, orthogonal with
respect to the linear functional u =U defined by the weight function (1− x2)1/2χ(−1,1)(x) with the recurrence
coefficients βu

n = 0, n ≥ 0, and γu
n = 1

4 , n ≥ 1. Consider the SMOP {Rn = Tn}n≥0 orthogonal with respect to
the Chebyshev linear functional of first kind w = T . We have (see [6])

Rn =Un −
1
4
Un−2, n ≥ 2,

and (x2
− 1)w = − 1

2 u. The new polynomials Qn, such that Qn = Rn + snRn−1, n ≥ 1, satisfy the relation
(2.1) with tn = − 1

4 and rn = − 1
4 sn. Thus xv = −2w, and v is quasi-antisymmetric. It is well known that the

recurrence coefficient of Rn are βw
n = 0, n ≥ 0, γw

n = 1
4 , n ≥ 2, and γw

1 = 1
2 (see [6]).

Using Theorem 3.1 for this case, since x1 = 0, by induction, the values of the parameters sn, n ≥ 2, are

β0 − x1 − s1 = −2, i.e. s1 = 2,

s2n = −
1

2s1
= −

1
4
, n ≥ 1,

s2n+1 =
s1

2
= 1, n ≥ 1.

(4.8)

Then

r2n =
1

16
, r2n+1 = −

1
4
, n ≥ 1,

β̃0 = −s1 = −2, β̃1 = s1 − s2 =
9
4
, β̃2n = −

5
4
, β̃2n+1 =

5
4
, n ≥ 1.

(4.9)

From (3.33)-(3.34), and (4.9), we get

γ̃1 = −s2
1 = −4, γ̃2n = −s2

2n = −
1

16
, γ̃2n+1 = −s2

2n+1 = −1, n ≥ 1. (4.10)

The regular linear functional v is given by

v = −2x−1w + δ0.

A matrix interpretation. From Proposition 3.4 where Pn = Un, and Rn = Tn, we have an = 0, n ≥ 0,
and bn = − 1

4 , n ≥ 2. Then, the polynomials {Qn}n≥0 satisfy the relation (2.1) with, tn = − 1
4 , n ≥ 2, and



M. Sghaier, L. Khaled / Filomat 31:8 (2017), 2477–2497 2494

rn = − 1
4 sn, n ≥ 3. Therefore

(L)n+1 =



1 0 0 . . . 0

s1 1
. . .

. . .
...

0 s2
. . .

. . . 0
...

. . .
. . .

. . . 0
0 . . . 0 sn 1


.

From the above results, we have

(JP)n+1 =



0 1 0 . . . 0

1/4 0
. . .

. . .
...

0 1/4
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . 0 1/4 0


, (JR)n+1 =



0 1 0 . . . 0

1/2 0
. . .

. . .
...

0 1/4
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . 0 1/4 0


.

Then

[(JP)n+1]2
− I =



−3/4 0 1 . . . 0

0 −1/2
. . .

. . .
...

1/16 0
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . 1/16 0 −1/2


.

From (3.36), we obtain

(N)n+1 =



−1/2 0 1 . . . 0

0 −1/4
. . .

. . .
...

0 0
. . .

. . . 1
...

. . .
. . .

. . . 0
0 . . . 0 0 −1/4


.

From (3.39), we get

(U)n+1 =


−s1 1

−s2 1
−s3 1

. . .
. . .
−sn+1


,

with sn satisfis s2 = − 1
2s1
, and sn+1 = 1

4sn
, n ≥ 2. Then sn is again defined by (4.8).

Using again (3.40), we get

(JQ)n+1 = (L)n+1(U)n+1 =



−s1 1 0 . . . 0

−s2
1 s1 − s2

. . .
. . .

...

0 −s2
2

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 −s2
n sn − sn+1


.
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(3) Let {Pn = Bαn}n≥0 be the sequence of monic Bessel polynomials orthogonal with respect to the linear

functional u = Bα defined by the weight function x2(α−1)e−
2
x

∫ +∞

x
ε−2αe

2
ε−ε

1
4 sin(ε

1
4 )dεχ(0,+∝) with α > 1 (see

[15]). We can take the auxiliary polynomials Rn = Bα−1
n satisfying

Rn(x) = Bαn(x) +
n

(n − 2 + α)(n + α − 1)
Bαn−1(x) +

n(n − 1)
(2n + 2α − 5)(n − 2 + α)2(2n + 2α − 3)

Bαn−2(x)

orthogonal with respect to the linear functional w = Bα−1.
This linear functional verifies x2w = 4

(2α−1)(α−1) u (see[6]).
According to Proposition 3.4, the new polynomials Qn such that

Qn(x) = Rn(x) + cnRn−1(x), n ≥ 1, (4.11)

satisfy the relation (2.1) with
sn = cn +

n(n−1)
(2n+2α−5)(n−2+α)2(2n+2α−3) , n ≥ 1,

tn = n−1
(n−3+α)(n+α−2) cn +

n(n−1)
(2n+2α−5)(n−2+α)2(2n+2α−3) , n ≥ 2,

and rn =
(n−1)(n−2)

(2n+2α−7)(n−3+α)2(2n+2α−5) cn, n ≥ 3.
It is well known that the recurrence coefficients of Bα−1

n are

βw
0 = −

1
α − 1

, βw
n =

2 − α
(n + α − 2)(n + α − 1)

, n ≥ 1,

γw
n = −

n(n + 2α − 4)
(2n + 2α − 5)(n + α − 2)2(2n + 2α − 3)

, n ≥ 1.
(4.12)

Using formula (3.2) for this case, having x1 = 0 , and taking into account (4.12), we can deduce by induction

cn = −
n + 2α − 4

(n + α − 2)(2n + 2α − 5)
xn

xn−1
, n ≥ 1, (4.13)

where
α ,

3
2

: xn = (λ −
2

2α − 3
) −

(−1)nλΓ(2α − 3)Γ(n + 1)
Γ(n + 2α − 3)

, n ≥ 0,

α =
3
2

: xn = 1 + (−1)n nλ
2
, n ≥ 0,

(4.14)

with λ = 1
α−1 + c1.

The linear functional v is regular for every c1 such that xn , 0, n ≥ 0, and it is given by

v = −
( 1
α − 1

+ c1

)
x−1w + δ0. (4.15)

In particular for α > 2, we can write

v = −
(2α − 3)(α − 2)

2

( 1
α − 1

+ c1

)
xBα−2

−

(
(2α − 3)

2

( 1
α − 1

+ c1

)
− 1

)
δ0.

A matrix interpretation. We have Pn = Bαn , α > 1, and Rn = Bα−1
n , then

(JP)n+1 =



β0 1 0 . . . 0

γ1 β1
. . .

. . .
...

0 γ2
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . 0 γn βn


, (JR)n+1 =



βw
0 1 0 . . . 0

γw
1 βw

1
. . .

. . .
...

0 γw
2

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 γw
n βw

n


,
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where βn, γn and βw
n , γ

w
n are the recurrence coefficients of Bαn and Bα−1

n , respectively.
Thus, R =MP, where

(M)n+1 =



1 0 0 . . . 0

a1 1
. . .

. . .
...

b2 a2
. . .

. . . 1
...

. . .
. . .

. . . 0
0 . . . bn an 1


,

with

an =
n

(n − 2 + α)(n + α − 1)
, n ≥ 1,

bn =
n(n − 1)

(2n + 2α − 5)(n − 2 + α)2(2n + 2α − 3)
, n ≥ 2.

The polynomials Qn, n ≥ 0, satisfy Q = LR, with

(L)n+1 =



1 0 0 . . . 0

c1 1
. . .

. . .
...

0 c2
. . .

. . . 0
...

. . .
. . .

. . . 0
0 . . . 0 cn 1


,

and cn defined by (4.13)-(4.14).
Using (3.39) for this case, we obtain

(U)n+1 =


d0 1

d1 1
d2 1

. . .
. . .
dn


,

where

d0 = βw
0 − c1 = −

1
α − 1

− c1,

dn = βw
n − cn+1 =

γw
n

cn
=

n
(n + α − 2)(2n + 2α − 3)

xn−1

xn
, n ≥ 1.

From (3.40), we get

(JQ)n+1 = (L)n+1(U)n+1 =



d0 1 0 . . . 0

c1d0 c1 + d1
. . .

. . .
...

0 c2d1
. . .

. . . 0
...

. . .
. . .

. . . 1
0 . . . 0 cndn−1 cn + dn


.
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Then

β̃0 = d0 = −
1

α − 1
− c1,

β̃n+1 = cn+1 + dn+1 = −
n + 2α − 3

(n + α − 1)(2n + 2α − 3)
xn+1

xn
+

n + 1
(n + α − 1)(2n + 2α − 1)

xn

xn+1
, n ≥ 0,

γ̃1 = −c1(
1

α − 1
+ c1),

γ̃n+1 = −
n(n + 2α − 3)

(n + α − 1)(n + α − 2)(2n + 2α − 3)2

xn−1xn+1

x2
n

, n ≥ 1.
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