Fixed Point Results for Multivalued Hardy-Rogers Contractions in b-Metric Spaces

Cristian Chifu ${ }^{\text {a }}$, Gabriela Petruşel ${ }^{\text {a }}$
${ }^{\text {a }}$ Babeş-Bolyai University Cluj-Napoca, Faculty of Business

Abstract

The purpose of this paper is to present some fixed point results in b-metric spaces using a contractive condition of Hardy-Rogers type with respect to the functional H. The data dependence of the fixed point set, the well-posedness of the fixed point problem, as well as, the Ulam-Hyres stability are also studied.

1. Preliminaries

In 1973, Hardy and Rogers ([5]) gave a generalization of Reich fixed point theorem. Since then, many authors have been used different Hardy-Rogers contractive type conditions in order to obtain fixed point results. In what follows we shall recall, pure randomly, some of them.

In 2009, Kadelburg, Radenovic and Rasic ([6]), gave some common fixed point results in cone metric spaces. Radojevic, Paunovic and Radenovic ([7]) have obtained some coincidence point theorems in complete metric spaces. Sgroi and Vetro ([9]) have presented some results for \mathcal{F}-contractions in complete and ordered metric spaces. Finally, Roshan, Shobkolaei, Sedghi and Abbas ([8]) gave some common fixed point results in b-metric spaces.

In this paper we shall give some fixed point results for multivalued operators in b-metric spaces using a contractive condition of Hardy-Rogers type with respect to the functional H. The data dependence of the fixed point set, the well-posedness of the fixed point problem, as well as, the Ulam-Hyres stability are also studied.

Because we shall work in b - metric spaces, we'll start by presenting some notions about this kind of metric spaces.

Definition 1.1. Let X be a nonempty set and let $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}_{+}$is said to be a b-metric if and only if for all $x, y, z \in \mathbb{X}$, the following conditions are satisfied:

1. $d(x, y)=0 \Longleftrightarrow x=y$;
2. $d(x, y)=d(y, x)$;
3. $d(x, y) \leq s[d(x, z)+d(z, y)]$.
[^0]In this case, the pair (X, d) is called b - metric space with constant s.

Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is a metric space when $s=1$.

Example 1.3. Let $X=\{0,1,2\}$ and $d: X \times X \rightarrow \mathbb{R}_{+}$such that $d(0,1)=d(1,0)=d(0,2)=d(2,0)=1, d(1,2)=$ $d(2,1)=\alpha \geq 2, d(0,0)=d(1,1)=d(2,2)=0$. We have

$$
d(x, y) \leq \frac{\alpha}{2}[d(x, z)+d(z, y)], \text { for } x, y, z \in X
$$

Then (X, d) is a b-metric space. If $\alpha>2$ the ordinary triangle inequality does not hold and (X, d) is not a metric space.

Example 1.4. The set $l^{p}(\mathbb{R})=\left\{\left.\left(x_{n}\right) \subset \mathbb{R}\left|\lim _{n=1}^{\infty}\right| x_{n}\right|^{p}<\infty\right\}, 0<p<1$, together with the functional $d: l^{p}(\mathbb{R}) \times$ $l^{p}(\mathbb{R}) \rightarrow \mathbb{R}_{+}, d(x, y)=\left(\lim _{n=1}^{\infty}|x-y|^{p}\right)^{1 / p}$, is a b-metric space with constant $s=2^{1 / p}$.

Example 1.5. Let $X=\mathbb{R}$ and $d: X \times X \rightarrow \mathbb{R}_{+}, d(x, y)=|x-y|^{3}$. The (X, d) is a b-metric space with constant $s=3$.
Definition 1.6. Let (X, d) be a b - metric space with constants. Then the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ is called:

1. convergent if and only if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$, as $n \rightarrow \infty$;
2. Cauchy if and only if $d\left(x_{n}, x_{m}\right) \rightarrow 0$, as $n, m \rightarrow \infty$.

Definition 1.7. Let (X, d) be $a b$-metric space with constant s. If Y is a nonempty subset of X, then the closure \bar{Y} of Y is the set of limits of all convergent sequences of points in Y, i.e.,

$$
\bar{Y}:=\left\{x \in X: \exists\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n} \rightarrow x, \text { as } n \rightarrow \infty\right\}
$$

Definition 1.8. Let (X, d) be $a b$ - metric space with constant s. Then a subset $Y \subset X$ is called:

1. closed if and only if for each sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset Y$ which converges to x, we have $x \in Y$;
2. compact if and only iffor every sequence of elements of Y there exists a subsequence that converges to an element of Y;
3. bounded if and only if $\delta(Y):=\{d(a, b): a, b \in Y\}<\infty$.

Definition 1.9. The b - metric space (X, d) is complete if every Cauchy sequence in X converges.
Let us consider the following families of subsets of a b-metric space (X, d) :
$\mathcal{P}(X)=\{Y \mid Y \subset X\}, P(X):=\{Y \in \mathcal{P}(X) \mid Y \neq \emptyset\} ; P_{b}(X):=\{Y \in \mathcal{P}(X) \mid Y$ is bounded $\}$,
$P_{c l}(X):=\{Y \in \mathcal{P}(X) \mid Y$ is closed $\} ; P_{c p}(X):=\{Y \in \mathcal{P}(X) \mid Y$ is compact $\}$

Throughout the paper the following fuctionals are used:

- the gap functional: $D: P(X) \times P(X) \rightarrow \mathbb{R}_{+}$

$$
D(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\} .
$$

In particular, if $x_{0} \in X$, then $D\left(x_{0}, B\right):=D\left(\left\{x_{0}\right\}, B\right)$.

- the Pompeiu-Hausdorff generalized functional: $H: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$,

$$
H(A, B)=\max \{\rho(A, B), \rho(B, A)\}
$$

where $\rho: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ defined as

$$
\rho(A, B)=\sup \{D(a, B) \mid a \in A\},
$$

is called the excess generalized functional.
Let $T: X \rightarrow P(X)$ be a multivalued operator. A point $x \in X$ is called fixed point for T if and only if $x \in T(x)$.

The set $\operatorname{Fix}(T):=\{x \in X \mid x \in T(x)\}$ is called the fixed point set of T, while $\operatorname{SFix}(T)=\{x \in X \mid\{x\}=T(x)\}$ is called the strict fixed point set of T. Notice that $\operatorname{SFix}(T) \subseteq \operatorname{Fix}(T)$.

The following properties of some of the functionals defined above will be used throughout the paper (see [1] , [4] for details and proofs):

Lemma 1.10. Let (X, d) be a b-metric space with constant $s>1, A, B \in P_{c l}(X)$. Then

1. $D(x, B) \leq d(x, b)$, for any $b \in B$;
2. $D(x, B) \leq H(A, B)$, for any $x \in A$;
3. $D(x, A) \leq s[d(x, y)+D(y, A)]$, for all $x, y \in X, A \subset X$;
4. $D(x, A)=0$ if and only if $x \in \bar{A}$;
5. For any $q>1, a \in A$, there exists $b \in B$ such that $d(a, b) \leq q H(A, B)$;
6. $d\left(x_{n}, x_{n+p}\right) \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+\ldots+s^{p-1} d\left(x_{n+p-2}, x_{n+p-1}\right)+s^{p-1} d\left(x_{n+p-1}, x_{n+p}\right)$, for any $n \in \mathbb{N}$ and $p \in \mathbb{N}^{*}$.

2. Fixed Point Results

In this section we shall present our main fixed point theorem for multivalued Hardy-Rogers operators.
Theorem 2.1. Let (X, d) be a complete b-metric space with constant $s>1$ and $T: X \rightarrow P(X)$ a multivalued operator such that:
(i) there exist $a, b, c \in \mathbb{R}_{+}, a+b+2 c s<\frac{s-1}{s^{2}}$ and $b+c s<\frac{1}{s}$ such that

$$
H(T(x), T(y)) \leq a d(x, y)+b[D(x, T(x))+D(y, T(y))]+c[D(x, T(y))+D(y, T(x))]
$$

for all $x, y \in X$;
(ii) T is closed;

In these conditions Fix $(T) \neq \varnothing$.
Proof. (i) It's easy to see that because $a+b+2 c s<\frac{s-1}{s^{2}}, a+b+c s<a+b+2 c s<\frac{s-1}{s^{2}}$ and hence,

$$
s(a+b+c s)<\frac{s-1}{s} .
$$

On the other hand, since $b+c s<\frac{1}{s}$, we obtain

$$
\frac{1-b-c s}{s(a+b+c s)}>1
$$

Let $x_{0} \in X$ and $1<q<\frac{1}{s} \frac{1-b-c s}{a+b+c s}$.

There exists $x_{1} \in T\left(x_{0}\right)$ such that

$$
\left.H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq \operatorname{ad}\left(x_{0}, x_{1}\right)+b\left[D\left(x_{0}, T\left(x_{0}\right)\right)\right)+D\left(x_{1}, T\left(x_{1}\right)\right)\right]+c\left[D\left(x_{0}, T\left(x_{1}\right)\right)+D\left(x_{1}, T\left(x_{0}\right)\right)\right] .
$$

By Lemma 1.1. we have:

```
\(D\left(x_{0}, T\left(x_{0}\right)\right) \leq d\left(x_{0}, x_{1}\right) ;\)
\(D\left(x_{1}, T\left(x_{1}\right)\right) \leq H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)\);
\(D\left(x_{1}, T\left(x_{0}\right)\right)=0\);
\(D\left(x_{0}, T\left(x_{1}\right)\right) \leq s\left[d\left(x_{0}, x_{1}\right)+D\left(x_{1}, T\left(x_{1}\right)\right)\right] \leq s\left[d\left(x_{0}, x_{1}\right)+H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)\right]\).
```

Hence

$$
\begin{aligned}
& H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq a d\left(x_{0}, x_{1}\right)+b d\left(x_{0}, x_{1}\right)+b H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right)+\operatorname{csd}\left(x_{0}, x_{1}\right)+\operatorname{csH}\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \\
& (1-b-c s) H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq(a+b+c s) d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Since $b+c s<\frac{1}{s}<1$ we have

$$
H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \leq \frac{a+b+c s}{1-b-c s} d\left(x_{0}, x_{1}\right) .
$$

Using again Lemma 1.1., there exists $x_{2} \in T\left(x_{1}\right)$ such that

$$
\begin{aligned}
& d\left(x_{1}, x_{2}\right) \leq q H\left(T\left(x_{0}\right), T\left(x_{1}\right)\right) \\
& d\left(x_{1}, x_{2}\right) \leq q \frac{a+b+c s}{1-b-c s} d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

Let $q \frac{a+b+c s}{1-b-c s}:=\alpha<\frac{1}{s}<1$
Hence

$$
d\left(x_{1}, x_{2}\right) \leq \alpha d\left(x_{0}, x_{1}\right) .
$$

Continuing this process we shall obtain that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, with $x_{n} \in T\left(x_{n-1}\right)$, such that $d\left(x_{n}, x_{n+1}\right) \leq \alpha^{n} d\left(x_{0}, x_{1}\right)$ for each $n \in \mathbb{N}$.

This inequality implies that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence, see [3]. Hence there exists $x \in X$ such that $x_{n} \rightarrow x$, as $n \rightarrow \infty$.

Now, we shall prove that $x \in T(x)$.
We have:

$$
\begin{aligned}
D(x, T(x)) & \leq s d\left(x, x_{n+1}\right)+s D\left(x_{n+1}, T(x)\right) \\
& \leq s d\left(x, x_{n+1}\right)+s H\left(T\left(x_{n}\right), T(x)\right) . \\
H\left(T\left(x_{n}\right), T(x)\right) & \leq a d\left(x_{n}, x\right)+b\left[D\left(x_{n}, T\left(x_{n}\right)\right)+D(x, T(x))\right]+c\left[D\left(x, T\left(x_{n}\right)\right)+D\left(x_{n}, T(x)\right)\right] \\
& \leq a d\left(x_{n}, x\right)+b d\left(x_{n}, x_{n+1}\right)+b D(x, T(x))+c d\left(x_{n+1}, x\right)+\operatorname{csd}\left(x_{n}, x\right)+c s D(x, T(x)) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
D(x, T(x)) \leq & s d\left(x, x_{n+1}\right)+a s d\left(x_{n}, x\right)+b s d\left(x_{n}, x_{n+1}\right)+b s D(x, T(x))+ \\
& \operatorname{csd}\left(x_{n+1}, x\right)+\operatorname{cs}^{2} d\left(x_{n}, x\right)+\operatorname{cs}^{2} D(x, T(x)) .
\end{aligned}
$$

If $n \rightarrow \infty$ then we obtain $\left(1-b s-c s^{2}\right) D(x, T(x)) \leq 0$.
Since $b+c s<\frac{1}{s}$ we have that $b s+c s^{2}<1$ and hence, $D(x, T(x))=0$. This implies that $x \in T(x)$ and hence $\operatorname{Fix}(T) \neq \varnothing$.

An existence and uniqueness fixed point result for multivalued Hardy-Rogers operators is the following:
Theorem 2.2. Let (X, d) be a complete b-metric space with constant $s>1$ and $T: X \rightarrow P(X)$ a multivalued operator such that:
(i) there exist $a, b, c \in \mathbb{R}_{+}, a+b+2 c s<\frac{s-1}{s^{2}}$ and $b+c s<\frac{1}{s}$ such that

$$
H(T(x), T(y)) \leq a d(x, y)+b[D(x, T(x))+D(y, T(y))]+c[D(x, T(y))+D(y, T(x))]
$$

for all $x, y \in X$;
(ii) T is closed;

$$
\text { If SFix }(T) \neq \varnothing \text { then SFix }(T)=\operatorname{Fix}(T)=\{x\} .
$$

Proof. Let $x \in \operatorname{SFix}(T)$ and suppose that there exist $y \in \operatorname{Fix}(T), y \neq x$.

$$
\begin{aligned}
d(x, y) & =D(T(x), y) \leq H(T(x), T(y)) \\
& \leq a d(x, y)+b[D(x, T(x))+D(y, T(y))]+c[D(x, T(y))+D(y, T(x))] \\
& \leq \operatorname{ad}(x, y)+2 c d(x, y)
\end{aligned}
$$

Hence $(1-a-2 c) d(x, y) \leq 0$.
Since $a+2 c<a+b+2 c s<\frac{s-1}{s^{2}}<1$, we shall obtain that $d(x, y)=0$ which implies that $x=y$ and this is a contradiction.

In conclusion SFix $(T)=\operatorname{Fix}(T)=\{x\}$.
An example illustrating our theorem is given in what follows.
Example 2.3. Let us consider the following two sets (see [2]):

$$
\begin{aligned}
M_{1} & =\left\{\left.\frac{m}{n} \right\rvert\, m=0,1,3,9, \ldots ; n=3 k+1, k \in \mathbb{N}\right\} \\
M_{2} & =\left\{\left.\frac{m}{n} \right\rvert\, m=1,3,9,27, \ldots ; n=3 k+2, k \in \mathbb{N}\right\}
\end{aligned}
$$

Let $X=M_{1} \cup M_{2}$. Define $T: X \rightarrow \mathbb{R}_{+}$,

$$
T(x)=\left\{\begin{array}{cc}
\{\alpha x, \beta x\}, & x \in M_{1} \\
\{\beta x\}, & x \in M_{2}
\end{array},\right.
$$

where $0<\beta \leq \alpha<1$.
Notice that T is not a Hardy-Rogers operator with respect to the metric $\hat{d}(x, y):=|x-y|$ (see [2]), but it becomes a Hardy-Rogers operator with respect to the b-metric (with constant $s=3$) defined by $d(x, y)=|x-y|^{3}$.

Proof. We shall prove that there exist $a, b, c \in \mathbb{R}_{+}$such that T is a Hardy-Rogers with respect to d. We shall have four cases:
(1) $x, y \in M_{1}$

In this case $\rho(T(x), T(y))=|\alpha x-\alpha y|^{3}=\alpha^{3} d(x, y)$ and $\rho(T(y), T(x))=|\alpha y-\alpha x|^{3}=\alpha^{3} d(x, y)$ and hence $H(T(x), T(y))=\alpha^{3} d(x, y)$.
(2) $x, y \in M_{2}$

In this case $\rho(T(x), T(y))=|\beta x-\beta y|^{3}=\beta^{3} d(x, y)$ and $\rho(T(y), T(x))=|\beta y-\beta x|^{3}=\beta^{3} d(x, y)$ and hence $H(T(x), T(y))=\beta^{3} d(x, y) \leq \alpha^{3} d(x, y)$.
(3) $x \in M_{1}, y \in M_{2}$

In this case $\rho(T(x), T(y))=|\alpha x-\beta y|^{3}$ and $\rho(T(y), T(x))=|\beta y-\alpha x|^{3}$ and hence $H(T(x), T(y))=$ $|\alpha x-\beta y|^{3}$.

We have to consider the following cases:
3.1. If $x>y$, then $\left|x-\frac{\beta}{\alpha} y\right|<|x-\beta y|$, and hence $H(T(x), T(y))=|\alpha x-\beta y|^{3}=\alpha^{3}\left|x-\frac{\beta}{\alpha} y\right|^{3} \leq \alpha^{3}|x-\beta y|^{3}=$ $\alpha^{3} D(x, T(y))$.
3.2. If $x<y$, then:

If $x<\beta y$, then $\left|\frac{\alpha}{\beta} x-y\right|<|\alpha x-y|$, and hence $H(T(x), T(y))=|\alpha x-\beta y|^{3}=\beta^{3}\left|\frac{\alpha}{\beta} x-y\right|^{3} \leq \beta^{3}|\alpha x-y|^{3}=$ $\beta^{3} D(y, T(x)) \leq \alpha^{3} D(y, T(x))$.

If $x>\beta y$, then we have another two cases:
If $\alpha x<\beta y$, then $\left|\frac{\alpha}{\beta} x-y\right|<|\alpha x-y|$, and hence $H(T(x), T(y))=|\alpha x-\beta y|^{3}=\beta^{3}\left|\frac{\alpha}{\beta} x-y\right|^{3} \leq$ $\beta^{3}|\alpha x-y|^{3}=\beta^{3} D(y, T(x)) \leq \alpha^{3} D(y, T(x))$.

If $\alpha x>\beta y$, then $\left|x-\frac{\beta}{\alpha} y\right|<|x-\beta y|$, and hence $H(T(x), T(y))=|\alpha x-\beta y|^{3}=\alpha^{3}\left|x-\frac{\beta}{\alpha} y\right|^{3} \leq$ $\alpha^{3}|x-\beta y|^{3}=\alpha^{3} D(x, T(y))$.
(4) $x \in M_{2}, y \in M_{1}$

In this case $\rho(T(x), T(y))=|\beta x-\alpha y|^{3}$ and $\rho(T(y), T(x))=|\alpha y-\beta x|^{3}$ and hence $H(T(x), T(y))=$ $|\alpha y-\beta x|^{3}$.

Just like in the previuos case, we have to consider the following cases:
4.1. $x>y$

If $y<\beta x,\left|\frac{\alpha}{\beta} y-x\right|<|\alpha y-x|$, and hence $H(T(x), T(y))=|\alpha y-\beta x|^{3}=\beta^{3}\left|\frac{\alpha}{\beta} y-x\right|^{3} \leq \beta^{3}|\alpha y-x|^{3}=$ $\beta^{3} D(x, T(y)) \leq \alpha^{3} D(x, T(y))$.

If $y>\beta x$, then we have another two cases:
If $\alpha y<\beta x$, then $\left|\frac{\alpha}{\beta} y-x\right|<|\alpha y-x|$, and hence $H(T(x), T(y))=|\alpha y-\beta x|^{3}=\beta^{3}\left|\frac{\alpha}{\beta} y-x\right|^{3} \leq$ $\beta^{3}|\alpha y-x|^{3}=\beta^{3} D(x, T(y)) \leq \alpha^{3} D(x, T(y))$.

If $\alpha y>\beta x$, then $\left|y-\frac{\beta}{\alpha} x\right|<|y-\beta x|$, and hence $H(T(x), T(y))=|\alpha y-\beta x|^{3}=\alpha^{3}\left|y-\frac{\beta}{\alpha} x\right|^{3} \leq$ $\alpha^{3}|y-\beta x|^{3}=\alpha^{3} D(y, T(x))$.

$4.2 x<y$

In this case we have $\left|y-\frac{\beta}{\alpha} x\right|<|y-\beta x|$, and hence $H(T(x), T(y))=|\alpha y-\beta x|^{3}=\alpha^{3}\left|y-\frac{\beta}{\alpha} x\right|^{3} \leq$ $\alpha^{3}|y-\beta x|^{3}=\alpha^{3} D(y, T(x))$.

Hence, we can conclude that $H(T(x), T(y)) \leq \alpha^{3} d(x, y)+\alpha^{3} D(x, T(y))+\alpha^{3} D(y, T(x))$, for all $x, y \in X$.
If, for example $\alpha=\beta=\frac{1}{5}$, then $T: X \rightarrow P(X)$. If we consider $a=c=\alpha^{3}$ and $b=0$, then, for $s=3$, all the assumptions on a, b, c in Theorem 2.1 are fulfilled and the operator T defined above satisfies the conditions of the theorem.

In what follows we shall present a data dependence theorem for multivalued Hardy-Rogers operators in a complete b-metric space.

Theorem 2.4. Let (X, d) be a complete b-metric space with constant $s>1, T_{1}, T_{2}: X \rightarrow P(X)$ be two multivalued closed operators which satisfy the following conditions:
(a) there exists $\eta>0$ such that $H\left(T_{1}(x), T_{2}(x)\right) \leq \eta$, for all $x \in X$;
(b) there exist $a_{i}, b_{i}, c_{i} \in \mathbb{R}_{+}, a_{i}+b_{i}+2 c_{i} s<\frac{s-1}{s^{2}}$ and $b_{i}+c_{i} s<\frac{1}{s}$ such that

$$
H\left(T_{i}(x), T_{i}(y)\right) \leq a_{i} d(x, y)+b_{i}\left[D\left(x, T_{i}(x)\right)+D\left(y, T_{i}(y)\right)\right]+c_{i}\left[D\left(x, T_{i}(y)\right)+D\left(y, T_{i}(x)\right)\right]
$$

for all $x, y \in X, i \in\{1,2\}$.
In these conditions we have:

$$
H\left(\operatorname{Fix}\left(T_{1}\right), \operatorname{Fix}\left(T_{2}\right)\right) \leq \frac{\eta s}{1-s \max \left\{A_{1}, A_{2}\right\}},
$$

where $A_{i}=\frac{a_{i}+b_{i}+c_{i} s}{1-b_{i}-c_{i} s}, i \in\{1,2\}$
Proof. We'll show that for every $x_{1}^{*} \in \operatorname{Fix}\left(T_{1}\right)$, there exists $x_{2}^{*} \in \operatorname{Fix}\left(T_{2}\right)$ such that

$$
d\left(x_{1}^{*}, x_{2}^{*}\right) \leq \frac{s \eta}{1-s A_{2}}
$$

Let $x_{1}^{*} \in \operatorname{Fix}\left(T_{1}\right)$ arbitrary and let $1<q<\frac{1-b_{2}-c_{2} s}{a_{2}+b_{2}+c_{2} s} \frac{1}{s}$. As in the proof of Theorem 2.1. we construct a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ of successive approximations of T_{2}, with $x_{0}:=x_{1}^{*}$ and $x_{1} \in T_{2}\left(x_{1}^{*}\right)$ having the property:

$$
d\left(x_{n}, x_{n+1}\right) \leq \alpha_{2}^{n} d\left(x_{0}, x_{1}\right)
$$

for each $n \in \mathbb{N}$, where $\alpha_{2}=q \frac{a_{2}+b_{2}+c_{2} s}{1-b_{2}-c_{2} s}<\frac{1}{s}$.
If we consider that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x_{2}^{*}, we have that $x_{2}^{*} \in \operatorname{Fix}\left(T_{2}\right)$. Moreover, for each $n \geq 0$, we have:

$$
d\left(x_{n}, x_{n+p}\right) \leq s \alpha_{2}^{n} \frac{1-\left(s \alpha_{2}\right)^{p}}{1-s \alpha_{2}} d\left(x_{0}, x_{1}\right), p \in \mathbb{N}^{*}
$$

Since $s \alpha_{2}<1$, letting $p \rightarrow \infty$ we get that

$$
d\left(x_{n}, x_{2}^{*}\right) \leq \frac{s \alpha_{2}^{n}}{1-s \alpha_{2}} d\left(x_{0}, x_{1}\right), \forall n \in \mathbb{N} .
$$

Choosing $n=0$ in the above relation, we obtain

$$
d\left(x_{1}^{*}, x_{2}^{*}\right) \leq \frac{s}{1-s \alpha_{2}} d\left(x_{1}^{*}, x_{1}\right) \leq \frac{s q}{1-s \alpha_{2}} H\left(T_{1}\left(x_{1}^{*}\right), T_{2}\left(x_{1}^{*}\right)\right) \leq \frac{s \eta q}{1-s \alpha_{2}} .
$$

Interchanging the roles of T_{1} and T_{2} we obtain that for every $u \in \operatorname{Fix}\left(T_{2}\right)$, there exists $v \in \operatorname{Fix}\left(T_{1}\right)$ such that

$$
d(u, v) \leq \frac{s \eta q}{1-s \alpha_{1}},
$$

where $\alpha_{1}=q \frac{a_{1}+b_{1}+c_{1} s}{1-b_{1}-c_{1} s}<\frac{1}{s}$.
Thus, letting $q \searrow 1$, we obtain the conclusion.

3. Well-Posedness of the Fixed Point Problem

In what follows we shall prove a well-posedness results with respect to the functional D.
Definition 3.1. Let (X, d) be a b-metric space with constant $s \geq 1$ and $T: X \rightarrow P(X)$ be a multivalued operator. By definition, the fixed point problem is well-posed for T with respect to D if:
(i) $\operatorname{Fix}(T)=\left\{x^{*}\right\}$;
(ii) If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X such that $D\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$, as $n \rightarrow \infty$, then $x_{n} \xrightarrow{d} x^{*}$, as $n \rightarrow \infty$.

Theorem 3.2. Let (X, d) be a complete b-metric space with constant $s>1$ and $T: X \rightarrow P(X)$ a multivalued operator for which there exist $a, b, c \in \mathbb{R}_{+}, a+b+2 c s<\frac{s-1}{s^{2}}$ and $b+c s<\frac{1}{s}$ such that

$$
H(T(x), T(y)) \leq a d(x, y)+b[D(x, T(x))+D(y, T(y))]+c[D(x, T(y))+D(y, T(x))]
$$

for all $x, y \in X$.
If SFix $(T) \neq \varnothing$, then the fixed point problem is well-posed for T with respect to D.
Proof. Let $x \in \operatorname{SFix}(T)$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $D\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$, as $n \rightarrow \infty$.
We have:

$$
\begin{aligned}
\begin{aligned}
d\left(x_{n}, x\right) \leq & s\left[D\left(x_{n}, T\left(x_{n}\right)\right)+H\left(T\left(x_{n}\right), T(x)\right)\right] \leq s D\left(x_{n}, T\left(x_{n}\right)\right)+a s d\left(x_{n}, x\right)+b s D\left(x_{n}, T\left(x_{n}\right)\right) \\
& +b s D(x, T(x))+c s D\left(x_{n}, T(x)\right)+c s D\left(x, T\left(x_{n}\right)\right)
\end{aligned} \\
\begin{aligned}
& d\left(x_{n}, x\right) \leq s D\left(x_{n}, T\left(x_{n}\right)\right)+a s d\left(x_{n}, x\right)+b s D\left(x_{n}, T\left(x_{n}\right)\right)+ \\
&+c s^{2} d\left(x_{n}, x\right)+c s^{2} D(x, T(x))+c s^{2} d\left(x_{n}, x\right)+c s^{2} D\left(x_{n}, T\left(x_{n}\right)\right) \\
&\left(1-a s-2 c s^{2}\right) d\left(x_{n}, x\right) \leq s(1+b+c s) D\left(x_{n}, T\left(x_{n}\right)\right) .
\end{aligned} \\
\begin{aligned}
a+2 c s<a+b+2 c s<\frac{s-1}{s^{2}}<\frac{1}{s} \text { and hence } 1-a s-2 c s^{2}>0 .
\end{aligned} \\
\text { Thus, we have }
\end{aligned}
$$

$$
d\left(x_{n}, x\right) \leq s \frac{1+b+c s}{1-a s-2 c s^{2}} D\left(x_{n}, T\left(x_{n}\right)\right)
$$

Letting $n \rightarrow \infty$, we shall obtain that $x_{n} \xrightarrow{d} x$.

4. Ulam-Hyers Stability

Definition 4.1. Let (X, d) be a b-metric space and $T: X \rightarrow P_{c l}(X)$ be a multivalued operator. The fixed point inclusion

$$
\begin{equation*}
x \in T(x), x \in X \tag{1}
\end{equation*}
$$

is called generalized Ulam-Hyers stable if and only if there exists $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$increasing, continuous in 0 and with $\psi(0)=0$, such that for each $\varepsilon>0$ and for each solution $y^{*} \in X$ of the inequation

$$
\begin{equation*}
D(y, T(y)) \leq \varepsilon \tag{2}
\end{equation*}
$$

there exists a solution x^{*} of the fixed point inclusion (4.1) such that

$$
d\left(y^{*}, x^{*}\right) \leq \psi(\varepsilon)
$$

If there exists $C>0$ such that $\psi(t):=C \cdot t$, for each $t \in \mathbb{R}_{+}$, then the fixed point inclusion (4.1) is said to be Ulam-Hyers stable.

Theorem 4.2. Let (X, d) be a complete b-metric space with constant $s>1$ and $T: X \rightarrow P(X)$ a multivalued operator such that:
(i) there exist $a, b, c \in \mathbb{R}_{+}, a+b+2 c s<\frac{s-1}{s^{2}}$ and $b+c s<\frac{1}{s}$ such that

$$
H(T(x), T(y)) \leq a d(x, y)+b[D(x, T(x))+D(y, T(y))]+c[D(x, T(y))+D(y, T(x))]
$$

for all $x, y \in X$;
(ii) T is closed;

If SFix $(T) \neq \varnothing$, then the fixed point inclusion (4.1) is generalized Ulam-Hyers stable.
Proof. We are in the conditions of Theorem 2.1. and Theorem 2.2, hence Fix $(T)=\operatorname{SFix}(T)=\left\{x^{*}\right\}$. Let $\varepsilon>0$ and y^{*} be a solution of (4.2).

We have

$$
\begin{aligned}
d\left(x^{*}, y^{*}\right)= & D\left(T\left(x^{*}\right), y^{*}\right) \leq s H\left(T\left(x^{*}\right), T\left(y^{*}\right)\right)+s D\left(y^{*}, T\left(y^{*}\right)\right) \\
\leq & \operatorname{sad}\left(x^{*}, y^{*}\right)+\operatorname{sbD}\left(x^{*}, T\left(x^{*}\right)\right)+\operatorname{sbD}\left(y^{*}, T\left(y^{*}\right)\right)+ \\
& +s c D\left(x^{*}, T\left(y^{*}\right)\right)+\operatorname{scD}\left(y^{*}, T\left(x^{*}\right)\right)+s D\left(y^{*}, T\left(y^{*}\right)\right) \\
\leq & \operatorname{sad}\left(x^{*}, y^{*}\right)+\operatorname{sbD}\left(y^{*}, T\left(y^{*}\right)\right)+s^{2} c d\left(x^{*}, y^{*}\right)+ \\
& +s^{2} c D\left(y^{*}, T\left(y^{*}\right)\right)+\operatorname{scd}\left(x^{*}, y^{*}\right)+s D\left(y^{*}, T\left(y^{*}\right)\right) .
\end{aligned}
$$

Thus

$$
\left(1-a s-c s-c s^{2}\right) d\left(x^{*}, y^{*}\right) \leq s(1+b+c s) D\left(y^{*}, T\left(y^{*}\right)\right)
$$

We have that $a+(s+1) c<a+2 c s<a+b+2 c s<\frac{s-1}{s^{2}}<\frac{1}{s}$, and hence $a s+c s+c s^{2}<1$
and now we conclude

$$
d\left(x^{*}, y^{*}\right) \leq \frac{s(1+b+c s)}{1-a s-c s-c s^{2}} \varepsilon
$$

Hence, the fixed point problem (4.1) is generalized Ulam-Hyers stable.

References

[1] M. Boriceanu, A. Petruşel, I.A. Rus, Fixed point theorems for some multivalued generalized contraction in b-metric spaces, Internat. J. Math. Statistics, 6(2010), 65-76.
[2] Lj.B. ĆiriĆ, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
[3] M. Cosentino, P. Salimi, P. Vetro, Fixed point results on metric-type spaces, Acta Mathematica Scientia, 34(2014), 1237-1253.
[4] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
[5] G.E. Hardy, A.D. Rogers, A generalisation of fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-208.
[6] Z. Kadelburg, S. Radenovic, B. Rasic, Strict contractive conditions and common fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, 2009, ID 17383.
[7] S. Radojevic, L. Paunovic, S. Radenovic, Abstract metric spaces and Hardy-Rogers type theorems, Applied Math. Letters, 24(2011), 553-558.
[8] J.R. Roshan, S. Shobkolaei, S. Sedghi, M. Abbas, Common fixed pnit of four maps in b-metric spaces, Hacet J. Math. Stat., 43(2014), 4, 613-624.
[9] M. Sgroi, C. Vetro, Multivalued F-contractions and the solution of certain functional and integral equations, Filomat 27:7(2013), 1259-1268.

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25
 Keywords. fixed point, b-metric space, well-posedness, Ulam-Hyres stability
 Received: 15 October 2015; Accepted: 15 April 2016
 Communicated by Calogero Vetro
 Email addresses: cristian.chifu@tbs.ubbcluj.ro (Cristian Chifu), gabi.petrusel@tbs.ubbcluj.ro (Gabriela Petruşel)

