Filomat 31:8 (2017), 2499–2507 DOI 10.2298/FIL1708499C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Fixed Point Results for Multivalued Hardy–Rogers Contractions in *b*-Metric Spaces

Cristian Chifu^a, Gabriela Petruşel^a

^aBabeş-Bolyai University Cluj-Napoca, Faculty of Business

Abstract. The purpose of this paper is to present some fixed point results in b-metric spaces using a contractive condition of Hardy-Rogers type with respect to the functional *H*. The data dependence of the fixed point set, the well-posedness of the fixed point problem, as well as, the Ulam-Hyres stability are also studied.

1. Preliminaries

In 1973, Hardy and Rogers ([5]) gave a generalization of Reich fixed point theorem. Since then, many authors have been used different Hardy-Rogers contractive type conditions in order to obtain fixed point results. In what follows we shall recall, pure randomly, some of them.

In 2009, Kadelburg, Radenovic and Rasic ([6]), gave some common fixed point results in cone metric spaces. Radojevic, Paunovic and Radenovic ([7]) have obtained some coincidence point theorems in complete metric spaces. Sgroi and Vetro ([9]) have presented some results for \mathcal{F} -contractions in complete and ordered metric spaces. Finally, Roshan, Shobkolaei, Sedghi and Abbas ([8]) gave some common fixed point results in *b*-metric spaces.

In this paper we shall give some fixed point results for multivalued operators in *b-metric* spaces using a contractive condition of Hardy-Rogers type with respect to the functional *H*. The data dependence of the fixed point set, the well-posedness of the fixed point problem, as well as, the Ulam-Hyres stability are also studied.

Because we shall work in b – *metric* spaces, we'll start by presenting some notions about this kind of metric spaces.

Definition 1.1. Let X be a nonempty set and let $s \ge 1$ be a given real number. A function $d : X \times X \to \mathbb{R}_+$ is said to be a b-metric if and only if for all $x, y, z \in \mathbb{X}$, the following conditions are satisfied:

1. $d(x, y) = 0 \iff x = y;$

2. d(x, y) = d(y, x);

3. $d(x, y) \le s [d(x, z) + d(z, y)]$.

Keywords. fixed point, b-metric space, well-posedness, Ulam-Hyres stability

Received: 15 October 2015; Accepted: 15 April 2016

Email addresses: cristian.chifu@tbs.ubbcluj.ro (Cristian Chifu), gabi.petrusel@tbs.ubbcluj.ro (Gabriela Petrusel)

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25

Communicated by Calogero Vetro

In this case, the pair (X, d) is called b – metric space with constant s.

Remark 1.2. The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is a metric space when s=1.

Example 1.3. Let $X=\{0,1,2\}$ and $d: X \times X \to \mathbb{R}_+$ such that d(0,1) = d(1,0) = d(0,2) = d(2,0) = 1, $d(1,2) = d(2,1) = \alpha \ge 2$, d(0,0) = d(1,1) = d(2,2) = 0. We have

$$d(x,y) \leq \frac{\alpha}{2} \left[d(x,z) + d(z,y) \right], \text{ for } x, y, z \in X.$$

Then (*X*, *d*) *is a b-metric space. If* $\alpha > 2$ *the ordinary triangle inequality does not hold and* (*X*, *d*) *is not a metric space.*

Example 1.4. The set $l^p(\mathbb{R}) = \left\{ (x_n) \subset \mathbb{R} | \lim_{n=1}^{\infty} |x_n|^p < \infty \right\}, 0 < p < 1$, together with the functional $d : l^p(\mathbb{R}) \times l^p(\mathbb{R}) \to \mathbb{R}_+, d(x, y) = \left(\lim_{n=1}^{\infty} |x - y|^p \right)^{1/p}$, is a b-metric space with constant $s = 2^{1/p}$.

Example 1.5. Let $X = \mathbb{R}$ and $d: X \times X \to \mathbb{R}_+$, $d(x, y) = |x - y|^3$. The (X, d) is a b-metric space with constant s = 3.

Definition 1.6. Let (X, d) be a b – metric space with constant s. Then the sequence $(x_n)_{n \in \mathbb{N}} \subset X$ is called:

- 1. convergent if and only if there exists $x \in X$ such that $d(x_n, x) \to 0$, as $n \to \infty$;
- 2. Cauchy if and only if $d(x_n, x_m) \rightarrow 0$, as $n, m \rightarrow \infty$.

Definition 1.7. Let (X, d) be a b – metric space with constant s. If Y is a nonempty subset of X, then the closure \overline{Y} of Y is the set of limits of all convergent sequences of points in Y, i.e.,

 $\overline{Y} := \{x \in X : \exists (x_n)_{n \in \mathbb{N}}, x_n \to x, as n \to \infty \}.$

Definition 1.8. *Let* (X, d) *be a b* – *metric space with constant s. Then a subset* $Y \subset X$ *is called:*

- 1. closed if and only if for each sequence $(x_n)_{n \in \mathbb{N}} \subset Y$ which converges to x, we have $x \in Y$;
- 2. compact if and only if for every sequence of elements of Y there exists a subsequence that converges to an element of Y;
- 3. bounded if and only if $\delta(Y) := \{d(a, b) : a, b \in Y\} < \infty$.

Definition 1.9. The b – metric space (X, d) is complete if every Cauchy sequence in X converges.

Let us consider the following families of subsets of a b-metric space (X, d):

 $\mathcal{P}(X) = \{Y | Y \subset X\}, P(X) := \{Y \in \mathcal{P}(X) | Y \neq \emptyset\}; P_b(X) := \{Y \in \mathcal{P}(X) | Y \text{ is bounded }\},$

 $P_{cl}(X) := \{Y \in \mathcal{P}(X) | Y \text{ is closed}\}; P_{cp}(X) := \{Y \in \mathcal{P}(X) | Y \text{ is compact}\}$

Throughout the paper the following fuctionals are used:

• the gap functional: $D: P(X) \times P(X) \rightarrow \mathbb{R}_+$

 $D(A, B) = \inf\{d(a, b) \mid a \in A, b \in B\}.$

In particular, if $x_0 \in X$, then $D(x_0, B) := D(\{x_0\}, B)$.

• the Pompeiu-Hausdorff generalized functional: $H: P(X) \times P(X) \rightarrow \mathbb{R}_+ \cup \{+\infty\},\$

 $H(A, B) = \max\{\rho(A, B), \rho(B, A)\},\$

where $\rho : P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}$ defined as

 $\rho(A, B) = \sup\{D(a, B) \mid a \in A\},\$

is called the excess generalized functional.

Let $T : X \to P(X)$ be a multivalued operator. A point $x \in X$ is called fixed point for T if and only if $x \in T(x)$.

The set $Fix(T) := \{x \in X | x \in T(x)\}$ is called the fixed point set of *T*, while $SFix(T) = \{x \in X | \{x\} = T(x)\}$ is called the strict fixed point set of *T*. Notice that $SFix(T) \subseteq Fix(T)$.

The following properties of some of the functionals defined above will be used throughout the paper (see [1], [4] for details and proofs):

Lemma 1.10. Let (X,d) be a b-metric space with constant s > 1, $A, B \in P_{cl}(X)$. Then

- 1. $D(x, B) \leq d(x, b)$, for any $b \in B$;
- 2. $D(x, B) \leq H(A, B)$, for any $x \in A$;
- 3. $D(x, A) \le s[d(x, y) + D(y, A)]$, for all $x, y \in X, A \subset X$;
- 4. D(x, A) = 0 if and only if $x \in \overline{A}$;
- 5. For any q > 1, $a \in A$, there exists $b \in B$ such that $d(a, b) \le qH(A, B)$;
- 6. $d(x_n, x_{n+p}) \le sd(x_n, x_{n+1}) + s^2d(x_{n+1}, x_{n+2}) + \dots + s^{p-1}d(x_{n+p-2}, x_{n+p-1}) + s^{p-1}d(x_{n+p-1}, x_{n+p})$, for any $n \in \mathbb{N}$ and $p \in \mathbb{N}^*$.

2. Fixed Point Results

In this section we shall present our main fixed point theorem for multivalued Hardy-Rogers operators.

Theorem 2.1. Let (X, d) be a complete b-metric space with constant s > 1 and $T : X \to P(X)$ a multivalued operator such that:

(*i*) there exist $a, b, c \in \mathbb{R}_+$, $a + b + 2cs < \frac{s-1}{s^2}$ and $b + cs < \frac{1}{s}$ such that

 $H(T(x), T(y)) \le ad(x, y) + b [D(x, T(x)) + D(y, T(y))] + c [D(x, T(y)) + D(y, T(x))],$

for all $x, y \in X$;

(*ii*) T is closed;

In these conditions $Fix(T) \neq \emptyset$.

Proof. (*i*) It's easy to see that because $a + b + 2cs < \frac{s-1}{s^2}$, $a + b + cs < a + b + 2cs < \frac{s-1}{s^2}$ and hence,

$$s\left(a+b+cs\right) < \frac{s-1}{s}.$$

On the other hand, since $b + cs < \frac{1}{s}$, we obtain

$$\frac{1-b-cs}{s(a+b+cs)} > 1.$$

Let $x_0 \in X$ and $1 < q < \frac{1}{s} \frac{1-b-cs}{a+b+cs}$.

There exists $x_1 \in T(x_0)$ such that

 $H(T(x_0), T(x_1)) \leq ad(x_0, x_1) + b[D(x_0, T(x_0))) + D(x_1, T(x_1))] + c[D(x_0, T(x_1)) + D(x_1, T(x_0))].$

By Lemma 1.1. we have:

 $D(x_0, T(x_0)) \leq d(x_0, x_1);$ $D(x_1, T(x_1)) \leq H(T(x_0), T(x_1));$ $D(x_1, T(x_0)) = 0;$ $D(x_0, T(x_1)) \leq s[d(x_0, x_1) + D(x_1, T(x_1))] \leq s[d(x_0, x_1) + H(T(x_0), T(x_1))].$

Hence

 $H(T(x_0), T(x_1)) \leq ad(x_0, x_1) + bd(x_0, x_1) + bH(T(x_0), T(x_1)) + csd(x_0, x_1) + csH(T(x_0), T(x_1))$

$$(1 - b - cs)H(T(x_0), T(x_1)) \le (a + b + cs)d(x_0, x_1)$$

Since $b + cs < \frac{1}{s} < 1$ we have

$$H(T(x_0), T(x_1)) \le \frac{a+b+cs}{1-b-cs}d(x_0, x_1)$$

Using again Lemma 1.1., there exists $x_2 \in T(x_1)$ such that

$$d(x_1, x_2) \leq qH(T(x_0), T(x_1)) d(x_1, x_2) \leq q \frac{a+b+cs}{1-b-cs} d(x_0, x_1). Let $q \frac{a+b+cs}{1-b-cs} := \alpha < \frac{1}{s} < 1$
Hence$$

 $d(x_1, x_2) \leq \alpha d(x_0, x_1).$

Continuing this process we shall obtain that there exists a sequence $(x_n)_{n \in \mathbb{N}}$, with $x_n \in T(x_{n-1})$, such that $d(x_n, x_{n+1}) \leq \alpha^n d(x_0, x_1)$ for each $n \in \mathbb{N}$.

This inequality implies that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence, see [3]. Hence there exists $x \in X$ such that $x_n \to x$, as $n \to \infty$.

Now, we shall prove that $x \in T(x)$. We have:

$$D(x, T(x)) \leq sd(x, x_{n+1}) + sD(x_{n+1}, T(x)) \\ \leq sd(x, x_{n+1}) + sH(T(x_n), T(x)).$$

$$H(T(x_n), T(x)) \leq ad(x_n, x) + b[D(x_n, T(x_n)) + D(x, T(x))] + c[D(x, T(x_n)) + D(x_n, T(x))] \\ \leq ad(x_n, x) + bd(x_n, x_{n+1}) + bD(x, T(x)) + cd(x_{n+1}, x) + csd(x_n, x) + csD(x, T(x)).$$

Hence

$$D(x, T(x)) \leq sd(x, x_{n+1}) + asd(x_n, x) + bsd(x_n, x_{n+1}) + bsD(x, T(x)) + csd(x_{n+1}, x) + cs^2d(x_n, x) + cs^2D(x, T(x)).$$

If $n \to \infty$ then we obtain $(1 - bs - cs^2) D(x, T(x)) \le 0$.

Since $b + cs < \frac{1}{s}$ we have that $bs + cs^2 < 1$ and hence, D(x, T(x)) = 0. This implies that $x \in T(x)$ and hence $Fix(T) \neq \emptyset$. \Box

An existence and uniqueness fixed point result for multivalued Hardy-Rogers operators is the following:

Theorem 2.2. Let (X, d) be a complete b-metric space with constant s > 1 and $T : X \to P(X)$ a multivalued operator such that:

(i) there exist $a, b, c \in \mathbb{R}_+$, $a + b + 2cs < \frac{s-1}{s^2}$ and $b + cs < \frac{1}{s}$ such that

$$H(T(x), T(y)) \le ad(x, y) + b \left[D(x, T(x)) + D(y, T(y)) \right] + c \left[D(x, T(y)) + D(y, T(x)) \right]$$

for all $x, y \in X$; (ii) T is closed;

If $SFix(T) \neq \emptyset$ then $SFix(T) = Fix(T) = \{x\}$.

Proof. Let $x \in SFix(T)$ and suppose that there exist $y \in Fix(T)$, $y \neq x$.

$$d(x, y) = D(T(x), y) \le H(T(x), T(y))$$

$$\le ad(x, y) + b[D(x, T(x)) + D(y, T(y))] + c[D(x, T(y)) + D(y, T(x))]$$

$$\le ad(x, y) + 2cd(x, y).$$

Hence $(1 - a - 2c) d(x, y) \le 0$.

Since $a + 2c < a + b + 2cs < \frac{s-1}{s^2} < 1$, we shall obtain that d(x, y) = 0 which implies that x = y and this is a contradiction.

In conclusion $SFix(T) = Fix(T) = \{x\}$. \Box

An example illustrating our theorem is given in what follows.

Example 2.3. *Let us consider the following two sets (see [2]):*

$$M_1 = \left\{ \frac{m}{n} | m = 0, 1, 3, 9, ...; n = 3k + 1, k \in \mathbb{N} \right\};$$

$$M_2 = \left\{ \frac{m}{n} | m = 1, 3, 9, 27, ...; n = 3k + 2, k \in \mathbb{N} \right\}.$$

Let $X = M_1 \cup M_2$. Define $T: X \to \mathbb{R}_+$,

$$T(x) = \begin{cases} \{\alpha x, \beta x\}, x \in M_1\\ \{\beta x\}, x \in M_2 \end{cases},$$

where $0 < \beta \le \alpha < 1$.

Notice that *T* is not a Hardy-Rogers operator with respect to the metric $\hat{d}(x, y) := |x - y|$ (see [2]), but it becomes a Hardy-Rogers operator with respect to the *b*-metric (with constant s = 3) defined by $d(x, y) = |x - y|^3$.

Proof. We shall prove that there exist $a, b, c \in \mathbb{R}_+$ such that *T* is a Hardy-Rogers with respect to *d*. We shall have four cases:

(1) $x, y \in M_1$

In this case $\rho(T(x), T(y)) = |\alpha x - \alpha y|^3 = \alpha^3 d(x, y)$ and $\rho(T(y), T(x)) = |\alpha y - \alpha x|^3 = \alpha^3 d(x, y)$ and hence $H(T(x), T(y)) = \alpha^3 d(x, y)$.

(2) $x, y \in M_2$

In this case $\rho(T(x), T(y)) = |\beta x - \beta y|^3 = \beta^3 d(x, y)$ and $\rho(T(y), T(x)) = |\beta y - \beta x|^3 = \beta^3 d(x, y)$ and hence $H(T(x), T(y)) = \beta^3 d(x, y) \le \alpha^3 d(x, y)$.

(3) $x \in M_1, y \in M_2$

In this case $\rho(T(x), T(y)) = |\alpha x - \beta y|^3$ and $\rho(T(y), T(x)) = |\beta y - \alpha x|^3$ and hence $H(T(x), T(y)) = |\beta y - \alpha x|^3$ $|\alpha x - \beta y|^3$. We have to consider the following cases:

3.1. If x > y, then $\left|x - \frac{\beta}{\alpha}y\right| < \left|x - \beta y\right|$, and hence $H(T(x), T(y)) = \left|\alpha x - \beta y\right|^3 = \alpha^3 \left|x - \frac{\beta}{\alpha}y\right|^3 \le \alpha^3 \left|x - \beta y\right|^3 = \alpha^3 \left|x - \beta y\right|^3$ $\alpha^{3}D(x,T(y))$ 3.2. If *x* < *y*, then:

If $x < \beta y$, then $\left|\frac{\alpha}{\beta}x - y\right| < |\alpha x - y|$, and hence $H(T(x), T(y)) = |\alpha x - \beta y|^3 = \beta^3 \left|\frac{\alpha}{\beta}x - y\right|^3 \le \beta^3 |\alpha x - y|^3 = \beta^3 |\alpha x - y|^3$ $\beta^{3}D(y,T(x)) \leq \alpha^{3}D(y,T(x)).$

If $x > \beta y$, then we have another two cases:

If $\alpha x < \beta y$, then $\left|\frac{\alpha}{\beta}x - y\right| < |\alpha x - y|$, and hence $H(T(x), T(y)) = |\alpha x - \beta y|^3 = \beta^3 \left|\frac{\alpha}{\beta}x - y\right|^3 \le \beta^3$ $\beta^{3} \left| \alpha x - y \right|^{3} = \beta^{3} D\left(y, T\left(x \right) \right) \le \alpha^{3} D\left(y, T\left(x \right) \right).$

If $\alpha x > \beta y$, then $\left|x - \frac{\beta}{\alpha}y\right| < \left|x - \beta y\right|$, and hence $H(T(x), T(y)) = \left|\alpha x - \beta y\right|^3 = \alpha^3 \left|x - \frac{\beta}{\alpha}y\right|^3 \le \alpha^3 \left|x - \frac{\beta}{\alpha}y\right|^3$ $\alpha^{3}\left|x-\beta y\right|^{3}=\alpha^{3}D\left(x,T\left(y\right)\right).$

(4)
$$x \in M_2, y \in M_1$$

In this case $\rho(T(x), T(y)) = |\beta x - \alpha y|^3$ and $\rho(T(y), T(x)) = |\alpha y - \beta x|^3$ and hence $H(T(x), T(y)) = |\beta x - \alpha y|^3$ $|\alpha y - \beta x|^3$.

Just like in the previuos case, we have to consider the following cases:

4.1.
$$x > y$$

If $y < \beta x$, $\left|\frac{\alpha}{\beta}y - x\right| < \left|\alpha y - x\right|$, and hence $H(T(x), T(y)) = \left|\alpha y - \beta x\right|^3 = \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 \left|\alpha y - x\right|^3 = \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 = \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 = \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 = \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 = \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 = \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 \left|\frac$ $\beta^{3}D(x,T(y)) \leq \alpha^{3}D(x,T(y)).$

If $y > \beta x$, then we have another two cases:

If
$$\alpha y < \beta x$$
, then $\left|\frac{\alpha}{\beta}y - x\right| < |\alpha y - x|$, and hence $H(T(x), T(y)) = |\alpha y - \beta x|^3 = \beta^3 \left|\frac{\alpha}{\beta}y - x\right|^3 \le \beta^3 |\alpha y - x|^3 = \beta^3 D(x, T(y)) \le \alpha^3 D(x, T(y))$.
If $\alpha y > \beta x$, then $\left|y - \frac{\beta}{\alpha}x\right| < |y - \beta x|$, and hence $H(T(x), T(y)) = |\alpha y - \beta x|^3 = \alpha^3 \left|y - \frac{\beta}{\alpha}x\right|^3 \le \alpha^3 \left|y - \beta x\right|^3 = \alpha^3 D(y, T(x))$.

In this case we have $\left|y - \frac{\beta}{\alpha}x\right| < \left|y - \beta x\right|$, and hence $H(T(x), T(y)) = \left|\alpha y - \beta x\right|^3 = \alpha^3 \left|y - \frac{\beta}{\alpha}x\right|^3 \le \alpha^3 \left|y - \frac{\beta}{\alpha}x\right|$ $\alpha^{3} \left| y - \beta x \right|^{3} = \alpha^{3} D\left(y, T\left(x \right) \right).$

Hence, we can conclude that $H(T(x), T(y)) \le \alpha^3 d(x, y) + \alpha^3 D(x, T(y)) + \alpha^3 D(y, T(x))$, for all $x, y \in X$. If, for example $\alpha = \beta = \frac{1}{5}$, then $T: X \to P(X)$. If we consider $a = c = \alpha^3$ and b = 0, then, for s = 3, all the assumptions on *a*, *b*, *c* in Theorem 2.1 are fulfilled and the operator *T* defined above satisfies the conditions of the theorem. \Box

In what follows we shall present a data dependence theorem for multivalued Hardy-Rogers operators in a complete *b*-metric space.

Theorem 2.4. Let (X, d) be a complete b-metric space with constant s > 1, $T_1, T_2 : X \to P(X)$ be two multivalued closed operators which satisfy the following conditions:

- (a) there exists $\eta > 0$ such that $H(T_1(x), T_2(x)) \le \eta$, for all $x \in X$;
- (b) there exist $a_i, b_i, c_i \in \mathbb{R}_+, a_i + b_i + 2c_i s < \frac{s-1}{s^2}$ and $b_i + c_i s < \frac{1}{s}$ such that

$$H(T_{i}(x), T_{i}(y)) \leq a_{i}d(x, y) + b_{i}\left[D(x, T_{i}(x)) + D(y, T_{i}(y))\right] + c_{i}\left[D(x, T_{i}(y)) + D(y, T_{i}(x))\right],$$

for all $x, y \in X, i \in \{1, 2\}$. In these conditions we have:

$$H(Fix(T_1), Fix(T_2)) \le \frac{\eta s}{1 - s \max\{A_1, A_2\}},$$

where $A_i = \frac{a_i + b_i + c_i s}{1 - b_i - c_i s}, i \in \{1, 2\}$

Proof. We'll show that for every $x_1^* \in Fix(T_1)$, there exists $x_2^* \in Fix(T_2)$ such that

$$d(x_1^*, x_2^*) \le \frac{s\eta}{1 - sA_2}$$

Let $x_1^* \in Fix(T_1)$ arbitrary and let $1 < q < \frac{1-b_2-c_2s}{a_2+b_2+c_2s}\frac{1}{s}$. As in the proof of Theorem 2.1. we construct a sequence $(x_n)_{n \in \mathbb{N}} \subset X$ of successive approximations of T_2 , with $x_0 := x_1^*$ and $x_1 \in T_2(x_1^*)$ having the property:

$$d(x_n, x_{n+1}) \le \alpha_2^n d(x_0, x_1)$$

for each $n \in \mathbb{N}$, where $\alpha_2 = q \frac{a_2+b_2+c_2s}{1-b_2-c_2s} < \frac{1}{s}$. If we consider that the sequence $(x_n)_{n \in \mathbb{N}}$ converges to x_2^* , we have that $x_2^* \in Fix(T_2)$. Moreover, for each $n \ge 0$, we have:

$$d(x_n, x_{n+p}) \le s\alpha_2^n \frac{1 - (s\alpha_2)^p}{1 - s\alpha_2} d(x_0, x_1), \ p \in \mathbb{N}^*.$$

Since $s\alpha_2 < 1$, letting $p \rightarrow \infty$ we get that

$$d(x_n, x_2^*) \leq \frac{s\alpha_2^n}{1 - s\alpha_2} d(x_0, x_1), \forall n \in \mathbb{N}.$$

Choosing n = 0 in the above relation, we obtain

$$d(x_1^*, x_2^*) \le \frac{s}{1 - s\alpha_2} d(x_1^*, x_1) \le \frac{sq}{1 - s\alpha_2} H(T_1(x_1^*), T_2(x_1^*)) \le \frac{s\eta q}{1 - s\alpha_2}$$

Interchanging the roles of T_1 and T_2 we obtain that for every $u \in Fix(T_2)$, there exists $v \in Fix(T_1)$ such that

$$d(u,v) \le \frac{s\eta q}{1-s\alpha_1},$$

where $\alpha_1 = q \frac{a_1 + b_1 + c_1 s}{1 - b_1 - c_1 s} < \frac{1}{s}$. Thus, letting $q \searrow 1$, we obtain the conclusion. \Box

3. Well-Posedness of the Fixed Point Problem

In what follows we shall prove a well-posedness results with respect to the functional D.

Definition 3.1. Let (X, d) be a b-metric space with constant $s \ge 1$ and $T : X \to P(X)$ be a multivalued operator. By definition, the fixed point problem is well-posed for T with respect to D if:

(*i*) $Fix(T) = \{x^*\};$

(ii) If $(x_n)_{n\in\mathbb{N}}$ is a sequence in X such that $D(x_n, T(x_n)) \to 0$, as $n \to \infty$, then $x_n \stackrel{d}{\to} x^*$, as $n \to \infty$.

Theorem 3.2. Let (X, d) be a complete b-metric space with constant s > 1 and $T : X \to P(X)$ a multivalued operator for which there exist $a, b, c \in \mathbb{R}_+, a + b + 2cs < \frac{s-1}{s^2}$ and $b + cs < \frac{1}{s}$ such that

$$H(T(x), T(y)) \le ad(x, y) + b[D(x, T(x)) + D(y, T(y))] + c[D(x, T(y)) + D(y, T(x))],$$

for all $x, y \in X$.

If $SFix(T) \neq \emptyset$, then the fixed point problem is well-posed for T with respect to D.

Proof. Let $x \in SFix(T)$ and let $(x_n)_{n \in \mathbb{N}}$ such that $D(x_n, T(x_n)) \to 0$, as $n \to \infty$. We have:

$$d(x_n, x) \leq s[D(x_n, T(x_n)) + H(T(x_n), T(x))] \leq sD(x_n, T(x_n)) + asd(x_n, x) + bsD(x_n, T(x_n)) + bsD(x, T(x)) + csD(x_n, T(x)) + csD(x, T(x_n))$$

$$\begin{aligned} d(x_n, x) &\leq sD(x_n, T(x_n)) + asd(x_n, x) + bsD(x_n, T(x_n)) + \\ &+ cs^2 d(x_n, x) + cs^2 D(x, T(x)) + cs^2 d(x_n, x) + cs^2 D(x_n, T(x_n)) \end{aligned}$$

$$(1 - as - 2cs^2) d(x_n, x) \le s(1 + b + cs) D(x_n, T(x_n))$$

 $a + 2cs < a + b + 2cs < \frac{s-1}{s^2} < \frac{1}{s}$ and hence $1 - as - 2cs^2 > 0$. Thus, we have

$$d(x_n, x) \le s \frac{1+b+cs}{1-as-2cs^2} D(x_n, T(x_n)).$$

Letting $n \to \infty$, we shall obtain that $x_n \stackrel{d}{\to} x$. \Box

4. Ulam-Hyers Stability

Definition 4.1. Let (X, d) be a b-metric space and $T : X \to P_{cl}(X)$ be a multivalued operator. The fixed point inclusion

$$x \in T(x), \ x \in X \tag{1}$$

is called generalized Ulam-Hyers stable if and only if there exists $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ *increasing, continuous in* 0 *and with* $\psi(0) = 0$, *such that for each* $\varepsilon > 0$ *and for each solution* $y^* \in X$ *of the inequation*

$$D(y, T(y)) \le \varepsilon \tag{2}$$

there exists a solution x^* of the fixed point inclusion (4.1) such that

 $d(y^*, x^*) \le \psi(\varepsilon).$

If there exists C > 0 such that $\psi(t) := C \cdot t$, for each $t \in \mathbb{R}_+$, then the fixed point inclusion (4.1) is said to be Ulam-Hyers stable.

Theorem 4.2. Let (X, d) be a complete b-metric space with constant s > 1 and $T : X \to P(X)$ a multivalued operator such that:

(i) there exist $a, b, c \in \mathbb{R}_+$, $a + b + 2cs < \frac{s-1}{s^2}$ and $b + cs < \frac{1}{s}$ such that

$$H(T(x), T(y)) \le ad(x, y) + b [D(x, T(x)) + D(y, T(y))] + c [D(x, T(y)) + D(y, T(x))]$$

for all $x, y \in X$;

(*ii*) *T* is closed;

If SFix (T) $\neq \emptyset$, then the fixed point inclusion (4.1) is generalized Ulam-Hyers stable.

Proof. We are in the conditions of Theorem 2.1. and Theorem 2.2, hence $Fix(T) = SFix(T) = \{x^*\}$. Let $\varepsilon > 0$ and y^* be a solution of (4.2).

We have

$$\begin{aligned} d(x^*, y^*) &= D(T(x^*), y^*) \le sH(T(x^*), T(y^*)) + sD(y^*, T(y^*)) \\ &\le sad(x^*, y^*) + sbD(x^*, T(x^*)) + sbD(y^*, T(y^*)) + \\ &+ scD(x^*, T(y^*)) + scD(y^*, T(x^*)) + sD(y^*, T(y^*)) \\ &\le sad(x^*, y^*) + sbD(y^*, T(y^*)) + s^2cd(x^*, y^*) + \\ &+ s^2cD(y^*, T(y^*)) + scd(x^*, y^*) + sD(y^*, T(y^*)). \end{aligned}$$

Thus

$$(1 - as - cs - cs^2)d(x^*, y^*) \le s(1 + b + cs)D(y^*, T(y^*)).$$

We have that $a + (s + 1)c < a + 2cs < a + b + 2cs < \frac{s-1}{s^2} < \frac{1}{s}$, and hence $as + cs + cs^2 < 1$ and now we conclude

$$d(x^*, y^*) \le \frac{s\left(1+b+cs\right)}{1-as-cs-cs^2}\varepsilon.$$

Hence, the fixed point problem (4.1) is generalized Ulam-Hyers stable. \Box

References

- M. Boriceanu, A. Petruşel, I.A. Rus, Fixed point theorems for some multivalued generalized contraction in b-metric spaces, Internat. J. Math. Statistics, 6(2010), 65-76.
- [2] Lj.B. ĆiriĆ, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
- [3] M. Cosentino, P. Salimi, P. Vetro, Fixed point results on metric-type spaces, Acta Mathematica Scientia, 34(2014), 1237-1253.
- [4] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46(1998), 263-276.
- [5] G.E. Hardy, A.D. Rogers, A generalisation of fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-208.
- [6] Z. Kadelburg, S. Radenovic, B. Rasic, Strict contractive conditions and common fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, 2009, ID 17383.
- [7] S. Radojevic, L. Paunovic, S. Radenovic, Abstract metric spaces and Hardy-Rogers type theorems, Applied Math. Letters, 24(2011), 553-558.
- [8] J.R. Roshan, S. Shobkolaei, S. Sedghi, M. Abbas, Common fixed pnit of four maps in b-metric spaces, Hacet J. Math. Stat., 43(2014), 4, 613-624.
- [9] M. Sgroi, C. Vetro, Multivalued F-contractions and the solution of certain functional and integral equations, Filomat 27:7(2013), 1259-1268.