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Abstract. It is well known that the component of the zero function in C(X) with the m-topology is the ideal
Cψ(X). Given any ideal I ⊆ Cψ(X), we are going to define a topology on C(X) namely the mI-topology, finer
than the m-topology in which the component of 0 is exactly the ideal I and C(X) with this topology becomes
a topological ring. We show that compact sets in C(X) with the mI-topology have empty interior if and
only if X \

⋂
Z[I] is infinite. We also show that nonzero ideals are never compact, the ideal I may be locally

compact in C(X) with the mI-topology and every Lindelöf ideal in this space is contained in Cψ(X). Finally,
we give some relations between topological properties of the spaces X and Cm(X). For instance, we show
that the set of units is dense in Cm(X) if and only if X is strongly zero-dimensional and we characterize the
space X for which the set r(X) of regular elements of C(X) is dense in Cm(X).

1. Introduction

Throughout this paper we denote by C(X) (C∗(X)) the ring of all (bounded) real-valued continuous
functions on a completely regular Hausdorff space X. The m-topology on C(X) is defined by taking the set
of the form

B( f ,u) = {1 ∈ C(X) : | f (x) − 1(x)| < u(x),∀x ∈ X}

as a base for a neighborhood system at f , for each f ∈ C(X) and u ∈ U+(X), where U+(X) is the set of all
positive elements of C(X). C(X) endowed with the m-topology is denoted by Cm(X) which is a Hausdorff
topological ring. The m-topology is first introduced in the late 40s in [8] and later the research in this area
became active over the last 20 years, for example, the works in [2], [3], [6] and [10].

Compact sets and connected sets in Cm(X) are investigated in [2] and it is shown that the component
of 0 in Cm(X) is the ideal Cψ(X). Clearly the connected sets (component of 0) in C(X) with a topology finer
that the m-topology are also connected in Cm(X) (is contained in Cψ(X)). In this paper, for a given ideal I
contained in Cψ(X), we define a topology on C(X), namely the mI-topology, in which the component of 0
is exactly the ideal I. This topology is finer than the m-topology and makes C(X) a topological ring. We
denote the space C(X) with the mI-topology by CmI (X). More generally, if I is an arbitrary ideal in C(X), the
mI-topology is defined similarly and we show that the component of 0 in the space CmI (X) is Cψ(X) ∩ I. We
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also investigate compact sets in C(X) with the mI-topology and it turns out that whenever I * Cψ(X), every
compact set in CmI (X) has an empty interior.

For each f ∈ C(X), the set zeros of f is called the zero-set of f and is denoted by Z( f ), coz f = X \ Z( f )
and clXcoz f is called the support of f . We also denote the sets {x ∈ X : f (x) > 0} and {x ∈ X : f (x) < 0}
by pos f and neg f respectively. An ideal I in C(X) is called a z-ideal if whenever f ∈ I, 1 ∈ C(X) and
Z( f ) ⊆ Z(1), then 1 ∈ I. We recall that Cψ(X) (CK(X)) is a z-ideal in C(X) consisting of all functions with
pseudocompact (compact) support and it is well-known that f ∈ Cψ(X) if and only if X \ Z( f ) is relatively
pseudocompact, i.e., every function in C(X) is bounded on X\Z( f ), see Theorem 2.1 in [11]. It is well-known
that CK(X) = OβX\X and Cψ(X) = MβX\υX, where βX is the Stone-Čech compactification and υX is the Hewitt
realcompactification of X, see [5]. For terminology and notations, the reader is referred to [4] and [5].

2. mI-Topology on C(X)

Let I be an ideal (not necessarily proper) of C(X). For each f ∈ C(X) and u ∈ U+(X), we define the subset
B( f , I,u) of C(X) as follows:

B( f , I,u) = {1 ∈ C(X) : | f − 1| < u and 1 ≡ f (modI)}.

We define the mI-topology on C(X) by taking the family {B( f , I,u) : u ∈ U+(X)} as a base for a neighborhood
system at f for each f ∈ C(X). The set C(X) endowed with the mI-topology is denoted by CmI (X). To see
that {B( f , I,u) : u ∈ U+(X)} is a base at f , it is evident that f ∈ B( f , I,u), B( f , I,u ∧ v) ⊆ B( f , I,u) ∩ B( f , I, v),
for all u, v ∈ U+(X) and whenever 1 ∈ B( f , I,u) for some u ∈ U+(X), then B(1, I, v) ⊆ B( f , I,u), where
v = u − | f − 1| ∈ U+(X). If I = C(X), then the mI-topology and the m-topology coincide and whenever I ⊆ J
are two ideals in C(X), it is clear that the mI-topology is finer than the the mJ-topology. This implies that for
each ideal I in C(X), the mI-topology is finer than the m-topology.

Proposition 2.1. The space CmI (X) is a topological ring.

Proof. If u ∈ U+(X) and B( f +1, I,u) is a neighborhood at f +1, then we consider the neighborhoods B( f , I, u
2 )

and B(1, I, u
2 ) at f and 1 respectively. Now suppose that h ∈ B( f , I, u

2 ) and k ∈ B(1, I, u
2 ), then we have

|h − f | < u
2 , |k − 1| < u

2 , h − f ∈ I and k − 1 ∈ I. Hence we have |(h + k) − ( f + 1)| < u and (h + k) − ( f + 1) ∈ I,
i.e., the function + is continuous. For the continuity of ×, let B( f1, I,u) be a neighborhood at f1 and take
v = u

2(1+|1|) and w = u
2(| f |+v+1) . Now if h ∈ B( f , I, v) and k ∈ B(1, I,w), then |h − f | < v and |k − 1| < w imply that

|1h − f1| < u
2 and |hk − h1| < u|h|

2(| f |+v+1) <
u(| f |+v)

2(| f |+v+1) <
u
2 . On the other hand f (k − 1) ∈ I and k(h − f ) ∈ I imply

that hk − f1 ∈ I and we are through.

We need the following results in the sequel.

Proposition 2.2. The following statements hold.

(a) Every ideal containing I is a closed-open set in CmI (X).
(b) If I is a z-ideal and J is a closed ideal in CmI (X), then I ∩ J is also a z-ideal.
(c) Every maximal ideal is closed in CmI (X).
(d) C∗(X) ∩ I is a closed-open set in CmI (X).
(e) The closure of every proper ideal in CmI (X) is a proper ideal.

Proof. (a) Let I ⊆ J and f ∈ clmI J, where clmI J means the closure of J in CmI (X). Hence there exists j ∈ J such
that j ∈ B( f , I, 1). Thus f − j ∈ I ⊆ J, so f ∈ J. This implies that J is closed. On the other hand if 1 ∈ J, then
B(1, I,u) ⊆ J, for all u ∈ U+(X), i.e., J is open.

(b) Let Z(1) ⊆ Z( f ) and 1 ∈ I ∩ J. Since I is a z-ideal, it is enough to show that f ∈ J. For each u ∈ U+(X),
we define
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h(x) =


f (x)+u(x)
1(x) f (x) ≤ −u(x)

0 | f (x)| ≤ u(x)
f (x)−u(x)
1(x) u(x) ≤ f (x).

Clearly h ∈ C(X) and | f − 1h| < u. Since f − 1h ∈ I, f ∈ clmI J. But J is closed, hence f ∈ J.
(c) In fact every closed ideal in Cm(X) is also closed in CmI (X).
(d) For each f ∈ C∗(X) ∩ I, we have B( f , I, 1) ⊆ C∗(X) ∩ I. Now if h ∈ clmI (C∗(X) ∩ I), then there exists

f ∈ B( f , I, 1) ∩ C∗(X) ∩ I. Hence | f − h| < 1 and f − h ∈ I, whence h ∈ C∗(X) ∩ I.
(e) If J is an ideal, f , 1 ∈ clmI J and u ∈ U+(X), then there are h, k ∈ C(X) such that h ∈ B( f , I, u

2 ) ∩ J,
k ∈ B(1, I, u

2 ) ∩ J and h − f , k − 1 ∈ I. Hence it is clear that h + k ∈ B( f + 1, I,u) ∩ J and hence f + 1 ∈ clmI J.
Whenever f ∈ clmI J, 1 ∈ C(X) and u ∈ U+(X), then there exists h ∈ B( f , I, u

1+|1| ) ∩ J, i.e., |h − f | < u
1+|1| and

h − f ∈ I. Hence |1h − f1| < |1|u
1+|1| < u and 1h − f1 ∈ I which means that B( f1, I,u) ∩ J , ∅, so f1 ∈ clmI J.

Remark 2.3. Whenever S ⊆ C(X) and C(X) is endowed with the m-topology (mI-topology), then S may
be considered as a subspace of Cm(X) (CmI (X)) with the relative topology. We should emphasize here that
m-topology and mI-topology on I coincide. In fact whenever u ∈ U+(X) and f ∈ I, we have B( f , I,u) ∩ I =
B( f , I,u) = B( f ,u) ∩ I.

3. Connectedness in CmI (X)

In this section we characterize the components of CmI (X) and investigate the disconnectedness of CmI (X).
To this end, we need the following lemmas.

Lemma 3.1. f ∈ Cψ(X) ∩ I, if and only if the function ϕ f : R → CmI (X) defined by ϕ f (r) = r f , for all r ∈ R, is
continuous.

Proof. Let u ∈ U+(X). Since f ∈ Cψ(X), u is bounded away from zero on X\Z( f ) for, 1
u is bounded on X\Z( f ).

Thus we may assume that u(x) > α > 0, for all x ∈ X \ Z( f ). If | f | < M, then (r − α
M , r + α

M ) ⊆ ϕ−1
f (B(r f , I,u)).

So whenever |r − s| < α
M , then we have |r f − s f | < α

M | f | < α < u. It is also evident that r f − s f ∈ I for, f ∈ I,
hence ϕ f is continuous. Conversely suppose that ϕ f is continuous. Hence for every u ∈ U+(X), there exists
δ > 0 such that (−δ, δ) ⊆ ϕ−1

f (B(0, I,u)). This means that for each 0 , s ∈ (−δ, δ), we have |s f | < u and s f ∈ I,

so f ∈ I. Now whenever 1 ∈ C∗(X), by taking u = 1
1+|1| ∈ U+(X), we have |s f | < 1

1+|1| or |1 f | < (1 + |1|)| f | < 1
s ,

for each 0 , s ∈ (−δ, δ). This implies that f1 ∈ C∗(X), for all 1 ∈ C∗(X) and hence by Lemma 2.10 in [7], we
have f ∈ Cψ(X), therefore f ∈ Cψ(X) ∩ I.

Corollary 3.2. f ∈ Cψ(X), if and only if the function ϕ f : R → Cm(X) defined by ϕ f (r) = r f is continuous, for all
r ∈ R.

Whenever every element of an ideal in C(X) is bounded, we call it a bounded ideal. The largest bounded
ideal in C(X) exists by the following result, see Corollary 3.10 in [2] for its proof.

Lemma 3.3. The largest bounded ideal in C(X) is Cψ(X).

The following theorem shows that the component of 0 in C(X) with the m-topology is Cψ(X), see also
[2]. This theorem also shows that whenever I ⊆ Cψ(X), then the component of 0 in CmI (X) is I.

Theorem 3.4. The component of 0 in CmI (X) is Cψ(X) ∩ I.

Proof. For each f ∈ Cψ(X) ∩ I, the function ϕ f is continuous by Lemma 3.1. Hence ϕ f (R) is connected. But
Cψ(X)∩ I =

⋃
f∈Cψ(X)∩I ϕ f (R) means that Cψ(X)∩ I is also connected. Now suppose that J is a connected ideal

in CmI (X). Since by part (d) of Proposition 2.2, C∗(X)∩ I is a closed-open set in CmI (X), we have J ⊆ C∗(X)∩ I.
This implies that J is a bounded ideal and hence J ⊆ Cψ(X) by Lemma 3.3. Therefore J ⊆ Cψ(X) ∩ I, i.e.,
Cψ(X) ∩ I is the component of 0.
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Since the ideal I is an open-closed set in CmI (X), by Proposition 2.2, the following corollary is evident.

Corollary 3.5. If I is an ideal in C(X) and I ⊆ Cψ(X), then the quasicomponent of 0 in CmI (X) is I.

If Cψ(X) , (0), then Cψ(X) = MβX\υX is free and hence it is an essential ideal (i.e., intersects every nonzero
ideal nontrivially) by Proposition 2.1 in [1]. Now if I is a nonzero ideal in C(X), then Cψ(X)∩ I , (0) and the
following corollary is evident.

Corollary 3.6. The following statements hold.
(a) CmI (X) is a totally disconnected if and only if either I = (0) or Cψ(X) = (0).
(b) If X is pseudocompact, then CmI (X) is a totally disconnected space if and only if I = (0).
(c) Whenever I is a proper ideal in C(X), then CmI (X) is never connected.

4. Compactness in CmI (X)

In this section we investigate compact subsets of CmI (X). Using the next theorem, for an infinite space
X, every compact subset of C(X) with the m-topology has an empty interior. To prove the theorem, we first
need the following lemma.

Lemma 4.1. Suppose that u is unit and I is an ideal in C(X).
(a) If {a1, a2, . . . , ak} ⊆ X \

⋂
Z[I], then for each 1 ≤ i ≤ k, there exists ti ∈ I such that |ti| < u, ti(ai) = 1

2 u(ai) and
ti(a j) = 0, for all j , i.

(b) If X \
⋂

Z[I] is finite, then the subspace I of CmI (X) is homeomorphic to Rk for some k ∈N.

Proof. (a) Since {a1, a2, . . . , ak} ⊆ X \
⋂

Z[I], for each 1 ≤ i ≤ k, there exists si ∈ I such that si(ai) , 0 and
si(a j) = 0. Without loss of generality, let si(ai) = 1 and si ≥ 0. Now consider the function ti = 3

2
si

1+2si
u. Clearly

we have ti ∈ I, ti(ai) = 1
2 u(ai), ti(a j) = 0 and |ti| < 3

2
1
2 u < u.

(b) Let X \
⋂

Z[I] = {a1, a2, . . . , ak}. Clearly, each ai is an isolated point. First we show that I = (e), where
e(a1) = · · · = e(ak) = 1 and e(x) = 0, otherwise. For each 1 ≤ i ≤ k, there exists fi ∈ I such that fi(xi) , 0, for
xi <
⋂

Z[I]. Now h = f 2
1 + · · · + f 2

k ∈ I and Z(h) =
⋂

Z[I]. But Z(h) = Z(e) is open, hence e is a multiple of h,
by 1D in [5], i.e., e ∈ I. On the other hand, for each f ∈ I, we have Z(e) ⊆ Z( f ) which means that f ∈ (e) by
1D in [5] again, i.e., I = (e).

Now corresponding to each b = (b1, b2, . . . , bk) ∈ Rk, the function fb defined by fb(ai) = bi, for all i = 1, . . . , k
and fb(

⋂
Z[I]) = {0} belongs to I = (e). We define ϕ : Rk

→ I ⊆ CmI (X) by ϕ(b) = fb, for all b ∈ Rk. Clearly,
the function ϕ is one to one and onto. The function ϕ is also continuous. In fact for every fb ∈ I, where
b = (b1, . . . , bk) ∈ Rk and for each positive unit u in C(X), we haveϕ−1(B( fb, I,u)∩I) =

∏k
i=1(bi−u(ai), bi +u(ai)).

Finally, ϕ is open for, ϕ(π−1
i (bi − εi, bi + εi)) = { f ∈ I : | f (ai) − bi| < εi} is open in I for each i = 1, . . . , k and

εi > 0. Therefore, I is homeomorphic to Rk.

Theorem 4.2. If I is an ideal in C(X), then every compact subset of CmI (X) has an empty interior if and only if
X \
⋂

Z[I] is infinite.

Proof. Let X\
⋂

Z[I] be infinite and F be a compact subset of CmI (X). Suppose that f ∈ intmI F, then there exists
u ∈ U+(X) such that B( f , I,u) ⊆ F. Since F is compact, there are 11, 12, . . . , 1n ∈ F such that F ⊆

⋃n
i=1 B(1i, I, u

4 ).
Since X \

⋂
Z[I] is an infinite set, we may produce a set {x1, x2, . . . , xn, xn+1} ⊆ X \

⋂
Z[I] with distinct

elements. Now by invoking Lemma 4.1, for i ∈ {1, 2, . . . ,n + 1}, we define the function ti ∈ I with |ti| < u,
where ti(xi) = 1

2 u(xi) and ti(x j) = 0, for all j , i. If we take hi = f + ti, then we have hi − f = ti ∈ I and
|hi − f | = |ti| < u, for all i = 1, 2, . . . ,n + 1. Therefore hk ∈ B( f , I,u) ⊆ F ⊆

⋃n
i=1 B(1i, I, u

4 ), for all k = 1, . . . ,n + 1.
This means that for some 1 ≤ s ≤ n + 1, B(1s, I, u

4 ) contains at least two of hi’s. Let hi, h j ∈ B(1s, I, u
4 ), for

i , j. Thus we have |hi − h j| < u
2 which implies that |ti − t j| < u

2 . But t j(xi) = 0 implies that 1
2 u(xi) < 1

2 u(xi),
a contradiction. Conversely, suppose that X \

⋂
Z[I] is a finite set, say {a1, a2, . . . , ak}. By what we have

already shown in the proof of Lemma 4.1, the function ϕ : Rk
→ I ⊆ CmI (X), defined by ϕ(b) = fb, for all

b ∈ Rk is continuous. Now consider S = { f ∈ I : | f | ≤ 1}. Clearly B(0, I, 1) ⊆ S, implies that intmI S , ∅ and
ϕ(
∏k

i=1[−1, 1]) = S implies that S is compact and the proof is complete.
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Proposition 4.3. If I is an ideal in C(X), then I is a locally compact subspace of CmI (X) if and only if X \
⋂

Z[I] is
finite.

Proof. If I is locally compact, then by Proposition 2.2 and Theorem 4.2, X \
⋂

Z[I] is finite. On the other
hand, whenever X \

⋂
Z[I] is finite, then by Lemma 4.1, I as a subspace of CmI (X) is homeomorphic to Rk

for some k ∈N, so I is locally compact.

By Lemma 3.3 and Theorem 4.2, the following result is evident. We note that whenever f ∈ I \ Cψ(X),
then f is unbounded, by Lemma 3.3 and hence X \

⋂
Z[I] must be infinite.

Corollary 4.4. If I * Cψ(X), then every compact subset of CmI (X) has an empty interior.

The following result is also an immediate consequence of our Theorem 4.2 and Proposition 2.1 in [1],
see also Proposition 3.2 in [12] for more general case.

Corollary 4.5. If I is an essential ideal in C(X), then every compact subset of CmI (X) has an empty interior.

We conclude this section by the following proposition which investigates the compactness and Lin-
delöfness of ideals in CmI (X). For an example of a Lindelöf ideal in Cm(X) (which coincides with CmI (X),
where I = C(X)), see Example 4.7 in [2].

Proposition 4.6. Let J be an ideal in C(X).

(a) J is never compact in CmI (X).
(b) If J is Lindelöf in CmI (X), then J ⊆ Cψ(X).

Proof. (a) Let J be compact and u ∈ U+(X). Since J ⊆
⋃

f∈J B( f , I,u), there are f1, f2, . . . , fn ∈ J such that
J ⊆
⋃n

i=1 B( fi, I,u). Suppose that x0 <
⋂

f∈J Z( f ) and let α = sup{| f1(x0)|+ u(x0), . . . , | fn(x0)|+ u(x0)}. Take f ∈ J
such that f (x0) = α (if 1 ∈ J with 1(x0) , 0, consider f = α

1

1(x0) ∈ J). Thus f ∈ B( fk, I,u) for some 1 ≤ k ≤ n.
Hence | f | < | fk| + u implies that α = | f (x0)| < fk(x0)| + u(x0), a contradiction.

(b) Let J * Cψ(X). To prove that J is not Lindelöf, it is enough to show that every open cover of J is
uncountable. Suppose that J ⊆

⋃
∞

n=1 B( fn, I,un), where fn ∈ C(X) and un ∈ U+(X), for all n ∈ N. Since
J * Cψ(X), there is an unbounded f ∈ J. Now using 1.20 in [5], there exists a copy ofN, say a sequence {xn}

in X, C-embedded in X on which f is unbounded. Without loss of generality, we suppose that | f (xn)| > 1,
for all n ∈ N. But {xn} is C-embedded, so a function 1 ∈ C(X) exists such that 1(xn) = | f (xn)| + u(xn). Now
f1 ∈ J ⊆

⋃
∞

n=1 B( fn, I,un) implies that f1 ∈ B( fm, I,um) for some m ∈ N. Therefore |1(xm)| < | f (xm)1(xm)| <
| fm(xm)| + um(xm), a contradiction.

5. Characterizations of the Space X via Properties of Some Subspaces of Cm(X)

We devote this section to the special case I = C(X) of mI-topology on C(X), i.e., to the m-topology on
C(X). In this section we investigate some relations between topological spaces X and Cm(X). The set U(X)
of units, the set D(X) of zerodivisors, the set r(X) of regulars (nonzerodivisors) and ideals of C(X) are
important subspaces of Cm(X). We show that some properties of these subspaces completely determine the
space X. For example, we show that U(X) is dense in Cm(X) if and only if X is strongly zero-dimensional
and D(X) is closed in Cm(X) if and only if X is an almost P-space. First we recall that a space X is strongly
zero-dimensional if for every pair A,B of completely separated subsets of the space X, there exists an
open-closed set G such that A ⊆ G ⊆ X \ B, see Theorem 6.2.5 in [4]. We also recall that a space X is called
an almost P-space if every nonempty Gδ-set (zero-set) in X has a nonempty interior. Characterization of the
space X for which r(X) (CK(X)) is dense (closed) in Cm(X) is also given in this section.

Proposition 5.1. U(X) is dense in Cm(X) if and only if X is strongly zero-dimensional.

Proof. Let X be strongly zero-dimensional, f ∈ C(X) and u be a positive unit in C(X). Suppose that
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G = {x ∈ X : f (x) ≥ 1
2 u(x)}, H = {x ∈ X : f (x) ≤ − 1

2 u(x)}.

Since G and H are two disjoint zero-sets and X is strongly zero-dimensional, there exists an open-closed set
K in X such that G ⊆ K ⊆ X \H. Now define

v(x) =

{
f (x) + 1

2 u(x) x ∈ K
f (x) − 1

2 u(x) x < K.

Clearly v is unit, in fact if x ∈ K, then x < H and hence f (x) > − 1
2 u(x), i.e., v(x) = f (x) + 1

2 u(x) > 0 and if
x < K, then x < G, so f (x) − 1

2 u(x) = v(x) < 0. Moreover, | f − v| = 1
2 u < u, i.e., U(X) is dense in Cm(X).

Conversely, let U(X) be dense in Cm(X) and Z1 and Z2 be two disjoint zero-sets. Suppose that f ∈ C(X) such
that f (Z1) = {−1} and f (Z2) = {1}. Consider u = 1

2 , then there exists a unit v ∈ B( f , 1
2 ), i.e., | f − v| < 1

2 . Let
K = {x ∈ X : v(x) < 0}. Since v is unit, K is open-closed. Clearly Z1 ⊆ K ⊆ X \ Z2 which means that X is
strongly zero-dimensional.

Proposition 5.2. The set D(X) of zerodivisors of C(X) is closed in Cm(X) if and only if X is an almost P-space.

Proof. It is enough to show that clmD(X) = Cm(X) \ U(X). Clearly U(X) is open in Cm(X) for, if u ∈ U(X),
then B(u, π) ⊆ U(X), where π = |u|

2 . In fact if f ∈ B(u, π), then | f − u| < |u|
2 implies that Z( f ) = ∅, i.e., f ∈ U(X).

Thus Cm(X) \U(X) is closed and hence clmD(X) ⊆ Cm(X) \U(X). Now suppose that f ∈ Cm(X) \U(X) and π
is positive unit. We show that B( f , π) ∩D(X) , ∅. Define

h(x) =


f (x) + 1

2π(x) f (x) ≤ − 1
2π(x)

0 | f (x)| < 1
2π(x)

f (x) − 1
2π(x) | f (x)| ≥ 1

2π(x).

Clearly h ∈ C(X) and | f −h| < π, i.e., h ∈ B( f , π). On the other hand G = {x ∈ X : | f (x)| < 1
2π(x)} is a nonempty

open set in X, for ∅ , Z( f ) ⊆ G. Since G ⊆ Z(h), the interior of Z(h) is nonempty and hence h ∈ D(X), i.e.,
B( f , π) ∩D(X) , ∅.

In the following proposition we characterize spaces X for which the subset r(X) of C(X) is dense in
Cm(X). This proposition shows that for space X = R and more generally for a perfectly normal space X, the
set r(X) is dense in Cm(X). First we prove the following lemma.

Lemma 5.3. Let A and B be two disjoint sets. A and B can be separated by disjoint cozero-sets whose union is dense
if and only if there exists 1 ∈ r(X) such that A ⊆ pos1 and B ⊆ neg1.

Proof. If there is such 1 ∈ r(X), then pos1 and neg1 are cozero-sets whose union is dense for, intXZ(1) = ∅.
Conversely, suppose that A and B are separated by disjoint cozero-sets cozh and cozk respectively whose
union is dense. Define

1(x) =


|h(x)| x ∈ cozh
0 x ∈ Z(h) ∩ Z(k)
−|k(x)| x ∈ cozk.

Clearly 1 ∈ C(X), intXZ(1) = ∅ (i.e. 1 ∈ r(X)), A ⊆ pos1 and B ⊆ neg1.

Proposition 5.4. r(X) is dense in Cm(X) if and only if disjoint zero-sets in X can be separated by disjoint cozero-sets
whose union is dense in X.

Proof. Suppose that r(X) is dense in Cm(X) and Z( f ) ∩ Z(1) = ∅. Consider h ∈ C(X) such that |h| ≤ α, α > 0
and h(Z( f )) = {α}, h(Z(1)) = {−α}. Since r(X) is dense, there exists k ∈ r(X) ∩ B(h, α). Hence h − α < k < h + α
and intXZ(k) = ∅. If x ∈ Z( f ), then k(x) > h(x)−α = α−α = 0 and if x ∈ Z(1), then k(x) < h(x)+α = −α+α = 0,
i.e., Z( f ) ⊆ posk, Z(1) ⊆ negk. Now by our lemma, we are through.
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Conversely, suppose that disjoint zero-sets can be separated by disjoint cozero-sets whose union is
dense in X. Let f ∈ C(X) and π be a positive unit in C(X). By our lemma, there exists 1 ∈ r(X) such that
{x ∈ X : f (x) ≥ π

2 (x)} ⊆ pos1 and {x ∈ X : f (x) ≤ −π2 (x)} ⊆ neg1 and we consider |1| ≤ π
2 . Now define

h = [( f + π
2 ) ∧ 1] ∨ ( f − π

2 ). Clearly h ≥ f − π
2 . Hence for each x ∈ X, either h(x) = f (x) − π(x)

2 ≤ f (x) +
π(x)

2

or h(x) = [ f (x) +
π(x)

2 ] ∧ 1 ≤ f (x) +
π(x)

2 . Therefore f − π
2 ≤ h ≤ f + π

2 and hence h ∈ B( f , π). On the other
hand, if h(x) = 0, then f (x) , ±π(x)

2 . Whenever f (x) = −π2 (x), then 1(x) < 0, so h(x) = 1(x) ∨ ( f (x) − π
2 (x)) =

1(x)∨−π(x) = 1(x) < 0 (note that 1(x) ≥ −π2 (x)). If f (x) = π
2 (x), then 1(x) > 0, f (x) + π

2 (x) = π(x) > π
2 (x) ≥ 1(x)

and hence h(x) = 1(x) ∨ ( f (x) − π
2 (x)) = 1(x) ∨ 0 = 1(x) > 0. Also, f (x) < −π2 (x) and f (x) > π

2 (x) do not
happen. In fact f (x) < −π2 (x) implies 1(x) < 0, hence h(x) < 0 and f (x) > π

2 (x) implies 1(x) > 0, so h(x) > 0.
Therefore f (x) − π(x)

2 < h(x) < f (x) +
π(x)

2 and this means that 1(x) = 0. Consequently, Z(h) ⊆ Z(1) and hence
intXZ(h) = ∅, since 1 ∈ r(X). This implies that B( f , π) ∩ r(X) , ∅, i.e., r(X) is dense in Cm(X).

In the following result, we observe that for any space X satisfying countable chain condition, i.e., for any
space X with countable cellularity c(X), the set r(X) is also dense in Cm(X). The smallest cardinal number
a ≥ ℵ0 such that every family of pairwise disjoint nonempty open subsets of X has cardinality less than or
equal to a, is called the cellularity of the space X and is denoted by c(X). If c(X) = ℵ0, we say X satisfies the
countable chain condition.

Proposition 5.5. If c(X) = ℵ0, then r(X) is dense in Cm(X).

Proof. Let f ∈ C(X) and π be a positive unit in C(X). For every a ∈ (0, 1), we define Za = {x ∈ X : f
π (x) = a}.

Clearly Za ∩ Zb = ∅, for all a, b ∈ (0, 1) and a , b. Since c(X) = ℵ0, then intXZa = ∅ for some a ∈ (0, 1). Now
we consider h = f − aπ. Since Z(h) = Za, then h ∈ r(X) and |h − f | = aπ < π, i.e., h ∈ B( f , π) ∩ r(X).

We conclude the paper with the following result which characterizes the space X for which the ideal
CK(X) is closed in Cm(X). We recall that a space X is called µ-compact if CK(X) = I(X) :=

⋂
p∈βX\X Mp, see [9]

for more details of such spaces.

Proposition 5.6. The ideal CK(X) is closed in Cm(X) if and only if X is µ-compact.

Proof. It is enough to show that clmCK(X) = I(X). Since CK(X) =
⋃

p∈βX\X Op, we have CK(X) ⊆
⋃

p∈βX\X Mp =
I(X). But I(X) is closed, so clmCK(X) ⊆ I(X). Now suppose that f ∈ I(X), then βX \ X ⊆ clβXZ( f ). For every
positive unit π in C(X), we must show that B( f , π) ∩ CK(X) , ∅. Consider the function h defined in the
proof of Proposition 5.2 and the zero-set H = {x ∈ X : | f (x)| ≥ π(x)

2 }, so H = Z(1), for some 1 ∈ C(X). Clearly
Z( f ) ⊆ X \ Z(1) ⊆ Z(h), for if f (x) = 0, then x < H, hence x ∈ X \ Z(1) and this implies that | f (x)| < π(x)

2 ,
so x ∈ Z(h). Now clβXZ(h) is a neighborhood of clβXZ( f ) and we have βX \ X ⊆ clβXZ( f ) ⊆ intβXclβXZ(h),
therefore h ∈

⋃
p∈βX\X Op = CK(X). On the other hand | f − h| < π, i.e., h ∈ B( f , π) which means that

h ∈ B( f , π) ∩ CK(X).
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