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On k-Circulant Matrices with Arithmetic Sequence
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Abstract. Let k be a nonzero complex number. In this paper we consider k-circulant matrices with
arithmetic sequence and investigate the eigenvalues, determinants and Euclidean norms of such matrices.
Also, for k = 1, the inverses of such (invertible) matrices are obtained (in a way different from the way
presented in [1]), and the Moore-Penrose inverses of such (singular) matrices are derived.

1. Introduction

By Cm×n and Cm×n
r we denote the set of all m × n complex matrices and the set of all m × n complex

matrices of rank r, respectively. Similarly, Rm×n denotes the set of all m × n real matrices and Rm×n
r denotes

the set of all m × n real matrices of rank r. Let C ∈ Cn×n. The eigenvalues, rank, determinant and the
Euclidean (or Frobenius) norm of C are denoted by λ j, j=0, n − 1, r(C), |C | and ‖C‖E, respectively. Symbols
C∗, Ci→ and C↓ j stand for the conjugate transpose of C, the ith row of C and the jth column of C, respectively.
O denotes the zero matrix of appropriate dimensions.

Let C be a complex matrix of order n such that (c0, c1, c2, . . . , cn−1) is its first row and k∈C\{0}. Then C is
called a k-circulant matrix if C satisfies the following conditions:

ci, j =

{
c j−i, i ≤ j

k cn+ j−i, otherwise , (i = 2,n, j = 1,n)

i.e. C has the following form:

C =



c0 c1 c2 . . . cn−2 cn−1

kcn−1 c0 c1 . . . cn−3 cn−2

kcn−2 kcn−1 c0 . . . cn−4 cn−3
...

...
...

. . .
...

...
kc2 kc3 kc4 . . . c0 c1

kc1 kc2 kc3 . . . kcn−1 c0


. (1)

Let C be a k-circulant matrix and (c0, c1, c2, . . . , cn−1) is its first row, then we shall write C=circn{k(c0, c1, c2, . . . , cn−1)}.
If the order of a matrix is known, then the designation for the order of a matrix can be omitted. Instead of
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”C is a 1-circulant matrix” we say ”C is a circulant matrix”. Instead of ”C is a −1-circulant matrix” we say ”C is
an anti-circulant matrix” or ”C is a negacyclic matrix”.

In [9] R. E. Cline, R. J. Plemmons and G. Worm considered k-circulant matrices. Namely, they proved
the following lemmas which yield necessary and sufficient conditions for a complex square matrix to be a
k-circulant matrix.

Lemma 1.1. (Lemma 2. [9]) Let k∈C\{0} and W = circn{k(0, 1, 0, . . . , 0)}. Then a complex matrix C of order n
is a k-circulant matrix if and only if it commutes with W. In this case C can be expressed as

C =

n−1∑
i = 0

ciWi, (2)

where (c0, c1, c2, . . . , cn−1) is the first row of C .

Lemma 1.2. (Lemma 3. [9]) Let ψ be any nth root of k and

Ψ =



1 0 0 · · · 0 0
0 ψ 0 · · · 0 0
0 0 ψ2

· · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ψn−2 0
0 0 0 · · · 0 ψn−1


.

Then a matrix C is a k-circulant matrix if and only if

C = ΨQΨ−1 (3)
for some circulant matrix Q .

In this paper we shall investigate the eigenvalues of k-circulant matrices with arithmetic sequence,
among other things, and we need the following lemma.

Lemma 1.3. (Lemma 4. [9]) Let C be a k-circulant matrix. Then the eigenvalues of C are:

λ j =

n−1∑
i = 0

ci(ψω− j)i, j = 0, n − 1 , (4)

where (c0, c1, c2, . . . , cn−1) is the first row of C, ψ is any nth root of k and ω is any primitive nth root of unity.
Moreover, in this case

ci =
1
n

n−1∑
j = 0

λ j(ψω− j)−i, i = 0, n − 1 . (5)

In [9] the authors also investigated generalized inverses (see [2] and [11]) of k-circulant matrices. The
inverse C−1 of (an invertible) k-circulant matrix C is always k-circulant, but the Moore-Penrose inverse C†

(i.e. the unique matrix which satisfies CC†C = C, C†CC† = C†, (CC†)∗ = CC† and (C†C)∗ = C†C) of (a singular)
k-circulant matrix C need not be k-circulant. Namely, they proved the following theorem.

Theorem 1.1. (Theorem 3. [9]) Let C be a singular k-circulant matrix. Then C† is k-circulant if and only if k
lies on the unit circle.

They did not solve the problem of characterizing C† for an arbitrary k-circulant matrix C. That problem
was solved by E. Boman in [3].

In [7] the author investigated the eigenvalues, determinants, Euclidean norms and spectral norms
of circulant matrices with geometric sequence and their inverses. The eigenvalues and determinants of
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circulant matrices with binomial coefficients were determined in [13], and the spectral norms and Euclidean
norms of such matrices were derived in [12]. In [15] ([4]) the authors investigated the determinants and
inverses of circulant matrices with Fibonacci and Lucas numbers (with Jacobsthal and Jacobsthal-Lucas
numbers) while the eigenvalues and Euclidean norms of circulant matrices with Fibonacci sequence were
obtained by Bueno in [8] and the Euclidean norms of circulant and anti-circulant matrices with Jacobsthal
and Jacobsthal-Lucas sequence were obtained in [10]. In [10] the author also investigated the eigenvalues,
determinants, Euclidean norms and spectral norms of circulant and anti-circulant matrices with modified
Pell numbers, while the determinants and inverses of circulant matrices with Pell and Pell-Lucas numbers
were derived in [6]. The paper [5] is devoted to obtaining the determinants and inverses of k-circulant
matrices associated with a number sequence. Circulant matrices with arithmetic sequence were considered
in [1]. In this paper we consider k-circulant matrices with arithmetic sequence. The main aim of this paper is
to obtain the formulae for the eigenvalues, determinants and Euclidean norms of k-circulant matrices with
arithmetic sequence. Also, we shall obtain the inverse of (an invertible) circulant matrix with arithmetic
sequence (the result of Theorem 2.6 [1]) using the new method (for obtaining the inverse of an invertible
k-circulant matrix) which was illustrated in [14].

Lemma 1.4. (Lemma 2.2. [14]) Let C=circ{k(c0, c1, c2, . . . , cn−1)} be an invertible matrix with complex entries.
Then C−1 =circ{k(c′0, c

′

1, c
′

2, . . . , c
′

n−1)}, where (c′0, c
′

1, c
′

2, . . . , c
′

n−1) is the unique solution of the following system
of linear equations:

C


x0

kxn−1
...

kx1

 =


1
0
...
0

 . (6)

Using the full-rank factorization of matrices, the Moore-Penrose inverse C† (i.e. the unique matrix which
satisfies CC†C = C, C†CC† = C†, (CC†)∗ = CC† and (C†C)∗ = C†C) of (a singular) circulant matrix C with
arithmetic sequence will be derived. Namely,

Lemma 1.5. (Lemma 5. [2], p. 22) Let C∈Cm×n
r , r>0. Then there exist matrices M∈Cm×r

r and N∈Cr×n
r such

that
C = MN . (7)

A factorization (7) with the properties stated in Lemma 1.5 is called a full-rank factorization of C.

Let us mention two ways to obtain a full-rank factorization of C.

i) Choose the columns of M as any maximal linearly independent set of columns of C, and then N is uniquely
determined by (7);

ii) Choose the rows of N as any maximal linearly independent set of rows of C, and then M is uniquely
determined by (7).

Theorem 1.2. (Theorem 5. [2], p. 23) (MacDuffee) If C∈Cm×n
r , r>0, has the full-rank factorization (7), then

C† = N∗(M∗MNN∗)−1M∗. (8)

Before we present our main results, let us recall that an arithmetic sequence is a sequence having the
following form:

a0 =a, a1 =a + d, a2 =a + 2d, a3 =a + 3d, . . . (9)

where a ∈R and d ∈R\{0}. As we can see the difference between the consecutive terms of an arithmetic
sequence is constant. For example, the sequence

3,
7
2
, 4,

9
2
, 5, . . .
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is an arithmetic sequence (a = 3, d = 1
2 ). The sum of the first n terms of an arithmetic sequence is given by

the following formula:
n−1∑
i = 0

ai =
n
2

(a0 + an−1), (10)

i.e.
n−1∑
i = 0

ai =
n
2

[2a0 + (n − 1)d] . (11)

Our main results will be presented in the next section.

2. Main Results

Throughout this section, ψ is any nth root of k∈C\{0} and ω is any primitive nth root of unity i.e. ω = e
2πi
n .

First, we investigate the eigenvalues of

circ{k(a, a + d, . . . , a + (n − 1)d)}, (12)

where a∈R and d∈R\{0}.

Theorem 2.1. Let A be a matrix of the form (12). Then the eigenvalues of A are given by the following
formulae:

1) If ψω− j =1, then

λ j =
n
2

[2a + (n − 1)d] , (13)

2) If ψω− j,1, then

λ j = a
k − 1

ψω− j − 1
+ d

ψω− j(1 + nk − k) − nk
(1 − ψω− j)2

. (14)

Proof.

1) Suppose that ψω− j =1. Then, using Lemma 1.3, we obtain

λ j =

n−1∑
i = 0

ai(ψω− j)i

=

n−1∑
i = 0

ai

=
n
2

[2a + (n − 1)d] ,

2) Suppose that ψω− j,1 and let x :=ψω− j. Then, using Lemma 1.3, we obtain

λ j =

n−1∑
i = 0

ai(ψω− j)i

=

n−1∑
i = 0

(a + id)xi

= a
n−1∑
i = 0

xi + d
n−1∑
i = 0

ixi
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= a
xn
− 1

x − 1
+ dx(1 + 2x + 3x2 + . . . + (n − 1)xn−2)

= a
k − 1
x − 1

+ dx
(x − xn

1 − x

)′
= a

k − 1
x − 1

+ dx
(1 − nxn−1)(1 − x) + x − xn

(1 − x)2

= a
k − 1
x − 1

+ dx
1 − x − nxn−1 + nk + x − k

(1 − x)2

= a
k − 1
x − 1

+ d
x − nk + xnk − xk

(1 − x)2

= a
k − 1
x − 1

+ d
x(1 + nk − k) − nk

(1 − x)2

= a
k − 1

ψω− j − 1
+ d

ψω− j(1 + nk − k) − nk
(1 − ψω− j)2

. �

Remark 2.1. If k=1, then we obtain the result of M. Bahsi and S. Solak (see Theorem 2.1 [1]).

Now, we obtain the determinant of the matrix in (12).

Theorem 2.2. Let A be a matrix of the form (12). Then the determinant of A is:

|A |= aqn−1 + (−1)n−1kd2

n−1∑
i = 1

(−1)i−1irn−(i+1)qi−1

 , (15)

where q := (1 − k)a − nkd and r := (k − 1)a + [1 + (n − 1)k] d .

Proof. Applying the properties of the determinant to the determinant of A we obtain the following equalities:

|A |=

a a + d a + 2d · · · a + (n − 2)d a + (n − 1)d
k [a + (n − 1)d] a a + d · · · a + (n − 3)d a + (n − 2)d
k [a + (n − 2)d] k [a + (n − 1)d] a · · · a + (n − 4)d a + (n − 3)d

...
...

...
. . .

...
...

k [a + 2d] k [a + 3d] k [a + 4d] · · · a a + d
k [a + d] k [a + 2d] k [a + 3d] · · · k [a + (n − 1)d] a

=

a d 2d · · · (n − 2)d (n − 1)d
0 q r · · · 0 0
0 0 q · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · q r
kd 0 0 · · · 0 q

,

where q := (1 − k)a − nkd and r := (k − 1)a + [1 + (n − 1)k] d.

Therefore,

|A | = aqn−1 + (−1)n−1kd2
[
rn−2
− 2rn−3q + 3rn−4q2 + . . . + (−1)n−2(n − 1)qn−2

]
= aqn−1 + (−1)n−1kd2

n−1∑
i = 1

(−1)i−1irn−(i+1)qi−1

 . �
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Remark 2.2. If k=1, then we obtain the result of M. Bahsi and S. Solak (see Theorem 2.4 [1]).

In order to obtain the Euclidean norm of the matrix in (12) we shall use the following formulae:

n∑
i = 1

i2 =
n(n + 1)(2n + 1)

6
(16)

and
n∑

i = 1

i3 =

[
n(n + 1)

2

]2

. (17)

Recall that the Euclidean norm of C=
[
ci, j

]
∈Cn×n is ‖C‖E =

 n∑
i, j = 1

| ci, j |
2


1
2

.

Theorem 2.3. Let A be a matrix of the form (12). Then the Euclidean norm of A is:

‖A‖E =

√
n
2

a2[n+1+|k|2(n−1)]+(n−1)nad
[n+1

3
+|k|2

2n−1
3

]
+

(n−1)n2

4
d2
[n+1

3
+|k|2(n−1)

]
. (18)

Proof.

(‖A‖E)2 =

n∑
i, j = 1

|ai, j |
2

= na2 +
[
(n − 1) + |k|2

]
[a + d]2 + . . . +

[
1 + (n − 1)|k|2

]
[a + (n − 1)d]2

= a2

 n∑
i = 1

i+|k|2
n−1∑
i = 1

i

+2ad

n−1∑
i = 1

i(n−i)+|k|2
n−1∑
i = 1

i2
+d2

n−1∑
i = 1

i2(n−i)+|k|2
n−1∑
i = 1

i3


= a2

 n∑
i = 1

i + |k|2
n−1∑
i = 1

i

 + 2ad

n n−1∑
i = 1

i −
n−1∑
i = 1

i2 + |k|2
n−1∑
i = 1

i2
 + d2

n n−1∑
i = 1

i2 −
n−1∑
i = 1

i3 + |k|2
n−1∑
i = 1

i3


= a2

[
n(n+1)

2
+|k|2

(n−1) n
2

]
+2ad

[
(n−1) n(n+1)

6
+|k|2

(n−1) n(2n−1)
6

]
+

d2
[

(n−1) n2(n+1)
12

+|k|2
(n−1)2n2

4

]
=

n
2

a2
[
n + 1 + |k|2(n − 1)

]
+ (n − 1)nad

[n + 1
3

+ |k|2
2n − 1

3

]
+

(n − 1)n2

4
d2

[n + 1
3

+ |k|2(n − 1)
]
.

Therefore,

‖A‖E =

√
n
2

a2[n+1+|k|2(n−1)]+(n−1)nad
[n + 1

3
+|k|2

2n−1
3

]
+

(n − 1)n2

4
d2
[n + 1

3
+|k|2(n−1)

]
. �

Remark 2.3. If k=1, then we obtain the result of M. Bahsi and S. Solak (see Theorem 2.3 [1]).

Remark 2.4. It follows from Theorem 2.4 [1] (or Theorem 2.2, for k = 1) that

circ{(a, a + d, a + 2d, . . . , a + (n − 1)d)}, (19)

where a∈R and d∈R\{0}, is an invertible matrix if and only if

a +
n − 1

2
d , 0 . (20)
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The inverse of the matrix in (19) was obtained in [1] (see Theorem 2.6 [1]), but in this paper we obtain
the inverse of the matrix in (19) using Lemma 1.4.

Theorem 2.4. Let A be an invertible matrix of the form (19). Then the inverse of A is:

A−1 =
1

n2(a + n−1
2 d)

circn{(−
na + n2

−n−2
2 d

d
,

na + n2
−n+2
2 d

d
, 1, . . . , 1)} . (21)

Proof. Let A−1 = circ{(a′0,a
′

1, a
′

2, . . . , a
′

n−1)}. Based on Lemma 1.4 (a′0,a
′

1, a
′

2, . . . , a
′

n−1) is the unique solution of the
following system of linear equations:

A


x0

xn−1
...

x1

 =


1
0
...
0

 . (22)

Applying elementary row operations to the augmented matrix, we get:

A =



a a + d a + 2d . . . a + (n − 2)d a + (n − 1)d 1
a + (n − 1)d a a + d . . . a + (n − 3)d a + (n − 2)d 0
a + (n − 2)d a + (n − 1)d a . . . a + (n − 4)d a + (n − 3)d 0

...
...

...
. . .

...
...

...
a + 2d a + 3d a + 4d . . . a a + d 0
a + d a + 2d a + 3d . . . a + (n − 1)d a 0



∼



a a + d a + 2d . . . a + (n − 3)d a + (n − 2)d a + (n − 1)d 1
−(n − 1)d d d . . . d d d 1
−nd nd 0 . . . 0 0 0 1

0 −nd nd . . . 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 . . . −nd nd 0 0


.

Therefore, the linear system (22) is equivalent to the following system:

n−1∑
i = 1

[a + id]xn−i = 1 − ax0,

n−1∑
i = 1

dxi = 1 + (n − 1)dx0,

xn−1 − x0 = 1
nd ,

xi = xi+1, i = 2,n − 2 .

(23)

The solution of the system (23) is: 

x0 = −
na+ n2

−n−2
2 d

dn2(a+ n−1
2 d)

,

x1 =
na+ n2

−n+2
2 d

dn2(a+ n−1
2 d)

,

xi = 1
n2(a+ n−1

2 d)
, i = 2,n − 1 .

(24)

Since the system (22) is equivalent to the system (23), it follows that (24) is also the solution of the system
(22) . �
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If a+ n−1
2 d = 0 (i.e. d = 2a

1−n ), then the matrix in (19) is a singular matrix (i.e. its inverse does not exist).
But, the Moore-Penrose inverse of such matrix exists and will be given by the following theorem. Since
ai=( 1−n + 2i

1−n ) a, i= 0,n − 1, we shall assume that a∈R\{0}.

Theorem 2.5. Let n be an arbitrary natural number greater than 1, a∈R\{0} and

A = circ{(a0, a1, . . . , an−1)}, (25)

where ai = ( 1−n+2i
1−n ) a, i = 0,n − 1. Then the Moore-Penrose inverse of A is:

A† =
n − 1
2na

circn{(1,−1, 0, . . . , 0)} . (26)

Proof. Notice that r(A)=n − 1 and A↓ j,O, j = 1,n. Let A = [A1|A2], where A1∈Rn×(n−1) and A2∈Rn×1. Since
A↓ j, j = 1,n − 1, are linearly independent columns of A, it follows that r(A1) = n − 1. Therefore, A has the
full-rank factorization (Lemma 1.5) as

A = A1N,

where

N =



1 0 0 · · · 0 0 −1
0 1 0 · · · 0 0 −1
0 0 1 · · · 0 0 −1
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 −1
0 0 0 · · · 0 1 −1


∈R(n−1)×n

n−1 .

Based on Theorem 1.2 it follows that

A† = N∗(A∗1A1NN∗)−1A∗1

= circn{(
n − 1
2na

,−
n − 1
2na

, 0, . . . , 0)}

=
n − 1
2na

circn{(1,−1, 0, . . . , 0)} . �

3. Conclusion

In this paper we determined the eigenvalues, determinants and Euclidean norms of k-circulant matrices
with a non-constant arithmetic sequence, where k∈C\{0}, and we extended some results presented in [1].
Also, for k = 1, we obtained the inverses of such (invertible) matrices using the method for obtaining the
inverse of an invertible k-circulant matrix which was described in [14] and the explicit expression for the
Moore-Penrose inverses of such (singular) matrices using the full-rank factorization of matrices.
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