A New Estimate for the Spectral Radius of Nonnegative Tensors

Jingjing Cui ${ }^{\text {a }}$, Guohua Peng ${ }^{\text {a }}$, Quan Lu^{a}, Zhengge Huang ${ }^{\mathrm{a}}$
${ }^{a}$ Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China

Abstract

In this paper, we are concerned with the spectral radius of nonnegative tensors. By estimating the ratio of the smallest component and the largest component of a Perron vector, a new bound for the spectral radius of nonnegative tensors is obtained. It is proved that the new bound improves some existing ones. Finally, a numerical example is implemented to show the effectiveness of the proposed bound.

1. Introduction

Let $\mathbb{C}(\mathbb{R})$ denote the set of all complex (real) field. We consider an m-order n-dimensional tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ consisting of n^{m} entries, denoted by $\mathcal{A} \in \mathbb{C}^{[m, n]}\left(\mathbb{R}^{[m, n]}\right)$, if
$a_{i_{1} i_{2} \cdots i_{m}} \in \mathbb{C}(\mathbb{R})$,
where $i_{j}=1,2, \cdots, n$ for $j=1,2, \cdots, m[6,23]$. Obviously, a vector is a tensor of order 1 and a matrix is a tensor of 2 . An m-order n-dimensional tensor \mathcal{A} is called nonnegative (or, respectively, positive), if $a_{i_{1} \cdots i_{m}} \geq 0$ (or, respectively, $a_{i_{1} \cdots i_{m}}>0$) for all i_{1}, \cdots, i_{m}. Moreover, if there are a complex number λ and a nonzero complex vector $x=\left(x_{1}, \cdots, x_{n}\right)^{T}$ that are solutions of the following homogeneous polynomial equations:

$$
\mathcal{A} x^{m-1}=\lambda x^{[m-1]}
$$

then λ is called an eigenvalue of \mathcal{A} and x an eigenvector of \mathcal{A} associated with λ, where $\mathcal{A} x^{m-1}$ and $x^{[m-1]}$ are vectors, whose i th components are

$$
\left(\mathcal{A} x^{m-1}\right)_{i}=\sum_{i_{2}, \cdots, i_{m} \in N} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}}
$$

and

$$
\left(x^{[m-1]}\right)_{i}=x_{i}^{m-1}, 1 \leq i \leq n
$$

respectively. This definition was introduced by Qi in [23] where he assumed that $\mathcal{A} \in \mathbb{R}^{[m, n]}$ is symmetric and m is even. Independently, in [17], Lim gave such a definition but restricted x to be a real vector and λ to be a real number. That is, if λ and x are restricted to the real field, then we call λ an H-eigenvalue of \mathcal{A} and x an H-eigenvector of \mathcal{A} associated with λ.

[^0]Definition 1.1. A tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}$ is called reducible if there exists a nonempty proper index subset $I \subset\{1, \cdots, n\}$ such that

$$
a_{i_{1} \cdots i_{m}}=0, \forall i_{1} \in I, i_{2} \cdots i_{m} \notin I .
$$

If \mathcal{A} is not reducible, then we call \mathcal{A} irreducible.
In [5], Friedland et al. introduced nonnegative weakly irreducible tensor by considering the graph associated to tensors. Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right)$ be an order m dimension n nonnegative tensor. The graph associated to $\mathcal{A}, G(\mathcal{A})$, is the directed graph with vertices $1, \cdots, n$ and an edge from i to j if and only if $a_{i i_{2} \cdots i_{m}}>0$ for some $i_{l}=j, l=2, \cdots m$.

Definition 1.2. A tensor $\mathcal{A} \in \mathbb{C}^{[m, n]}$ is called weakly irreducible if $G(\mathcal{A})$ is strongly connected.
Subsequently, Yang and Yang [26] gave equivalent definition of weakly irreducible tensors as follows.
Definition 1.3. A tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{C}^{[m, n]}$ is called weakly reducible if there exists a nonempty proper index subset $I \subset\{1, \cdots, n\}$ such that

$$
a_{i_{1} \cdots i_{m}}=0, \forall i_{1} \in I, \exists i_{j} \notin I, j=2, \cdots, m .
$$

If \mathcal{A} is not weakly reducible, then we call \mathcal{A} weakly irreducible.
Obviously, if \mathcal{A} is irreducible, then \mathcal{A} is weakly irreducible, but not vice versa. And when the order of \mathcal{A} is $2, \mathcal{A}$ is irreducible if and only if \mathcal{A} is weakly irreducible [5].

In [3], Chang et al. generalized the Perron-Frobenius theorem from nonnegative irreducible matrices to nonnegative irreducible tensors.

Theorem 1.4. Let $\mathcal{A}=\left(a_{i_{1} i_{2} \ldots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be an irreducible nonnegative tensor, and the spectral radius $\rho(\mathcal{A})$ of \mathcal{A} is defined as

$$
\rho(\mathcal{A})=\max \{\mid \lambda \| \lambda \in \sigma(\mathcal{A})\}
$$

where $\sigma(\mathcal{A})$ is the spectrum of \mathcal{A}, that is, the set contains all eigenvalues of \mathcal{A}. Then $\rho(\mathcal{A})$ is an eigenvalue of \mathcal{A} with a positive eigenvector x corresponding to it.

Note that $\rho(\mathcal{A})$ and x are called the Perron root and the Perron vector of \mathcal{A}, respectively, and $(\rho(\mathcal{A}), x)$ is regarded as a Perron eigenpair. A perron vector can be used for co-ranking schemes [13,19] for objects and relations in multi-relational or tensor data, and higher-order Markov chains [4, 14, 15].

Hereafter, Friedland et al. generalized the result in Theorem 1.4 to weakly irreducible nonnegative tensors in [5].

Theorem 1.5. Let $\mathcal{A}=\left(a_{i_{1} i_{2} \ldots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a weakly irreducible nonnegative tensor. Then $\rho(\mathcal{A})>0$ is an eigenvalue \mathcal{A} with a positive eigenvector x corresponding to it.

Eigenvalue problems of higher-order tensors have become an important topic of study in a new applied mathematics branch, numerical multilinear algebra, and they have a wide range of practical applications [2, 18, 20-22]. By Theorem 1.5, it is known that the spectral radius of the weakly irreducible nonnegative tensor is also an eigenvalue. In recent years, much literature has focused on the bounds for the spectral radius of nonnegative tensors, and given various bounds to estimate the spectral radius, or algorithms to find the spectral radius, for more details, see [1, 7-12, 16, 18, 20, 24-26]. In [25], Yang and Yang extended the classical spectral radius bound for nonnegative matrices to nonnegative tensors and obtained the following result.

Lemma 1.6. [25] Let $\mathcal{A} \in \mathbb{R}^{[m, n]}$ be a nonnegative tensor, then

$$
\begin{equation*}
r \leq \rho(\mathcal{F}) \leq R \tag{1}
\end{equation*}
$$

where

$$
r_{i}(\mathcal{A})=\sum_{i_{2}, \cdots, i_{m}=1}^{n} a_{i i_{2} \cdots i_{m}}, \quad r=\min _{i} r_{i}(\mathcal{A}), \quad R=\max _{i} r_{i}(\mathcal{A}) .
$$

In the sequel, to obtain sharper bounds for the spectral radius of nonnegative tensors, Li and Ng [16] estimated the ratio of the smallest component and the largest component of a Perron vector and gave the following bound for the spectral radius of a nonnegative tensor and proved that it is better than the bound in (1).

Lemma 1.7. [16] Let $\mathcal{A} \in \mathbb{R}^{[m, n]}$ be a nonnegative tensor, then

$$
\begin{equation*}
v(\mathcal{A}) \leq \rho(\mathcal{A}) \leq \omega(\mathcal{A}) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& v(\mathcal{A})=\min _{i, j}\left\{a_{i j \cdots j}\left(\frac{1}{\tau(\mathcal{A})^{m-1}}-1\right)+r_{i}(\mathcal{A})\right\}, \\
& \omega(\mathcal{A})=\max _{i, j}\left\{r_{i}(\mathcal{A})-a_{i j \ldots j}\left(1-\tau(\mathcal{A})^{m-1}\right)\right\}, \\
& \tau(\mathcal{A})=\left(\frac{r-\beta_{0}(\mathcal{A})}{R-\beta_{0}(\mathcal{A})}\right)^{\frac{1}{2(m-1)}}, \\
& \beta_{0}(\mathcal{A})=\min _{i, j}\left\{a_{i j \cdots j}\right\} .
\end{aligned}
$$

Furthermore, $r \leq v(\mathcal{A}) \leq \omega(\mathcal{A}) \leq R$.
In addition, recently, authors in [8] presented a new lower bound and a new upper bound for the spectral radius of a nonnegative tensor by giving a new ratio of the smallest component and the largest component of a Perron vector. It is proved that this bound is better than the one in (2).

Lemma 1.8. [8] Let $\mathcal{A} \in \mathbb{R}^{[m, n]}$ be a weakly irreducible nonnegative tensor. Then

$$
\begin{equation*}
\mathcal{L}(\mathcal{A}) \leq \rho(\mathcal{A}) \leq \mathcal{U}(\mathcal{A}) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathcal{L}(\mathcal{A})=\min _{i, j}\left\{a_{i j \ldots j}\left[\frac{1}{\zeta(\mathcal{A})^{m-1}}-1\right]+r_{i}(\mathcal{A})\right\}, \\
& \mathcal{U}(\mathcal{A})=\max _{i, j}\left\{r_{i}(\mathcal{A})+\sum_{\left(i_{2}, \cdots, i_{m}\right) \in \cup_{k=1}^{m-1} \Delta(j ; k)} a_{i j \ldots j}\left(\zeta(\mathcal{A})^{m-1}-1\right)\right\}, \\
& \zeta(\mathcal{A})=\left\{\frac{\left.r-\beta_{0}(\mathcal{A})-\sum_{k=1}^{m-2}\left[\begin{array}{c}
m-1 \\
k
\end{array}\right)(n-1)^{k} \beta_{k}(\mathcal{A})\left(1-\left(\frac{r-\beta_{0}(\mathcal{F})}{R-\beta_{0}(\mathcal{A})}\right)^{\frac{m-k-1}{2(m-1)}}\right)\right]}{R-\beta_{0}(\mathcal{A})}\right\}^{\frac{1}{2(m-1)}}, \\
& \beta_{t}(\mathcal{A})=\min _{i, j}\left\{a_{i i_{2} \cdots i_{m}} \in \Delta(j ; m-t-1)\right\}, t=0,1, \cdots, m-2, \\
& \Delta(j ; u)=\bigcup_{\substack{S \subseteq\{2, \cdots, m\},|S|=u}}\left\{\left(i_{2}, \cdots, i_{m}\right): i_{v}=j, \forall v \in S, \text { and } i_{v} \neq j, \forall v \notin S\right\}, u=0,1, \cdots, m-1 .
\end{aligned}
$$

In the current work, we continue this research on estimates of the spectral radius for nonnegative tensors; inspired by the ideas of [27], we estimate a new ratio of the smallest component and the largest component of a Perron vector. Afterward, we present a new lower bound and a new upper bound for the spectral radius and compare this bound with some known bounds.

The remainder of the paper is organized as follows. In Section 2, we focus on the bound of the spectral radius and establish a new ratio of the smallest component and the largest component of a Perron vector. Based on the result, a new lower bound and a new upper bound for the spectral radius of a nonnegative tensor are obtained. In addition, we propose a comparison theorem for nonnegative tensors which indicates our bound improves some existing results. In Section 3, numerical example is reported to illustrate the effectiveness of the new bound. Finally, some conclusions are given to end this paper in Section 4.

2. A New Bound for the Spectral Radius of Nonnegative Tensors

In this section, we first establish a lemma to estimate the ratio of the smallest component and the largest component of a Perron vector. Then based on the result of the lemma, we investigate the bound for the spectral radius of nonnegative tensors and derive a tighter bound for that. This bound is proved to be superior to those in Lemma 1.6 and Lemma 1.7.

For convenience's sake, throughout this paper, we denote $N=\{0,1, \cdots, n, \cdots\},\langle p\rangle=\{1,2, \cdots, p\}$, where p is positive integer number; $i_{k}(s)=\left(i_{k_{1}}, i_{k_{2}}, \cdots, i_{k_{s}}\right)$ with $k_{1}<k_{2}<\cdots<k_{s} ; \Delta_{s}=\left\{t_{1}, t_{2}, \cdots, t_{s}\right\}, \nabla_{s}=$ $\left\{k_{1}, k_{2}, \cdots, k_{s}\right\}$ and

$$
\Lambda_{j}=\left\{\left(i_{t_{1}}, i_{t_{2}}, \cdots, i_{t_{s}}\right) \backslash(j, j, \cdots, j) \mid i_{t_{k}} \in\langle n\rangle, k \in\langle s\rangle\right\} .
$$

$i_{t_{s}}$ and Λ_{v} are same as above whenever they occurs.
Lemma 2.1. Let $\mathcal{A}=\left(a_{i_{1} i_{2} \ldots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a weakly irreducible nonnegative tensor with a Perron vector x, and let $x_{v}=\min _{i \in\langle n\rangle}\left\{x_{i}\right\}, x_{l}=\max _{i \in\langle n\rangle}\left\{x_{i}\right\}$ and s be a nonnegative integer. Then

$$
\begin{equation*}
\frac{x_{v}}{x_{l}} \leq \phi_{s}(\mathcal{A}) \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \phi_{s}(\mathcal{A})=\left\{\frac{r-\min _{i, j} a_{i j \cdots j}-k_{s}\left(1-\beta^{\frac{m-1-s}{2(m-1)}}\right)}{R-\min _{i, j} a_{i j \cdots j}}\right\}^{\frac{1}{2(m-1)}} \quad, \quad \beta=\frac{r-\min _{i, j} a_{i j \cdots j}}{R-\min _{i, j} a_{i j \cdots j}},
\end{aligned}
$$

Proof. Since $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ is a weakly irreducible nonnegative tensor, by Theorem 1.5 , we have $\mathcal{A} x^{m-1}=\rho(\mathcal{A}) x^{[m-1]}$ and a positive eigenvector $x=\left(x_{1}, x_{2}, \cdots, x_{m}\right)^{T}$. When $s=0$, our lemma reduces to Lemma 2.16 in [16]. Hence we only prove that Inequality (4) holds for $s \geq 1$. Let $r_{p}=R, r_{q}=r$, then for any $i \in\langle n\rangle$, we have

$$
\begin{align*}
\rho(\mathcal{A}) x_{i}^{m-1} & =\sum_{i_{2}, \cdots, i_{m} \in\langle n\rangle} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}} \\
& =a_{i l \ldots l} x_{l}^{m-1}+\sum_{\substack{\left(i_{2}, \cdots, i_{m}\right) \in\langle n\rangle, \delta_{l_{2}, \ldots m}, m_{m}=0}} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}} \\
& \geq a_{i l \ldots l} x_{l}^{m-1}+\sum_{\substack{\left(i_{2}, \cdots, i_{m}\right) \in\langle n\rangle, \delta_{l_{i}, \ldots, i_{m}=0}}} a_{i i_{2} \cdots i_{m}} x_{v}^{m-1} \\
& =a_{i l \cdots l}\left(x_{l}^{m-1}-x_{v}^{m-1}\right)+r_{i}(\mathcal{A}) x_{v}^{m-1} . \tag{5}
\end{align*}
$$

Taking $i=p$ in Inequality (5), we derive that

$$
\begin{equation*}
\rho(\mathcal{A}) x_{p}^{m-1} \geq a_{p l \ldots l}\left(x_{l}^{m-1}-x_{v}^{m-1}\right)+R x_{v}^{m-1} . \tag{6}
\end{equation*}
$$

Multiply Inequality (6) with $x_{p}^{-(m-1)}$ and note that $x_{l}=\max _{i \in\langle n\rangle}\left\{x_{i}\right\}$, then

$$
\begin{align*}
\rho(\mathcal{A}) & \geq a_{p l \ldots l} \frac{x_{l}^{m-1}-x_{v}^{m-1}}{x_{p}^{m-1}}+R\left(\frac{x_{v}}{x_{p}}\right)^{m-1} \\
& \geq a_{p l \ldots l}\left(1-\left(\frac{x_{v}}{x_{l}}\right)^{m-1}\right)+R\left(\frac{x_{v}}{x_{l}}\right)^{m-1} \\
& \geq \min _{i, j} a_{i j \ldots j}\left(1-\left(\frac{x_{v}}{x_{l}}\right)^{m-1}\right)+R\left(\frac{x_{v}}{x_{l}}\right)^{m-1} \\
& =\min _{i, j} a_{i j \ldots j}+\left(R-\min _{i, j} a_{i j \cdots j}\right)\left(\frac{x_{v}}{x_{l}}\right)^{m-1} . \tag{7}
\end{align*}
$$

On the other hand, for any $i \in\langle n\rangle$ and any $t_{1}, t_{2}, \cdots, t_{s}$ satisfying $2 \leq t_{1}<t_{2}<\cdots<t_{s} \leq m$,

$$
\begin{align*}
& \rho(\mathcal{A}) x_{i}^{m-1}=\sum_{i_{2}, \cdots, i_{m} \in\langle n\rangle} a_{i i_{2} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}} \\
& =\sum_{\left.i_{k}=1, k \in\langle m\rangle \backslash 11, \Delta_{s}\right\}}^{n} \sum_{i_{k}=1, k \in \Delta_{s}}^{n} a_{i i_{2} \cdots i_{1} \cdots i_{t_{2}} \cdots i_{s} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}} \\
& \leq a_{i v \cdots v} x_{v}^{m-1}+\sum_{\left(i_{1} i_{1}, \cdots i_{t_{s}}\right) \in \wedge_{v}} a_{i v \cdots v i_{t_{1}} v \cdots v i_{2} v \cdots v i_{t_{s}} v \cdots v} x_{v}^{m-1-s} x_{l}^{s} \\
& +\sum_{\substack{i_{k}=1, k \in\langle m\rangle \backslash\left\{1, \Delta_{s}\right\}, \\
\text { and at least one } i_{k} \neq v}}^{n} \sum_{i_{k}=1, k \in \Delta_{s}}^{n} a_{i i_{2} \cdots i_{1} \cdots i_{1} \cdots i_{s} \cdots i_{m}} x_{l}^{m-1} \\
& =a_{i v \cdots v} x_{v}^{m-1}+\sum_{\left(i_{t_{1}} i_{t_{2}} \cdots i_{s}\right) \in \wedge_{v}} a_{i v \cdots v i_{t_{1}} v \cdots v i_{t_{2}} v \cdots v i_{s} v \cdots v} x_{v}^{m-1-s} x_{l}^{s} \\
& +\left(r_{i}(\mathcal{A})-a_{i v \cdots v}-\sum_{\left(i_{1} i_{t_{2}} \cdots i_{s}\right) \in \Lambda_{v}} a_{i v \cdots v i_{i_{1}} v \cdots v i_{i_{2}} v \cdots v i_{t_{s}} v \cdots v}\right) x_{l}^{m-1} \\
& =r_{i}(\mathcal{A}) x_{l}^{m-1}+a_{i v \cdots v}\left(x_{v}^{m-1}-x_{l}^{m-1}\right) \\
& +x_{l}^{s} \sum_{\left(i_{1} i_{1}, \cdots i_{t_{s}}\right) \in \Lambda_{v}} a_{i v \cdots v i_{t_{1}} \cdots v i_{t_{2}} v \cdots v i_{t_{s}} v \cdots v}\left(x_{v}^{m-1-s}-x_{l}^{m-1-s}\right) . \tag{8}
\end{align*}
$$

Taking $i=q$ in the above inequality gives

$$
\begin{align*}
\rho(\mathcal{A}) x_{q}^{m-1} \leq & r x_{l}^{m-1}+a_{q v \cdots v}\left(x_{v}^{m-1}-x_{l}^{m-1}\right) \\
& +x_{l}^{s} \sum_{\left(i_{t_{1}} i_{2} \cdots i_{s}\right) \in \Lambda_{v}} a_{q v \cdots v i_{1} v \cdots v i_{t_{2}} v \cdots v i_{s} v \cdots v}\left(x_{v}^{m-1-s}-x_{l}^{m-1-s}\right) \\
\leq & r x_{l}^{m-1}+\min _{i_{i}, j} a_{i j \cdots j}\left(x_{v}^{m-1}-x_{l}^{m-1}\right)+k_{s}\left(x_{v}^{m-1-s} x_{l}^{s}-x_{l}^{m-1}\right) \\
= & \min _{i, j} a_{i j \cdots j} x_{v}^{m-1}+k_{s} x_{v}^{m-1-s} x_{l}^{s}+\left(r-\min _{i, j} a_{i j \cdots j}-k_{s}\right) x_{l}^{m-1}, \tag{9}
\end{align*}
$$

where

$$
k_{s}=\min _{2 \leq t_{1}<t_{2}<\cdots<t_{s} \leq m}\left(\min _{i, j} \sum_{\left(i_{t_{1}} i_{t_{2}}, \cdots, i_{t_{s}}\right) \in \wedge_{j}} a_{\left.i j \cdots j i_{t_{1}} j \cdots j i_{t_{2}} j \cdots j i_{s} j \cdots j\right) .}\right.
$$

Dividing by x_{q}^{m-1} on the both sides of (9) and $x_{v}=\min _{i \in\langle n\rangle}\left\{x_{i}\right\}$, we have

$$
\begin{equation*}
\rho(\mathcal{A}) \leq \min _{i, j} a_{i j \cdots j}+k_{s}\left(\frac{x_{l}}{x_{v}}\right)^{s}+\left(r-\min _{i, j} a_{i j \cdots j}-k_{s}\right)\left(\frac{x_{l}}{x_{v}}\right)^{m-1} . \tag{10}
\end{equation*}
$$

Combining Inequality (7) and Inequality (10), one derives

$$
\left(R-\min _{i, j} a_{i j \cdots j}\right)\left(\frac{x_{v}}{x_{l}}\right)^{m-1} \leq k_{s}\left(\frac{x_{l}}{x_{v}}\right)^{s}+\left(r-\min _{i, j} a_{i j \cdots j}-k_{s}\right)\left(\frac{x_{l}}{x_{v}}\right)^{m-1} .
$$

Multiplying by $\left(\frac{x_{v}}{x_{l}}\right)^{m-1}$ on the both sides of the above inequality yields

$$
\begin{equation*}
\left(R-\min _{i, j} a_{i j \cdots j}\right)\left(\frac{x_{v}}{x_{l}}\right)^{2(m-1)} \leq k_{s}\left(\frac{x_{v}}{x_{l}}\right)^{m-1-s}+\left(r-\min _{i, j} a_{i j \cdots j}-k_{s}\right), \tag{11}
\end{equation*}
$$

Note that it is not easy to get the bound of $\frac{x_{v}}{x_{l}}$ simply from (11). However, we can overcome this difficulty by using the fact that $0<\frac{x_{v}}{x_{l}} \leq 1$ for the right-hand side of (11). Hence, one get

$$
\left(R-\min _{i, j} a_{i j \ldots j}\right)\left(\frac{x_{v}}{x_{l}}\right)^{2(m-1)} \leq r-\min _{i, j} a_{i j \ldots j} .
$$

It follows from the above inequality that

$$
\frac{x_{v}}{x_{l}} \leq \beta^{\frac{1}{2(m-1)}}
$$

where

$$
\beta=\frac{r-\min _{i, j} a_{i j \cdots j}}{R-\min _{i, j} a_{i j \cdots j}}
$$

which together with Inequality (11) results in

$$
\begin{aligned}
\left(\frac{x_{v}}{x_{l}}\right)^{2(m-1)} & \leq \frac{k_{s} h^{\frac{m-1-s}{2(m-1)}}+\left(r-\min _{i, j} a_{i j \cdots j}-k_{s}\right)}{R-\min _{i, j} a_{i j \cdots j}} \\
& =\phi_{s}(\mathcal{A})^{2(m-1)}
\end{aligned}
$$

with

$$
\phi_{s}(\mathcal{A})=\left\{\frac{r-\min _{i, j} a_{i j \cdots j}-k_{s}\left(1-\beta^{\frac{m-s-1}{2(m-1)}}\right)}{R-\min _{i, j} a_{i j \cdots j}}\right\}^{\frac{1}{2(m-1)}}
$$

This completes the proof.
Next, we present a new bound for weakly irreducible nonnegative tensors based on Lemma 2.1.
Theorem 2.2. Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a weakly irreducible nonnegative tensor. Then

$$
\begin{equation*}
\mathcal{F}(\mathcal{A}) \leq \rho(\mathcal{A}) \leq \mathcal{H}(\mathcal{A}) \tag{12}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
\mathcal{F}(\mathcal{A}) & = & \max _{2 \leq t_{1}<t_{2}<\cdots<t_{m} \leq m}\left\{\operatorname { m i n } _ { i , j } \left\{r_{i}(\mathcal{A})+a_{i j \cdots j}\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1}}-1\right)\right.\right. \\
& \left.+\quad \sum_{\left(i_{t_{1}} i_{t_{2}}, \cdots, i_{s}\right) \in \wedge_{j}} a_{\left.\left.i j \cdots j i_{t_{1}} j \cdots j i_{t_{2}} j \cdots j i_{s} j \cdots j\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1-s}}-1\right)\right\}\right\}}\right)
\end{array}
$$

and

$$
\begin{array}{rlrl}
\mathcal{H}(\mathcal{A}) & = & \min _{2 \leq t_{1}<t_{2}<\cdots<t_{m} \leq m}\left\{\operatorname { m a x } _ { i , j } \left\{r_{i}(\mathcal{A})+a_{i j \cdots j}\left(\phi_{s}(\mathcal{A})^{m-1}-1\right)\right.\right. \\
& \left.\left.+\quad \sum_{\left(i_{t_{1}} i_{t_{2}}, \cdots, i_{t_{s}}\right) \in \wedge_{j}} a_{i j \cdots j i_{t_{1}} j \cdots j i_{t_{2}} j \cdots j i_{s} j \ldots j}\left(\phi_{s}(\mathcal{A})^{m-1-s}-1\right)\right\}\right\}
\end{array}
$$

Proof. Since \mathcal{A} is a weakly irreducible nonnegative tensor, there is a positive Perron vector $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$ such that $\mathcal{A} x^{m-1}=\rho(\mathcal{A}) x^{[m-1]}$. Suppose that $x_{v}=\min _{i \in\langle n\rangle}\left\{x_{i}\right\}$ and $x_{l}=\max _{i \in\langle n\rangle}\left\{x_{i}\right\}$, we have that for any $t_{1}, t_{2}, \cdots, t_{s}$ satisfying $2 \leq t_{1}<t_{2}<\cdots<t_{s} \leq m$ and each $i \in\langle n\rangle$,

$$
\begin{aligned}
& \rho(\mathcal{A}) x_{i}^{m-1}=\sum_{i_{k}=1, k \in\langle m\rangle \backslash\left\{1, \Delta_{s}\right\}}^{n} \sum_{i_{k}=1, k \in \Delta_{s}}^{n} a_{i i_{2} \cdots \cdots i_{1} \cdots i_{t_{2}} \cdots i_{t_{s}} \cdots i_{m}} x_{i_{2}} \cdots x_{i_{m}} \\
& \geq a_{i l \cdots l} x_{l}^{m-1}+\sum_{\left(i_{t_{1}} i_{t_{2}} \cdots i_{t_{s}}\right) \in \Lambda_{l}} a_{i l \cdots l i_{i_{1}} l \cdots l i_{t_{2}} l \cdots i_{i_{s}} l \ldots} x_{l}^{m-1-s} x_{v}^{s} \\
& +\sum_{\substack{i_{k}=1, k \in\langle m\rangle \backslash\left\{1, \Delta_{s}\right\},, \\
\text { and at least one } i_{k} \neq l}}^{n} \sum_{i_{k}=1, k \in \Delta_{s}}^{n} a_{i i_{2} \cdots i_{1} \cdots i_{2} \cdots i_{s} \cdots i_{s}} x_{v}^{m-1} \\
& =r_{i}(\mathcal{A}) x_{v}^{m-1}+a_{i l \cdots l}\left(x_{l}^{m-1}-x_{v}^{m-1}\right)+x_{v}^{s} \sum_{\left(i_{t_{1}} i_{t_{2}} \cdots i_{t_{s}}\right) \in \Lambda_{l}} a_{i \cdots \cdots l_{i_{1}} \cdots \cdots i_{t_{2}} \cdots \cdots i_{t_{s}} l \ldots l}\left(x_{l}^{m-1-s}-x_{v}^{m-1-s}\right) .
\end{aligned}
$$

Taking $i=v$ and multiplying by $x_{v}^{-(m-1)}$ on both sides of the above inequality give

$$
\rho(\mathcal{A}) \geq r_{v}(\mathcal{A})+a_{v l} \cdots l\left(\left(\frac{x_{l}}{x_{v}}\right)^{m-1}-1\right)+\sum_{\left(i_{t_{1}} i_{t_{2}} \cdots i_{t_{s}}\right) \in \Lambda_{l}} a_{v l \ldots l i_{t_{1}} l \ldots l i_{i_{2}} l \ldots l i_{i_{s}} l \ldots l}\left(\left(\frac{x_{l}}{x_{v}}\right)^{m-1-s}-1\right)
$$

Combining the above inequality with Lemma 2.1, we obtain

$$
\begin{aligned}
\rho(\mathcal{A}) & \geq r_{v}(\mathcal{A})+a_{v l \cdots l}\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1}}-1\right)+\sum_{\left(i_{t_{1}} i_{t_{2}} \cdots i_{t_{s}}\right) \in \wedge_{l}} a_{v l \ldots i_{i_{1}} l \cdots i i_{t_{2}} l \cdots i_{t_{s}} l \cdots l}\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1-s}}-1\right) \\
& \geq \min _{i, j}\left\{r_{i}(\mathcal{A})+a_{i j \cdots j}\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1}}-1\right)+\sum_{\left(i_{t_{1}} i_{t_{2}}, \cdots, i_{s}\right) \in \wedge_{j}} a_{i j \cdots j i_{1} j \cdots j i_{t_{2}} j \cdots j i_{s} j \cdots j}\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1-s}}-1\right)\right\} .
\end{aligned}
$$

Since this could be ture for any $t_{1}, t_{2}, \cdots, t_{s}$ satisfying $2 \leq t_{1}<t_{2}<\cdots<t_{s} \leq m$, we can obtain the first inequality of (12).

Next, we prove the right inequality of (12). From (8), we have

$$
\rho(\mathcal{A}) x_{i}^{m-1} \leq r_{i}(\mathcal{A}) x_{l}^{m-1}+a_{i v \cdots v}\left(x_{v}^{m-1}-x_{l}^{m-1}\right)+x_{l}^{s} \sum_{\left(i_{1} i_{t_{2}} \cdots i_{i_{s}}\right) \in \Lambda_{v}} a_{i v \cdots v i_{1} v \cdots v i_{t_{2}} v \cdots v i_{t_{s} v} v v}\left(x_{v}^{m-1-s}-x_{l}^{m-1-s}\right)
$$

Taking $i=l$ and multiplying by $x_{l}^{-(m-1)}$ on both sides of the above inequality, together with Lemma 2.1, lead to

$$
\begin{aligned}
\rho(\mathcal{A}) & \leq r_{l}(\mathcal{A})+a_{l v \cdots v}\left(\phi_{s}(\mathcal{A})^{m-1}-1\right)+\sum_{\left(i_{t_{1}} i_{t_{2}} \cdots i_{i_{s}}\right) \in \wedge_{v}} a_{l v \cdots v i_{t_{1}} v \cdots v i_{t_{2}} v \cdots v i_{t_{s}} v \cdots v}\left(\phi_{s}(\mathcal{A})^{m-1-s}-1\right) \\
& \leq \max _{i, j}\left\{r_{i}(\mathcal{A})+a_{i j \cdots j}\left(\phi_{s}(\mathcal{A})^{m-1}-1\right)+\sum_{\left(i_{i_{1}} i_{t_{2}}, \cdots, i_{s}\right) \in \wedge_{j}} a_{\left.i j \cdots j i_{t_{1}} j \cdots j i_{t_{2}} j \cdots j i_{s} j \cdots j\left(\phi_{s}(\mathcal{A})^{m-1-s}-1\right)\right\} .} .\right.
\end{aligned}
$$

Because of the arbitrariness of $t_{1}, t_{2}, \cdots, t_{s}$, we finally have

$$
\rho(\mathcal{A}) \leq \min _{2 \leq t_{1}<t_{2}<\cdots<t_{m} \leq m}\left\{\max _{i, j}\left\{r_{i}(\mathcal{A})+a_{i j \cdots j}\left(\phi_{s}(\mathcal{A})^{m-1}-1\right)+\sum_{\left(i_{1} i_{t_{2}}, \cdots, i_{s}\right) \in \wedge_{j}} a_{i j \cdots j i_{1} j \ldots j i_{2} j \ldots j i_{s} j \ldots j}\left(\phi_{s}(\mathcal{A})^{m-1-s}-1\right)\right\}\right\},
$$

The proof is completed.
Remark 2.3. As discussed in Remark 1 in [8], the bound in Theorem 2.2 still holds for general nonnegative tensors without the assumption that \mathcal{A} is a weakly irreducible nonnegative tensor.

Next, we compare the bound in Theorem 2.2 with those of Lemma 1.6 and Lemma 1.7, respectively.
Theorem 2.4. Let $\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{m}}\right) \in \mathbb{R}^{[m, n]}$ be a nonnegative tensor. Then

$$
r \leq v(\mathcal{A}) \leq \mathcal{F}(\mathcal{A}) \leq \mathcal{H}(\mathcal{A}) \leq \omega(\mathcal{A}) \leq R .
$$

Proof. From Lemma 1.7, we have $r \leq v(\mathcal{A}) \leq \omega(\mathcal{A}) \leq R$. So we only prove $v(\mathcal{A}) \leq \mathcal{F}(\mathcal{A})(\mathcal{H}(\mathcal{A}) \leq \omega(\mathcal{A})$ can be similarly proved). Recall that

$$
\tau(\mathcal{A})=\left(\frac{r-\beta_{0}(\mathcal{A})}{R-\beta_{0}(\mathcal{A})}\right)^{\frac{1}{2(m-1)}}
$$

and

$$
\phi_{s}(\mathcal{A})=\left\{\frac{r-\min _{i, j} a_{i j \cdots j}-k_{s}\left(1-\beta^{\frac{m-1-s}{2(m-1)}}\right)}{R-\min _{i, j} a_{i j \cdots j}}\right\}^{\frac{1}{2(m-1)}}
$$

Since $\beta=\frac{r-\min _{i, j} a_{i j \ldots j}}{R-\min _{i, j} a_{i, \ldots j}} \leq 1$ and $k_{s} \geq 0$, it holds that

$$
k_{s}\left(1-\beta^{\frac{m-1-s}{2(m-1)}}\right) \geq 0 .
$$

It follows from the above inequality that $\phi_{s}(\mathcal{A}) \leq \tau(\mathcal{A}) \leq 1$, consequently, for $\forall i, j \in\langle n\rangle$,

$$
a_{i j \cdots j}\left(\frac{1}{\tau(\mathcal{A})^{m-1}}-1\right)+r_{i}(\mathcal{A}) \leq r_{i}(\mathcal{A})+a_{i j \cdots j}\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1}}-1\right)
$$

one may deduce the following result

$$
\begin{aligned}
\min _{i, j}\left\{a_{i j \cdots j}\left(\frac{1}{\tau(\mathcal{A})^{m-1}}-1\right)+r_{i}(\mathcal{A})\right\} \leq & \min _{i, j}\left\{r_{i}(\mathcal{A})+a_{i j \cdots j}\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1}}-1\right)\right. \\
& \left.+\sum_{\left(i_{t_{1}} i_{t_{2}}, \cdots, i_{s}\right) \in \wedge_{j}} a_{i j \cdots j i_{1} j \cdots j i_{t_{2}} j \cdots j i_{s} j \cdots j}\left(\frac{1}{\phi_{s}(\mathcal{A})^{m-1-s}}-1\right)\right\} .
\end{aligned}
$$

It follows from the above inequality that $v(\mathcal{A}) \leq \mathcal{F}(\mathcal{A})$. With a strategy quite similar to the one utilized in the above proof, we can obtain $\mathcal{H}(\mathcal{F}) \leq \omega(\mathcal{F})$. Therefore, the conclusion follows from the above discussions.

3. Numerical Example

For the bound in Theorem 2.2, we have showed that our bound is better than those in Lemmas 1.6 and 1.7. Now we provide a simple example to show the efficiency of the new bound.

Example 3.1. Let $\mathcal{A}=\left(a_{i_{1} i_{2} i_{3} i_{4}}\right)$ ba an order 4 dimension 3 tensor with entries defined as follows:

$$
\begin{aligned}
& A(1,1,:,:)=\left(\begin{array}{lll}
0.9403 & 0.8011 & 0.7633 \\
0.0058 & 0.2330 & 0.8264 \\
0.6103 & 0.9325 & 0.5735
\end{array}\right), A(1,2,:,:)=\left(\begin{array}{lll}
0.7926 & 0.3124 & 0.2905 \\
0.3290 & 0.5845 & 0.4026 \\
0.2235 & 0.8299 & 0.8621
\end{array}\right), \\
& A(1,3,:,:)=\left(\begin{array}{lll}
0.6147 & 0.8272 & 0.4758 \\
0.9912 & 0.6759 & 0.3991 \\
0.2037 & 0.2489 & 0.5994
\end{array}\right), A(2,1,:,:)=\left(\begin{array}{lll}
0.8005 & 0.8411 & 0.5722 \\
0.1051 & 0.3545 & 0.7008 \\
0.8214 & 0.4301 & 0.7425
\end{array}\right), \\
& A(2,2,:,:)=\left(\begin{array}{lll}
0.7579 & 0.9563 & 0.2763 \\
0.3891 & 0.5730 & 0.6223 \\
0.4293 & 0.8497 & 0.5884
\end{array}\right), A(2,3,:,:)=\left(\begin{array}{lll}
0.9635 & 0.5216 & 0.8844 \\
0.0859 & 0.0902 & 0.4390 \\
0.5005 & 0.9047 & 0.7817
\end{array}\right), \\
& A(3,1,:,:)=\left(\begin{array}{lll}
0.1485 & 0.4457 & 0.3039 \\
0.6198 & 0.8440 & 0.4833 \\
0.2606 & 0.1962 & 0.3378
\end{array}\right), A(3,2,:,:)=\left(\begin{array}{ccc}
0.7985 & 2369 & 0.9737 \\
0.9875 & 0.7022 & 0.9723 \\
0.1590 & 0.3755 & 0.6437
\end{array}\right), \\
& A(3,3,:,:)=\left(\begin{array}{lll}
0.8601 & 0.9852 & 0.7203 \\
0.4019 & 0.5595 & 0.4840 \\
0.6319 & 0.9336 & 0.6390
\end{array}\right) .
\end{aligned}
$$

We compare the bound in Theorem 2.2 with those in Lemmas 1.6-1.8. By Lemma 1.6, we have

$$
15.3492 \leq \rho(\mathcal{A}) \leq 15.9820
$$

By Lemma 1.7, we get

$$
15.3612 \leq \rho(\mathcal{A}) \leq 15.9704
$$

By Lemma 1.8, we have

$$
15.3613 \leq \rho(\mathcal{A}) \leq 15.8850
$$

Now, by Theorem 2.2, we obtain

$$
15.3942 \leq \rho(\mathcal{A}) \leq 15.9361
$$

The example shows that the bound in Theorem 2.2 is tighter than those in Lemma 1.6 and Lemma 1.7, which consists with Theorem 2.4. Moreover, the example also illustrates that in some cases the lower bound of Theorem 2.2 is better than that of Lemma 1.8, but our upper bound is not good as the one of Lemma 1.8. Until now, it is hard to theoretically compare our result with Lemma 1.8, which will be studied in future.

4. Conclusions

In this paper, we present a new ratio of the smallest component and the largest component of a Perron vector, which is obtained in a different approach by Li et al. [8]. Then based on the new ratio, a new bound for the spectral radius of a nonnegative tensor is derived. It is proved that the new bound is tighter than those in Lemmas 1.6-1.7, but it is hard to theoretically compare our result with Lemma 1.8 so for, which will be studied in future. Finally, a numerical example is implemented to validate the effectiveness of the proposed bounds.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

The authors are also grateful to the referees for their valuable comments, corrections and suggestions which led to considerable improvements in presentation.

References

[1] H. R. Afshin and A. R. Shojaeifard, A max version of Perron-Frobenius theorem for nonnegative tensor, Ann. Funct. Anal. 6 (2015) 145-154.
[2] K. C. Chang and K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl. 350 (2009) 416-422.
[3] K. C. Chang and K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6 (2008) 507-520.
[4] K. C. Chang and T. Zhang, On the uniqueness and non-uniqueness of the positive \mathcal{Z}-eigenvector for transition probability tensor, J. Math. Anal. Appl. 408 (2013) 525-540.
[5] S. Friedland and S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, SIAM J. Matrix Anal. Appl. 438 (2013) 738-749.
[6] M. R. Kannan and N. S. Monderer and A. Berman, Some properties of strong \mathcal{H}-tensors and general \mathcal{H}-tensors, Linear Algebra Appl. 476 (2015) 42-55.
[7] T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl. 32 (2011) 1095-1124.
[8] S. H. Li and C. Q. Li and Y. T. Li, A new bound for the spectral radius of nonnegative tensors, J. Inequal. Appl. 88 (2017) 2017.
[9] C. Q. Li and Z. Chen and Y. T. Li, A new eigenvalue inclusion set for tensors and its applications, Linear Algebra Appl. 481 (2015) 36-53.
[10] C. Q. Li and Y. T. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl. 21 (2014) 39-50.
[11] C. Q. Li and Y. Q. Wang and J. Y. Yi and Y. T. Li, Bounds for the spectral radius of nonnegative tensors, J. Ind. Manag. Optim. 12 (2016) 975-990.
[12] C. Q. Li and J. J. Zhao and Y. T. Li, A new Brauer-type eigenvalue localization set for tensors, Linear Multilin. Algebra 64 (2016) 727-736.
[13] X. T. Li and M. K. Ng and Y. M. Ye, HAR: hub, authority and relevance scores in multi-relational data for query search, The SIAM international conference on data mining (2012).
[14] W. Li and L. B. Cui and M. K. Ng, The perturbation bound for the Perron vector of a transition probability tensor, Numer. Linear Algebra Appl. 20 (2013) 985-1000.
[15] W. Li and M. K. Ng, On the limiting probability distribution of a transition probability tensor, Linear Multilin. Algebra 62 (2014) 362-385.
[16] W. Li and M. K. Ng, Some bounds for the spectral radius of nonnegative tensors, Numer. Math. 130 (2015) 315-335.
[17] L. H. Lim, Singular values and eigenvalues of tensors: a variational approach, In CAMSAP'05: proceeding of the IEEE international workshop on computational advances in multisensor adaptive processing (2015) 129-132.
[18] Y. J. Liu and G. L. Zhou and N. F. Ibrahim, An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor, J. Comput. Appl. Math. 235 (2010) 286-292.
[19] M. K. Ng and X. T. Li and Y. M. Ye, MultiRank: co-ranking for objects and relations in multi-relational data, The 17th ACM SIGKDD conference on knowledge discovery and data mining (KDD-2011), Aug 21-24, San Diego, CA (2011).
[20] M. Ng and L. Q. Qi and G. L. Zhou, Finding the largest eigenvalue of a non-negative tensor, SIAM J. Matrix Anal. Appl. 31 (2009) 1090-1099.
[21] L. Q. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl. 439 (2013) 228-238.
[22] L. Q. Qi, Eigenvalues and invariants of tensor, J. Math. Anal. Appl. 325 (2007) 1363-1377.
[23] L. Q. Qi, Eigenvalues of a real supersymetric tensor, J. Symb. Comput. 40 (2005) 1302-1324.
[24] Z. Wang and W. Wu, Bounds for the greatest eigenvalue of positive tensor, J. Ind. Manag. Optim. 10 (2014) 1031-1039.
[25] Y. N. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl. 31 (2010) 2517-2530.
[26] Y. N. Yang and Q. Z. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl. 32 (2011) 1236-1250.
[27] R. J. Zhao and B. Zheng and M. L. Liang,On the estimates of the Z-eigenpair for an irreducible nonnegative tensor, J. Math. Anal. Appl. 450 (2017) 1157-1179.

[^0]: 2010 Mathematics Subject Classification. 15A18; 15A69; 65F25
 Keywords. nonnegative tensors, weakly irreducible, spectral radius, Perron eigenpair.
 Received: 31 August 2017; Accepted: 30 October 2017
 Communicated by Mohammad Sal Moslehian Corresponding author: Jingjing Cui
 This research was supported by the National Natural Science Foundation of China (No. 10802068).
 Email addresses: JingjingCui@mail.nwpu.edu.cn (Jingjing Cui), penggh@nwpu.edu.cn (Guohua Peng), 531229427@qq.com (Quan Lu), ZhenggeHuang@mail.nwpu. edu.cn (Zhengge Huang)

