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Abstract. In this paper, we consider a coupled Lamé system with a viscoelastic damping in the first
equation. We prove well-posedness by using Faedo-Galerkin method and establish an exponential decay
result by introducing a suitable Lyaponov functional.

1. Introduction

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω . Let us consider the following a coupled
Lamé system :

utt(x, t) + αv − ∆eu(x, t) +

∫ t

0
1(s)∆u(t − s)ds − µ1∆ut(x, t) = 0, in Ω × (0,+∞),

vtt(x, t) + αu − ∆ev(x, t) − µ2∆vt(x, t) = 0, in Ω × (0,+∞),
u(x, t) = v(x, t) = 0 on ∂Ω × (0,+∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω,
(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)) in Ω.

(1)

Where µ1, µ2 are positive constants and (u0,u1, v0, v1) are given history and initial data . Here ∆ denotes
the Laplacian operator and ∆e denotes the elasticity operator, which is the 3 × 3 matrix-valued differential
operator defined by

∆eu = µ∆u + (λ + µ)∇(div u), u = (u1,u2,u3)T

and µ and λ are the Lamé constants which satisfy the conditions

µ > 0, λ + µ ≥ 0. (2)

The problem of stabilization of coupled systems has also been studied by several authors see [1, 3, 6,
11, 17, 18]and the references therein.Under certain conditions imposed on the subset where the damping
term is effective, Komornik [11] proves uniform stabilization of the solutions of a pair of hyperbolic systems
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coupled in velocities. Alabau and al.[1] studied the indirect internal stabilization of weakly coupled systems
where the damping is effective in the whole domain. They prove that the behavior of the first equation is
sufficient to stabilize the total system and to have polynomial decay for sufficiently smooth solutions.
For coupled systems in thermoelasticity, R.Racke [18] considered the following system:{

utt(x, t) − auxx(x, t − τ) + bθx(x, t) = 0, in (0,L) × (0,∞),
θt(x, t) − dθxx(x, t) + butx(x, t) = 0, in (0,L) × (0,∞),

He proved that the internal time delay leads to ill-posedness of the system. However, the system without
delay is exponentially stable.

In [14] M.I.Mustafa considered the following system:

utt(x, t) − ∆u(x, t) +

∫ t

0
11(t − τ)∆u(τ)dτ + f1(u, v) = 0, in Ω × (0,+∞),

vtt(x, t) − ∆v(x, t) +

∫ t

0
12(t − τ)∆v(τ)dτ + f2(u, v) = 0, in Ω × (0,+∞),

u = v = 0 on ∂Ω × (0,+∞),
(u(., 0) = u0,ut(., 0) = u1, v(.0) = v0, vt(., 0) = v1 in Ω.

(3)

The author proved the well-posedness and, for a wider class of relaxation functions, establish a generalized
stability result for this system.

Recently, Beniani and al. [3]considered the following Lamé system with time varying delay term:

{
u′′(x, t) − ∆eu(x, t) + µ111(u′(x, t)) + µ212(u′(x, t − τ(t))) = 0 in Ω ×R+

u(x, t) = 0 on ∂Ω ×R+ (4)

and under suitable conditions, they proved general decay of energy.
The paper is organized as follows. The well-posedness of the problem is analyzed in Section 3 using

the Faedo-Galerkin method. In Section 4, we prove the exponential decay of the energy when time goes to
infinity.

2. Preliminaries and statement of main results

In this section, we present some materials that shall be used for proving our main results. For the
relaxation function 1, we have the folloing assumptions:

(A1) 1 : R+ → R+ is a C1 function satisfying

1 ∈ L1(0,∞) 1(0) > 0, 0 < β(t) := µ −

∫ t

0
1(s)ds and 0 < β0 := µ −

∫
∞

0
1(s)ds.

(A2) There exist a non-increasing differentiable function ξ(t) : R+ → R+ such that

1′(t) ≤ −ξ(t)1(t), ∀t ≥ 0 and
∫
∞

0
ξ(t)dt = +∞.

These hypotheses imply that

β0 ≤ β(t) ≤ µ. (5)

Let us introduce the following notations:

(1 ∗ h)(t) :=
∫ t

0
1(t − s)h(s)ds,

(1 ◦ h)(t) :=
∫ t

0
1(t − s)|h(t) − h(s)|2ds.
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Lemma 2.1 ([10]). For any 1, h ∈ C1(R), the following equation holds

2[1 ∗ h]h′ = 1′ ◦ h − 1(t)|h|2 −
d
dt

{
1 ◦ h −

( ∫ t

0
1(s)ds

)
|h|2

}
.

The existence and uniqueness result is stated as follows:

Theorem 2.2. Assume that (A1) and (A2) hold. Then given (u0, v0) ∈ H2(Ω)∩H1
0(Ω), (u1, v1) ∈ L2(Ω), there exists

a unique weak solution u, v of problem (1) such that

(u, v) ∈ C([0,+∞[,H2(Ω) ∩H1
0(Ω)) ∩ C1([0,+∞[,L2(Ω)).

For any regular solution of (1), we define the energy as

E(t) =
1
2

∫
Ω

u2
t (x, t)dx +

β(t)
2

∫
Ω

|∇u|2(x, t)dx +
1
2

∫
Ω

(1 ◦ ∇u)dx +
(µ + λ)

2

∫
Ω

|div u|2dx

+
1
2

∫
Ω

v2
t (x, t)dx +

µ

2

∫
Ω

|∇v|2(x, t)dx +
(µ + λ)

2

∫
Ω

|div v|2dx + 2α
∫

Ω

u(x, t)v(x, t)dx.
(6)

Our decay result reads as follows:

Theorem 2.3. Let (u, v) be the solution of (1). Assume that (A1) and (A2) hold. Then there exist two positive
constants C and d, such that

E(t) ≤ Ce−d
∫ t

0 ξ(s)ds, ∀t ≥ 0. (7)

3. Well-posedness of the problem

In this section, we will prove the existence and uniqueness of problem (1) by using Faedo-Galerkin
method.

Proof. We divide the proof of Theorem2.2into two steps:the Faedo-Galerkin approximation and the energy
estimates.

Step 1 :Faedo-Galerkin approximation.

We construct approximations of the solution (u, v) by the Faedo-Galerkin method as follows. For
n ≥ 1, let Wn = span {w1, .....,wi} be a Hilbertian basis of the space H1

0 and the projection of the initial
data on the finite dimensional subspace Wn is given by

un
0 =

n∑
i=1

aiwi, vn
0 =

n∑
i=1

biwi, un
1 =

n∑
i=1

ciwi, vn
1 =

n∑
i=1

diwi

where,(un
0 , v

n
0 ,u

n
1 , v

n
1)→ (u0, v0,u1, v1) strongly in H2(Ω)∩H1

0(Ω) as n→∞. We search the approximate
solutions

un(x, t) =

n∑
i=1

f n
i (t)wi(x), vn(x, t) =

n∑
i=1

hn
i (t)wi(x)

to the finite dimensional Cauchy problem:
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∫
Ω

un
ttwidx + α

∫
Ω

vnwidx + µ

∫
Ω

∇un
∇widx + (λ + µ)

∫
Ω

div un.div widx

−

∫
Ω

(1(s) ∗ ∇un)∇widx + µ1

∫
Ω

∇un
t∇widx = 0,∫

Ω

vn
ttwidx + α

∫
Ω

unwidx + µ

∫
Ω

∇vn
∇widx + (λ + µ)

∫
Ω

div vn.div widx + µ2

∫
Ω

∇vn
t∇widx = 0,

(un(0), vn(0)) = (un
0 , v

n
0) (un

t (0), vn
t (0)) = (un

1 , v
n
1).

(8)

According to the standard theory of ordinary differential equations, the finite dimensional problem
(8) has solution f n

i (t), hn
i (t) defined on [0, t).The a priori estimates that follow imply that in fact tn = T.

Step 2: Energy estimates. Multiplying the first and the second equation of (8) by
(

f n
i (t)

)′
and

(
hn

i (t)
)′

respec-
tively, we obtain:∫

Ω

un
ttu

n
t dx + α

∫
Ω

vnun
t dx + µ

∫
Ω

∇un
∇un

t dx + (λ + µ)
∫

Ω

div un.div un
t dx

−

∫
Ω

(1(s) ∗ ∇un)∇un
t dx + µ1

∫
Ω

|∇un
t |

2dx = 0.
(9)

and

∫
Ω

vn
ttv

n
t dx + α

∫
Ω

unvn
t dx + µ

∫
Ω

∇vn
∇vn

t dx + (λ + µ)
∫

Ω

div vn.div vn
t dx

+µ2

∫
Ω

|∇vn
t |

2dx = 0.
(10)

Integrating (9) and (10) over (0, t),and using Lemma (2.1), we obtain

En(t) + µ1

∫ t

0

∫
Ω

|∇un
t |

2dxds −
1
2

∫
Ω

(1′ ◦ ∇un)dx +
1
2

∫ t

0

∫
Ω

1(t)|∇un
|
2dxds + µ2

∫ t

0

∫
Ω

|∇vn
t |

2dxds

= En(0)
(11)

where

En(t) =
1
2

∫
Ω

(un
t )2(x, t)dx +

β(t)
2

∫
Ω

|∇un
|
2(x, t)dx +

1
2

∫
Ω

(1 ◦ ∇un)dx +
(µ + λ)

2

∫
Ω

|div un
|
2dx

+
1
2

∫
Ω

(vn
t )2(x, t)dx +

µ

2

∫
Ω

|∇vn
|
2(x, t)dx +

(µ + λ)
2

∫
Ω

|div vn
|
2dx + 2α

∫
Ω

un(x, t)vn(x, t)dx.
(12)

Consequently, from11, we have the following estimate:

En(t) −
1
2

∫
Ω

(1′ ◦ ∇un)dx +
1
2

∫ t

0

∫
Ω

1(t)|∇un
|
2dxds ≤ En(0). (13)

Now, since the sequences
(
un

0

)
n∈N

,
(
un

1

)
n∈N

,
(
vn

0

)
n∈N

,
(
vn

1

)
n∈N

converge and using (A2), in the both
cases we can find a positive constant c independent of n such that

En(t) ≤ c. (14)
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Therefore, using the fact that β(t) ≥ β(0), the estimate 14 together with 13 give us, for all n ∈N,tn = T,
we deduce(

un
)

n∈N
is bounded in L∞(0,T; H1

0(Ω)),(
vn

)
n∈N

is bounded in L∞(0,T; H1
0(Ω)),(

un
t

)
n∈N

is bounded in L∞(0,T; H1
0(Ω)),(

vn
t

)
n∈N

is bounded in L∞(0,T; H1
0(Ω)).

(15)

Consequently, we conclude that

un ⇀ u weakly star in L∞(0,T; H1
0(Ω)),

vn ⇀ v weakly star in L∞(0,T; H1
0(Ω)),

un
t ⇀ ut weakly star in L∞(0,T; H1

0(Ω)),
vn

t ⇀ vt weakly star in L∞(0,T; H1
0(Ω)).

(16)

From 15, we have
(
un

)
n∈N

and
(
vn

)
n∈N

are bounded in L∞(0,T; H1
0(Ω)).Then

(
un

)
n∈N

and
(
vn

)
n∈N

are bounded in L2(0,T; H1
0(Ω)). Consequently,

(
un

)
n∈N

and
(
vn

)
n∈N

are bounded in H1(0,T; H1(Ω)).
Since the embedding

H1(0,T; H1(Ω)) ↪→ L2(0,T; L2(Ω))

is compact,using AubinLion’s theorem [12] ,we can extract subsequences
(
uk

)
k∈N

of
(
un

)
n∈N

and
(
vk

)
k∈N

of
(
vn

)
n∈N

such that

uk
→ u strongly in L2(0,T; L2(Ω))

and
vk
→ v strongly in L2(0,T; L2(Ω))

Therefore,

uk
→ u strongly and a.e (0,T) × (Ω)

and
vk
→ v strongly and a.e (0,T) × (Ω)

The proof now can be completed arguing as in Theorem 3.1 of [12]

4. Exponential stability

In this section we study the asymptotic behavior of the system (1). For the proof of Theorem 2.3 we use
the following lemmas.

Lemma 4.1. Let (u, v) be the solution of (1), Then we have the inequality

dE(t)
dt
≤ −µ1

∫
Ω

|∇ut(x, t)|2 dx − µ2

∫
Ω

|∇vt(x, t)|2 dx −
1
2
1(t)

∫
Ω

|∇u(x, t)|2 dx

+
1
2

∫
Ω

(1′ ◦ ∇u)dx
(17)
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Proof. From (6) we have

1
2

d
dt

∫
Ω

(
u2

t + (λ + µ)|div u|2 + v2
t + µ|∇v|2 + (λ + µ)|div v|2 + 2αvu

)
dx

= −µ

∫
Ω

∇u∇utdx − µ1

∫
Ω

|∇ut|
2dx − µ2

∫
Ω

|∇vt|
2dx +

∫
Ω

∫ t

0
1(s)∇u(s)∇ut(t)dsdx

(18)

From Lemma 2.1, the last term in the right-hand side of 18 can be rewritten as

∫ t

0
1(s)

∫
Ω

∇u(s)∇ut(t)dsdx +
1
2
1(t)

∫
Ω

|∇u|2(x, t)dx

=
1
2

d
dt

{ ∫ t

0
1(s)

∫
Ω

|∇u|2(x, t)dxds −
∫

Ω

(1 ◦ ∇u)(t)dx
}

+
1
2

∫
Ω

(1′ ◦ ∇u)(t)dx
(19)

So
dE
dt

becomes:

dE
dt

= −µ1

∫
Ω

|∇ut|
2dx − µ2

∫
Ω

|∇vt|
2dx −

1
2
1(t)

∫
Ω

|∇u|2(x, t)dx

+
1
2

∫
Ω

(1′ ◦ ∇u)(t)dx

≤ 0.

(20)

we show that (17) holds. The proof is complete.

Now, we define the functional D(t) as follows

D(t) =

∫
Ω

uutdx +

∫
Ω

vvtdx +
µ1

2

∫
Ω

|∇u|2dx +
µ2

2

∫
Ω

|∇v|2dx. (21)

Then, we have the following estimate.

Lemma 4.2. The functional D(t) satisfies

D ′(t) ≤ C
∫

Ω

|∇ut|
2dx + C

∫
Ω

|∇vt|
2dx +

(
δ + |α|C − β(t)

) ∫
Ω

|∇u|2dx − (λ + µ)
∫

Ω

|div u|2dx

+
(
|α|C − µ

) ∫
Ω

|∇v|2dx − (λ + µ)
∫

Ω

|div v|2dx +
µ − β(t)

4δ

∫
Ω

(1 ◦ ∇u)(t)dx
(22)

Proof. Taking the derivative of D(t) with respect to t and using (1), we find that:

D ′(t) =

∫
Ω

u2
t dx +

∫
Ω

uuttdx +

∫
Ω

v2
t dx +

∫
Ω

vvttdx + µ1

∫
Ω

∇ut∇udx + µ2

∫
Ω

∇vt∇vdx

=

∫
Ω

u2
t dx +

∫
Ω

v2
t dx − β(t)

∫
Ω

|∇u|2(x, t)dx +

∫
Ω

∫ t

0
1(s)(∇u(s) − ∇u(t))∇u(t)dsdx

−µ

∫
Ω

|∇v|2dx − (λ + µ)
∫

Ω

|div u|2dx −
∫

Ω

(λ + µ)|div v|2dx − 2α
∫

Ω

uv dx (23)

Using the fact that∫
Ω

∫ t

0
1(s)|∇u(s) − ∇u(t)|∇u(t)dsdx ≤ δ

∫
Ω

|∇u|2(x, t)dx +
1
4δ

∫
Ω

( ∫ t

0
1(s)|∇u(s) − ∇u(t)|ds

)2
dx

≤ δ

∫
Ω

|∇u|2(x, t)dx +
µ − β(t)

4δ

∫
Ω

(1 ◦ ∇u)(t)dx.
(24)
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Inserting the estimate (24) into (23) and using Young’s, Poincar’s inequalities lead to the desired estimate.
The proof is complete.

Proof. [Proof of Theorem 2.3] We define the Lyapunov functional

L (t) = NE(t) + εD(t), (25)

where N and ε are positive constants that will be fixed later.
Taking the derivative of (25) with respect to t and making use of (17), (22), we obtain

d
dt

L (t) ≤ −
{
Nµ1 − εC

} ∫
Ω

|∇ut(x, t)|2dx −
{
Nµ2 − εC

} ∫
Ω

|∇vt(x, t)|2dx

−

(
β(t) − δ − |α|C

)
ε

∫
Ω

|∇u|2dx −
(
µ − |α|C

)
ε

∫
Ω

|∇v|2dx

− (λ + µ)ε
∫

Ω

|div u|2dx − (λ + µ)ε
∫

Ω

|div v|2dx

+
N
2

∫
Ω

(1′ ◦ ∇u)(t)dx +
(µ − β(t))ε

4δ

∫
Ω

(1 ◦ ∇u)(t)dx

−
N
2
1(t)

∫
Ω

|∇u|2(x, t)dx.

(26)

At this point, we choose our constants in (26), carefully, such that all the coefficients in (26) will be negative.
It suffices to choose ε so small and N large enough such that

Nµ1 − εC > 0,

and
Nµ2 − εC > 0,

Further, we choose α small enough such that

β(t) − δ − |α|C > 0,

and
µ − |α|C > 0.

Consequently, from the above, we deduce that there exist there exists two positive constants η1 and
η2such that (26) becomes

dL (t)
dt

≤ −η1E(t) + η2

∫
Ω

(1 ◦ ∇u)dx (27)

By multiplying (29) by ξ(t), we arrive at

ξ(t)L ′(t) ≤ −η1ξ(t)E(t) + η2ξ(t)
∫

Ω

(1 ◦ ∇u)dx (28)

Recalling (A2) and using (17),we get

ξ(t)L ′(t) ≤ −η1ξ(t)E(t) − η2

∫
Ω

(1′ ◦ ∇u)dx

≤ −η1ξ(t)E(t) − 2η2E′(t)
(29)
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That is (
ξ(t)L (t) + 2η2E(t)

)′
− ξ′(t)L ≤ −η1ξ(t)E(t)

Using the fact that ξ′(t) ≤ 0, ∀t ≥ 0 and letting

F (t) = ξ(t)L (t) + 2η2E(t) ∼ E(t) (30)

we obtain

F ′(t) ≤ −η1ξ(t)E(t) ≤ −η3ξ(t)F (t) (31)

A simple integration of (31) over (0, t) leads to

F (t) ≤ F (0)e−η3
∫ t

0 ξ(s)ds, ∀t ≥ 0 (32)

A combination of (30) and (32) leads to (7). Then, the proof is complete.
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external force, Electron. J. Dif. Equa 01 (2013) 1–17.

[6] A. Benaissa, S. Mokeddem, Global existence and energy decay of solutions to the Cauchy problem for a wave equation with a
weakly nonlinear dissipation, Abstr. Appl. Anal 11 (2004) 935–955.

[7] M. Kafini, uniforme decay of solutions to Cauchy viscoelastic problems with density, Elec. J. Diff. Equ 93 (2011) 1–9.
[8] M. Kafini, S. A. Messaoudi and Nasser-eddine Tatar, Decay rate of solutions for a Cauchy viscoelastic evolution equation,

Indagationes Mathematicae 22 (2011) 103–115.
[9] M.Kirane, and B.Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Zeitschrift fr

Angewandte Mathematik und Physik (ZAMP) 62.6 (2011) 1065–1082.
[10] M. M. Cavalcanti, H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J.Control Optim

42 (2003) 1310–1324.
[11] V. Komornik and B. Rao, Boundary stabilization of compactly coupled wave equations, Asymptotic Analysis, 14 (1997) 339-359.
[12] J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris 1969.
[13] S. A.Messaoudi, A.Fareh and N. Doudi, Well posedness and exponential stability in a wave equation with a strong damping and

a strong delay, Journal of Mathematical Physics, 57 (2016) 111501.
[14] M.I.Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations, Nonlinear Analysis

13 (2011) 452–463.
[15] P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optimal. Calc. Var 4 (1999)

419–444.
[16] Papadopulos, P.G. Stavrakakies, Global existence and blow-up results for an equations of Kirchhoff type on Rn, Methods in

Nolinear Analysis 17 (2001) 91–109.
[17] S.E. REBIAI , F.Z.S Ali, Exponential Stability of Compactly Coupled Wave Equations with Delay Terms in the Boundary Feedbacks,

IFIP Conference on System Modeling and Optimization. Springer Berlin Heidelberg (2013) 278–284.
[18] R.Racke,Instability of coupled systems with delay,Commun. Pure Appl. Anal 11 (2012) 1753-1773.
[19] D.WANG, G.LI, et B.ZHU, Well-posedness and general decay of solution for a transmission problem with viscoelastic term and

delay, J. Nonlinear Sci. Appl 9 (2016). 1202–1215.


