On the Graph of Modules Over Commutative Rings II

Habibollah Ansari-Toroghya, Shokoufehabibib, Masoomeh Hezarjaribib

aDepartment of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141 Rasht, Iran.
bDepartment of Mathematics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran.

Abstract. Let M be a module over a commutative ring R. In this paper, we continue our study about the quasi-Zariski topology-graph $G(\tau^*_T)$ which was introduced in [On the graph of modules over commutative rings, Rocky Mountain J. Math. 46(3) (2016), 1–19]. For a non-empty subset T of $\text{Spec}(M)$, we obtain useful characterizations for those modules M for which $G(\tau^*_T)$ is a bipartite graph. Also, we prove that if $G(\tau^*_T)$ is a tree, then $G(\tau^*_T)$ is a star graph. Moreover, we study coloring of quasi-Zariski topology-graphs and investigate the interplay between $\chi(G(\tau^*_T))$ and $\omega(G(\tau^*_T))$.

1. Introduction

Throughout this paper R is a commutative ring with a non-zero identity and M is a unital R-module.

By $N \leq M$ (resp. $N < M$) we mean that N is a submodule (resp. proper submodule) of M.

Define $(N:R)M$ or simply $(N:M) = \{r \in R \mid rM \subseteq N\}$ for any $N \leq M$. We denote $((0):M)$ by $AnnR(M)$ or simply $Ann(M)$. M is said to be faithful if $Ann(M) = (0)$.

Let $N, K \leq M$. Then the product of N and K, denoted by NK, is defined by $(N:M)(K:M)M$ (see [3]).

A prime submodule of M is a submodule $P \neq M$ such that whenever $re \in P$ for some $r \in R$ and $e \in M$, we have $r \in P (P : M)$ or $e \in P ^1$[13].

The prime spectrum of M is the set of all prime submodules of M and denoted by $\text{Spec}(M)$.

There are many papers on assigning graphs to rings or modules (see, for example, [1, 4–7, 9, 16]). In [5], the present authors introduced and studied the graph $G(\tau^*_T)$ (resp. $AG(M)$, called the quasi-Zariski topology-graph (resp. the annihilating-submodule graph), where T is a non-empty subset of $\text{Spec}(M)$.

$AG(M)$ is an undirected graph with vertices $V(AG(M)) = \{N \leq M\}$ there exists $(0) \neq K < M$ with $NK = (0)$.

In this graph, distinct vertices $N, L \in V(AG(M))$ are adjacent if and only if $NL = (0)$. Let $AG(M)^*$ be the subgraph of $AG(M)$ with vertices $V(AG(M)^*) = \{N < M\}$ there exists a submodule $K < M$ with $(K : M) \neq Ann(M)$ and $NK = (0)$]. By [4, Theorem 3.4], one conclude that $AG(M)^*$ is a connected subgraph.

$G(\tau^*_T)$ is an undirected graph with vertices $V(G(\tau^*_T)) = \{N < M\}$ there exists $K < M$ such that $V^*(N) \cup V^*(K) = T$ and $V^*(N), V^*(K) \neq T$ and distinct vertices N and L are adjacent if and only if $V^*(N) \cup V^*(L) = T$ (see [5, Definition 2.1]).

2010 Mathematics Subject Classification. Primary 13C13; Secondary 13C99

Keywords. prime submodule, top module, quasi-Zariski topology, graph, vertices, annihilating-submodule

Received: 03 October 2017; Accepted: 30 April 2018

Communicated by Dijana Mosić

Email addresses: ansari@guilan.ac.ir (Habibollah Ansari-Toroghy), habibishk@gmail.com (Shokoufehabibi), masoomeh.hezarjaribi@pnu.ac.ir (Masoomeh Hezarjaribi)
For any submodule N of M, $V^*(N)$ is the set of all prime submodules of M containing N. Of course, $V^*(M)$ is the empty set and $V^*(0)$ is the set of all prime submodules of M. Note that for any family of submodules N_i ($i \in I$) of M, $\cap V^*(N_i) = V^*(\langle \cup_i N_i \rangle)$. Thus if $Z^*(M)$ denotes the collection of all subsets $V^*(N)$ of Spec(M), then $Z^*(M)$ contains the empty set and Spec(M), and $Z^*(M)$ is closed under arbitrary intersections. If $Z^*(M)$ is closed under finite unions, i.e. for any submodules N and K of M, there exists a submodule L of M such that $V^*(N) \cup V^*(K) = V^*(L)$, for in this case $Z^*(M)$ satisfies the axioms for the closed subsets of a topological space and M is called a top module for short. The quasi-Zariski topology on $X = \text{Spec}(M)$ is the topology τ^*_M described by taking the set $Z^*(M) = \{V^*(N)| N$ is a submodule of $M\}$ as the set of closed sets of Spec(M), where $V^*(N) = \{P \in X| P \supseteq N\}$ [15].

If Spec$(M) \neq \emptyset$, the mapping $\psi : \text{Spec}(M) \rightarrow \text{Spec}(R/\text{Ann}(M))$ such that $\psi(P) = (P : M)/\text{Ann}(M)$ for every $P \in \text{Spec}(M)$, is called the natural map of Spec(M) [14].

A topological space X is irreducible if for any decomposition $X = X_1 \cup X_2$ with closed subsets X_i of X with $i = 1, 2$, we have $X = X_1$ or $X = X_2$.

The prime radical \sqrt{N} is defined to be the intersection of all prime submodules of M containing N, and in case N is not contained in any prime submodule, \sqrt{N} is defined to be M [13].

We recall that $N < M$ is said to be a semiprime submodule of M if for every ideal I of R and every submodule K of M with $IK \subseteq N$ implies that $IK \subseteq N$. Further M is called a semiprime module if $(0) \subseteq M$ is a semiprime submodule. Every intersection of prime submodules is a semiprime submodule (see [17]).

The notations Nil(R), Min(M), and Min(T) will denote the set of all nilpotent elements of R and the set of all minimal prime submodules of M and the set of minimal members of T, respectively.

A clique of a graph is a complete subgraph and the supremum of the sizes of cliques in G is called the clique number of G. In this article, we continue our studying about $\text{AG}(\tau^*_G)$ and $\text{AG}(M)$ and we try to relate the combinatorial properties of the above mentioned graphs to the algebraic properties of M.

In section 2 of this paper, we state some properties related to the quasi-Zariski topology-graph that are basic or needed in the later sections. In section 3, we study the bipartite quasi-Zariski topology-graphs of modules over commutative rings (see Proposition 3.1). Also, we prove that if $G(\tau^*_G)$ is a tree, then $G(\tau^*_G)$ is a star graph (see Theorem 3.5). In section 4, we study coloring of the quasi-Zariski topology-graph of modules and investigate the interplay between $\chi(G(\tau^*_G))$ and $\omega(G(\tau^*_G))$. We show that under condition over minimal submodules of $M/\bigcup_{\mathfrak{p} \in P} \mathfrak{p}$, we have $\omega(G(\tau^*_G)) = \chi(G(\tau^*_G))$ (see Theorem 4.1). Moreover, we investigate some relations between the existence of cycles in the quasi-Zariski topology-graph of a cyclic module and the number of its minimal members of T (see Proposition 4.9).

Let us introduce some graphical notions and denotations that are used in what follows: A graph G is an ordered triple $(V(G), E(G), \psi_G)$ consisting of a nonempty set of vertices, $V(G)$, a set $E(G)$ of edges, and an incident function ψ_G that associates an unordered pair of distinct vertices with each edge. The edge e joins x and y if $\psi_G(e) = \{x, y\}$, and we say x and y are adjacent. A path in graph G is a finite sequence of vertices $\{x_0, x_1, \ldots, x_n\}$, where x_{i-1} and x_i are adjacent for each $1 \leq i \leq n$ and we denote $x_{i-1} - x_i$ for existing an edge between x_{i-1} and x_i.

A graph H is a subgraph of G, if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and ψ_H is the restriction of ψ_G to $E(H)$. A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is, U and V are each independent sets and complete bipartite graph on n and m vertices, denoted by $K_{n,m}$, where V and U are of size n and m, respectively, and $E(G)$ connects every vertex in V with all vertices in U. Note that a graph $K_{1,m}$ is called a star graph and the vertex in the singleton partition is called the center of the graph. For some $U \subseteq V(G)$, we denote by $N(U)$, the set of all vertices of $G \setminus U$ adjacent to at least one vertex of U. For every vertex $v \in V(G)$, the size of $N(v)$ is denoted by $\text{deg}(v)$. If all the vertices of G have the same degree k, then G is called k-regular, or simply regular. We denote by C_n a cycle of order n. Let G and G' be two graphs. A graph homomorphism from G to G' is a mapping $\phi : V(G) \rightarrow V(G')$ such that for every edge $[u,v]$ of G, $[\phi(u), \phi(v)]$ is an edge of G'. A retract of G is a subgraph H of G such that there exists a homomorphism $\phi : G \longrightarrow H$ such that $\phi(x) = x$, for every
vertex x of H. The homomorphism φ is called the retract (graph) homomorphism (see [10]).

Throughout the rest of this paper, we denote: T is a non-empty subset of Spec(M), Q := ∩_P∈T P, ̄M := M/ Q, ̄N := N/ Q, m := m + Q, and I := I/(Q : M), where N is a submodule of M containing Q, m ∈ M, and I is an ideal of R containing (Q : M).

2. Auxiliary results

In this section, we provide some properties related to the quasi-Zariski topology-graph that are basic or needed in the sequel. Throughout this paper M is a top module and by [15, Theorem 3.5], every multiplication module is a top module.

Remark 2.1. By [15, Lemma 2.1], if M is a top module, then for every pair of submodules N and L of M, we have V*(N) ∪ V*(L) = V*(̄N) ∪ V*(̄L) = V*(̄N ∩ ̄L). By [5, Proposition 2.3], we have T is a closed subset of Spec(M) if and only if T = V*(∩_P∈T P) and G(τ^*_T) ≠ ∅ if and only if T = V*(∩_P∈T P) and T is not irreducible. So if N and K are adjacent in G(τ^*_T), then ̄N ∩ ̄K = ∩_P∈T P. Therefore ∩_P∈T P ⊆ ̄N, ̄K.

Lemma 2.2. (See [2, Proposition 7.6].) Let R_1, R_2, . . . , R_n be non-zero ideals of R. Then the following statements are equivalent:

(a) R = R_1 ⊕ . . . ⊕ R_n;
(b) As an abelian group R is the direct sum of R_1, . . . , R_n;
(c) There exist pairwise orthogonal idempotents e_1, . . . , e_n with 1 = e_1 + . . . + e_n, and R_i = Re_i, i = 1, . . . , n.

Proposition 2.3. Suppose that e is an idempotent element of R. We have the following statements.

(a) R = R_1 ⊕ R_2, where R_1 = eR and R_2 = (1 − e)R.
(b) M = M_1 ⊕ M_2, where M_1 = eM and M_2 = (1 − e)M.
(c) For every submodule N of M, N = N_1 ⊕ N_2 such that N_1 is an R_1-submodule M_1, N_2 is an R_2-submodule M_2, and (N ∩_R M) = (N_1 ∩_R M_1) ⊕ (N_2 ∩_R M_2).
(d) For submodules N and K of M, NK = N_1K_1 ⊕ N_2K_2, N ∩ K = N_1 ∩ K_1 ⊕ N_2 ∩ K_2 such that N = N_1 ⊕ N_2 and K = K_1 ⊕ K_2.
(e) Prime submodules of M are P ⊕ M_2 and M_1 ⊕ Q, where P and Q are prime submodules of M_1 and M_2, respectively.
(f) For submodule N of M, we have ̄N = ̄N_1 ⊕ ̄N_2 = ̄N_1 ⊕ ̄N_2, where N = N_1 ⊕ N_2.

Proof. This is clear. □

An ideal I < R is said to be nil if I consist of nilpotent elements.

Lemma 2.4. (See [12, Theorem 21.28].) Let I be a nil ideal in R and u ∈ R be such that u + I is an idempotent in R/I. Then there exists an idempotent e in uR such that e − u ∈ I.

Lemma 2.5. (See [6, Lemma 2.4].) Let N be a minimal submodule of M and let Ann(M) be a nil ideal. Then we have N^2 = (0) or N = eM for some idempotent e ∈ R.

Lemma 2.6. Assume that T is a closed subset of Spec(M) and ̄M is a multiplication module. Then AG(̄M) is isomorphic with a (an induced) subgraph of G(τ^*_T).
Proof. Let $\bar{N} \in V(\text{Spec}(\bar{M}))$. Then there exists a nonzero submodule \bar{K} of \bar{M} such that it is adjacent to \bar{N}. So we have $NK \subseteq Q$. Hence $V^\ast(NK) = T$. If $V^\ast(N) = T$, then $N = Q$, a contradiction. Hence \bar{N} is a vertex in $G(\tau^\ast_T)$ which is adjacent to K. □

Lemma 2.7. If \bar{M} is a faithful multiplication module, then $G(\tau^\ast_{\text{Spec}(\bar{M})})$ and $AG(M)$ are the same.

Proof. \bar{M} is a faithful module so that $T = \text{Spec}(M)$. If $G(\tau^\ast_{\text{Spec}(\bar{M})}) \neq \emptyset$, then there exist non-trivial submodules N and K of M which is adjacent in $G(\tau^\ast_{\text{Spec}(\bar{M})})$. Hence $V^\ast(NK) = \text{Spec}(M)$ which implies that $NK = (0)$ so that $AG(M) \neq \emptyset$. By Lemma 2.6, $AG(M)$ is isomorphic with a subgraph of $G(\tau^\ast_{\text{Spec}(\bar{M})})$. One can see that the vertex map $\phi : V(G(\tau^\ast_{\text{Spec}(\bar{M})})) \longrightarrow V(AG(M))$, defined by $N \longrightarrow N$ is an isomorphism. □

Recall that $\Delta(G(\tau^\ast_T))$ is the maximum degree of $G(\tau^\ast_T)$ and the length of an R-module M, is denoted by $l_R(M)$.

Lemma 2.8. Let every nontrivial submodule of M be a vertex in $G(\tau^\ast_T)$. If $\Delta(G(\tau^\ast_T)) < \infty$, then $l_R(M) \leq \Delta(G(\tau^\ast_T)) + 1$. Also, every non-trivial submodule of M has finitely many submodules.

Proof. Straightforward. □

Theorem 2.9. Let \bar{M} be a multiplication module and $G(\tau^\ast_T) \neq \emptyset$. Then M has acc (resp. dcc) on vertices of $G(\tau^\ast_T)$ if and only if \bar{M} is a Noetherian (resp. an Artinian) module.

Proof. Suppose that $G(\tau^\ast_T)$ has acc (resp. dcc) on vertices. By [5, Proposition 2.3 (iii)], \bar{M} is not a prime module and hence there exist $r \in R$ and $m \in M$ such that $rm = 0$ but $m \neq 0$ and $r \notin \text{Ann}(M)$. Now $\bar{r}M \cong M/(0 :_M r)$. Further, $\bar{r}M$ and $(0 :_M r)$ are vertices because $(0 :_M r)(\bar{r}M) = ((0 :_M r) : M)(\bar{r}M : M)M \subseteq \bar{r}M((0 :_M r) : M) \subseteq r(0 :_M r) = 0$. Then $\{\bar{N} \bar{N} \subseteq \bar{M}, \bar{N} \subseteq \bar{r}M\} \cup \{\bar{N} \subseteq \bar{M}, \bar{N} \subseteq (0 :_M r)\} \subseteq V(G(\tau^\ast_T))$. It follows that the R-modules $\bar{r}M$ and $(0 :_M r)$ have acc (resp. dcc) on submodules. Since $\bar{r}M \cong M/(0 :_M r)$, \bar{M} has acc on submodules and the proof is completed. □

3. Quasi-Zariski topology-graph of modules

First, in this section we give the more notation to be used throughout the remainder of this article. Suppose that $e (e \neq 0,1)$ is an idempotent element of R. Let $M_1 := eM, M_2 := (1 - e)M, T_1 := \{p_1 \in \text{Spec}(M_1) | p_1 \not\subseteq \text{Ann}(M_1)\}, T_2 := \{p_2 \in \text{Spec}(M_2) | p_2 \not\subseteq \text{Ann}(M_2)\}, Q_1 := \cap_{p_1 \in T_1}p_1, Q_2 := \cap_{p_2 \in T_2}p_2, \bar{M}_1 = e\bar{M} = eM/\bar{Q}_1$, and $\bar{M}_2 = (e - 1)\bar{M} = (e - 1)M/\bar{Q}_2$. Consequently we have, $Q = Q_1 \oplus Q_2$, where $Q = \cap_{p \in T}p$ and $\bar{M} \cong M_1 \oplus M_2$.

We recall that a submodule N of M is a prime R-module if and only if it is a prime $R/\text{Ann}(M)$-module (see [4, Result 1.2]).

Proposition 3.1. Suppose that \bar{M} is a multiplication module. Then the following statements hold.

(a) If there exists a vertex of $G(\tau^\ast_T)$ which is adjacent to every other vertex, then $\bar{M} \cong M_1 \oplus M_2$, where M_1 is a simple module and M_2 is a prime module for some idempotent element $e \in R$.

(b) If \bar{M}_1 and \bar{M}_2 are prime modules for some idempotent element $e \in R$, then $G(\tau^\ast_T)$ is a complete bipartite graph.

Proof. (a) Suppose that N is adjacent to every other vertex of $G(\tau^\ast_T)$. Since $V^\ast(N) = V^\ast(\sqrt{N})$, we have $N = \sqrt{N}$. It is clear that \bar{N} is a minimal submodule of \bar{M}. We have $(N)^2 \neq (0)$ because $V^\ast(N) \neq T$. Then Lemma 2.5, implies that $\bar{M} \cong \bar{e}M \oplus (e - 1)\bar{M}$ for some idempotent element e of R. Without loss of generality we may assume that $M_1 \oplus Q_2$ is adjacent to every other vertex. We claim that \bar{M}_1 is a simple module and \bar{M}_2 is a prime module. Let $Q_1 \subseteq K < \bar{M}_2$. We have $V^\ast(K \oplus Q_2) \neq T$ because $Q_1 \oplus Q_2 \subseteq K \oplus Q_2$. Since $V^\ast(K \oplus Q_2) \cup V^\ast(Q_1 \oplus M_2) = T$, we have $K \oplus Q_2$ is a vertex and hence is adjacent to $M_1 \oplus Q_2$. Therefore $V^\ast(K \oplus Q_2) \cup V^\ast(M_1 \oplus Q_2) = V^\ast(K \oplus Q_2) = T$, a contradiction. It implies that \bar{M}_1 is a simple module. Now, we
show that \(\bar{M}_2 \) is a prime module. It is enough to show that is a prime \(R/(Q_2 : M_2) \)-module. Otherwise, \(\bar{I}K = (0) \), where \((Q_2 : M_2) \subseteq I < R \) and \(Q_2 \subseteq K < M \). It follows that \(V'(M_1 \oplus K) \cap V'(Q_1 \oplus IM_2) = V'(Q_1 \oplus K(IM_2)) = T \) because \(K(IM_2) \subseteq IK \subseteq Q_2 \) and \((Q_2 : M_2)^2M_2 \subseteq K(IM_2) \). Therefore \(V'(M_1 \oplus K) \cup V'(M_1 \oplus Q_2) = T = V'(M_1 \oplus Q_2) \), a contradiction.

(b) Assume that \(N_1 \oplus N_2 \) is adjacent to \(K_1 \oplus K_2 \). One can see that \(\sqrt{N_1K_1} \oplus \sqrt{N_2K_2} = \sqrt{Q_1} \oplus \sqrt{Q_2} \). It implies that \((\sqrt{K_1 : M_1}M_1 : M_1) \cap (\sqrt{N_1 : M_1}M_1) = (Q_1 : M_1) \) or \((\sqrt{N_1 : M_1}M_1) = Q_1 \) and \(\sqrt{(K_2 : M_2)M_2 : M_2} = (Q_2 : M_2) \) or \(\sqrt{(N_2 : M_2)M_2} = Q_2 \). Therefore \(G(\tau^*_1) \) is a complete bipartite graph with two parts \(U \) and \(V \) such that \(N \in U \) if and only if \(V'(N) = V'(M_1 \oplus Q_2) \) and \(K \in V \) if and only if \(V'(K) = V'(Q_1 \oplus M_2) \).

Corollary 3.2. Let \(M \) be a faithful multiplication module. Then the following statements are equivalent.

(a) There is a vertex of \(G(\tau^*_1) \) which is adjacent to every other vertex of \(G(\tau^*_1) \).

(b) \(G(\tau^*_1) \) is a star graph.

(c) \(M = F \oplus D \), where \(F \) is a simple module and \(D \) is a prime module.

Proof. (a) \(\Rightarrow \) (b) Let \(\bar{M} \) be a faithful module. Then \(Q = (0) \) and we have \(T = \text{Spec}(M) \). By Proposition 3.1, \(M = M_1 \oplus M_2 \), where \(M_1 \) is a simple module and \(M_2 \) is a prime module. Then every non-zero submodule of \(M \) is of the form \(M_1 \oplus N_2 \) or \((0) \oplus N_2 \), where \(N_2 \) is a non-zero submodule of \(M_2 \). By our hypothesis, we can not have any vertex of the form \(M_1 \oplus N_2 \), where \(N_2 \) is a non-zero proper submodule of \(M_2 \). Also \(M_1 \oplus (0) \) is adjacent to every other vertex, and non of the submodules of the form \((0) \oplus N_2 \) can be adjacent to each other. So \(G(\tau^*_1) \) is a star graph.

(b) \(\Rightarrow \) (c) This follows by Proposition 3.1 (a).

(c) \(\Rightarrow \) (a) Assume that \(M = F \oplus D \), where \(F \) is a simple module and \(D \) is a prime module. It is easy to see that for some minimal submodule \(N \) of \(M \), we have \(N^2 \neq (0) \). Since \(M \) is a faithful module, Lemma 2.5 implies that \(F \cong eM \), where \(e \) is an idempotent element of \(R \). Finally Proposition 3.1 (a) completes the proof. \(\square \)

Lemma 3.3. Let \(e \in R \) be an idempotent element of \(R \) and let \(\bar{M} \) be a multiplication module. If \(G(\tau^*_1) \) is a triangle-free graph, then both \(M_1 \) and \(M_2 \) are prime \(R \)-modules. Moreover, if \(G(\tau^*_1) \) has no cycle, then \(M_1 \) is a simple module and \(M_2 \) is a prime module.

Proof. Without loss of generality, we can assume that \(\bar{M}_1 \) is a prime module. Then \(\bar{I}K = (0) \), where \((Q_2 : M_2) \subseteq I < R \) and \(Q_2 \subseteq K < M \). It follows that \(V'(M_1 \oplus K) \cap V'(Q_1 \oplus IM_2) = V'(Q_1 \oplus K(IM_2)) = T \) (if \(IM_2 = K \), then \(V'(Q_1 \oplus K) = V'(Q_1 \oplus K^2) = V'(Q_1 \oplus K(IM_2)) = T \), a contradiction). So both \(M_1 \) and \(M_2 \) are prime \(R \)-modules. Now suppose that \(G(\tau^*_1) \) has no cycle. If none of \(M_1 \) and \(M_2 \) is a simple module, then we choose non-trivial submodules \(N_i \), in \(M_i \) for some \(i = 1, 2 \). So \(N_1 \oplus Q_2, Q_1 \oplus N_2, M_1 \oplus Q_2, \) and \(Q_1 \oplus M_2 \) form a cycle, a contradiction. \(\square \)

Corollary 3.4. Assume that \(\bar{M} \) is a multiplication module. Then \(G(\tau^*_1) \) is a star graph if and only if \(M_1 \) is a simple module and \(\bar{M}_2 \) is a prime module for some idempotent \(e \in R \).

Proof. The necessity is clear by Proposition 3.1 (a). For the converse, assume that \(M = M_1 \oplus M_2 \), where \(M_1 \) is a simple module and \(M_2 \) is a prime for some idempotent \(e \in R \). Using the Proposition 3.1 (b), \(G(\tau^*_1) \) is a complete bipartite graph with two parts \(U \) and \(V \) such that \(N \in U \) if and only if \(V'(N) = V'(M_1 \oplus Q_2) \) and \(K \in V \) if and only if \(V'(K) = V'(Q_1 \oplus M_2) \). We claim that \(|U| = 1 \). Otherwise, \(V'(M_1 \oplus Q_2) = V'(N_1 \oplus Q_2) \), where \(Q_1 \neq N_1 < M_1 \). It follows that \((N_1 : M_1)M_1 = M_1 \), a contradiction (note that if \(M \) is a multiplication module, then \(\sqrt{N} \neq M \), where \(N < M \)). So \(G(\tau^*_1) \) is a star graph. \(\square \)

Theorem 3.5. If \(G(\tau^*_1) \) is a tree, then \(G(\tau^*_1) \) is a star graph.
Proof. Suppose that $G(\tau^*_T)$ is not a star graph. Then $G(\tau^*_T)$ has at least four vertices. Obviously, there are two adjacent vertices L and K of $G(\tau^*_T)$ such that $|N(L) \setminus |K|| \geq 1$ and $|N(K) \setminus |L|| \geq 1$. Let $N(L) \setminus |K| = \{L_i\}_{i \in \Lambda}$ and $N(K) \setminus |L| = \{K_j\}_{j \in \Gamma}$. Since $G(\tau^*_T)$ is a tree, we have $N(L) \cap N(K) = \emptyset$. By [5, Theorem 2.6], $\text{diam}(G(\tau^*_T)) \leq 3$. So every edge of $G(\tau^*_T)$ is of the form $[L, K], [L, L_i]$ or $[K, K_j]$, for some $i \in \Lambda$ and $j \in \Gamma$. Now, Pick $p \in \Lambda$ and $q \in \Gamma$. Since $G(\tau^*_T)$ is a tree, $\sqrt{L_p} \cap \sqrt{K_q}$ is a vertex of $G(\tau^*_T)$. If $\sqrt{L_p} \cap \sqrt{K_q} = L_u$ for some $u \in \Lambda$, then $V^*(K) \cup V^*(L_u) = T$, a contradiction. If $\sqrt{L_p} \cap \sqrt{K_q} = K_v$, for some $v \in \Gamma$, then $V^*(L) \cup V^*(K_v) = T$, a contradiction. If $\sqrt{L_p} \cap \sqrt{K_q} = L$ or $\sqrt{L_p} \cap \sqrt{K_q} = K$, then $V^*(L) = T$ or $V^*(K) = T$, respectively, a contradiction. So the claim is proved. \qed

Proposition 3.6. Let \tilde{M} be a multiplication module. Then in each case of the following statements, $|T| = 2$ and $G(\tau^*_T) \cong K_2$.

(a) R be an Artinian ring and $G(\tau^*_T)$ is a bipartite graph.

(b) $\text{Ann}(\tilde{M})$ is a nil ideal of R and $G(\tau^*_T)$ is a finite bipartite graph.

(c) $\text{Ann}(\tilde{M})$ is a nil ideal of R and $G(\tau^*_T)$ is a regular graph of finite degree.

Proof. (a) First we may assume that $G(\tau^*_T)$ is not empty. Then R can not be a local ring. Otherwise, $T = V^*(mM)$, where m is the unique maximal ideal of R. Therefore [5, Proposition 2.3] implies that $mM = M$ and hence T is empty, a contradiction. Hence by [8, Theorem 8.9], $R = R_1 \oplus \ldots \oplus R_n$, where R_i is an Artinian local ring for $i = 1, \ldots, n$ and $n \geq 2$. By Lemma 2.2 and Proposition 2.3, since $G(\tau^*_T)$ is a bipartite graph, we have $n = 2$ and hence $\tilde{M} \cong M_1 \oplus M_2$ for some idempotent $e \in R$. If M_1 is a prime module, then it is easy to see that M_1 is a vector space over $R/\text{Ann}(M_1)$ and so is a semisimple R-module. A similar argument as we did in proof of Corollary 3.4 implies that $|T| = 2$ and $G(\tau^*_T) \cong K_2$.

(b) By Theorem 2.9, \tilde{M} is an Artinian and Noetherian module so that $R/\text{Ann}(\tilde{M})$ is an Artinian ring. A similar arguments in part (a) says that, $R/\text{Ann}(\tilde{M})$ is a non-local ring. So by [8, Theorem 8.9] and Lemma 2.2, there exist pairwise orthogonal idempotents modulo $\text{Ann}(\tilde{M})$. By lemma 2.4, $\tilde{M} \cong M_1 \oplus M_2$, for some idempotent e of R. Now, the proof that $G(\tau^*_T) \cong K_2$ is similar to the proof of Corollary 3.4.

(c) We may assume that $G(\tau^*_T)$ is not empty. So \tilde{M} is not a prime module by [5, Proposition 2.3] and a similar manner in proof of Theorem 2.9, shows that \tilde{M} has a finite length so that $R/\text{Ann}(\tilde{M})$ is an Artinian ring. As in the proof of part (b), $\tilde{M} \cong M_1 \oplus M_2$ for some idempotent $e \in R$. If M_1 has one non-trivial submodule N, then $\text{deg}(Q_1 \oplus M_2) > \text{deg}(N \oplus M_2)$ (we note that by [7, Proposition 2.5], $NK = (0)$ for some $(0) \neq K < M_1$) and this contradicts the regularity of $G(\tau^*_T)$. Hence M_1 is a simple module. Finally a similar argument as we have seen in Corollary 3.4 gives $G(\tau^*_T) \cong K_2$. \qed

Theorem 3.7. Assume that \tilde{M} is a multiplication module and $|\text{Min}(\tilde{M})| \geq 3$. Then $G(\tau^*_T)$ contains a cycle.

Proof. If $G(\tau^*_T)$ is a tree, then by Theorem 3.5, $G(\tau^*_T)$ is a star graph. Suppose that $G(\tau^*_T)$ is a star graph. Then by Corollary 3.4, $\tilde{M} \cong M_1 \oplus M_2$, where M_1 is a simple module and \tilde{M} is a prime module and hence by Proposition 2.3 (e), $\text{Min}(\tilde{M}) = \{0 \oplus M_2, M_1 \oplus 0\}$, that is $|\text{Min}(\tilde{M})| = 2$, a contradiction. Therefore $G(\tau^*_T)$ contains a cycle. \qed

4. Coloring of the quasi-Zariski topology-graph of modules

The purpose of this section is to study coloring of the quasi-Zariski topology-graph of modules and investigate the interplay between $\chi(G(\tau^*_T))$ and $\omega(G(\tau^*_T))$. We note that since $E(G(\tau^*_T)) \geq 1$ when $G(\tau^*_T) \neq \emptyset$, then $\chi(G(\tau^*_T)) \geq 2$.

Theorem 4.1. Let \tilde{M} be an Artinian module such that for every minimal submodule N of \tilde{M}, N is a vertex in $G(\tau^*_T)$. Then $\omega(G(\tau^*_T)) = \chi(G(\tau^*_T))$.

H. Ansari-Toroghy et al. / Filomat 32:10 (2018), 3657–3665

3662
Proof. \bar{M} is Artinian, so it contains a minimal submodule. Clearly, for every minimal submodule \bar{N} of \bar{M}, $V^*(N) \neq \emptyset$. Also, $N \cap L = Q$, where N and L are minimal submodules of \bar{M}. It follows that N and L are adjacent in $G(\tau_+)$, where \bar{N} and \bar{L} are minimal submodules of \bar{M}. First, suppose that M has infinitely many minimal submodules. Then $\omega(G(\tau_+)) = \infty$ and there is nothing to prove. Next, assume that \bar{M} has k minimal submodules, where k is finite. We conclude that $\chi(G(\tau_+)) = k = \omega(G(\tau_+))$. Obviously, $\omega(G(\tau_+)) \geq k$. If possible, assume that $\omega(G(\tau_+)) > k$. Let $\Sigma = \{N_i \mid i \in \omega\}$, where $|\Sigma| = \omega(G(\tau_+))$ be a maximum clique in $G(\tau_+)$. As every $N_i \in \omega$, $\sqrt{N_i}$ contains a minimal submodule, there exists a minimal submodule \bar{K} and submodules N_i and N_j in ω, such that $\bar{K} \subset \sqrt{N_i} \cap \sqrt{N_j}$, and hence $V^*(K) = T$, a contradiction. Hence $\omega(G(\tau_+)) = k$. Next, we claim that $G(\tau_+)$ is k-colorable. In order to prove, put $A = \{K_1, \ldots, K_k\}$ be the set of all minimal submodules of \bar{M}. Now, we define a coloring f on $G(\tau_+)$ by setting $f(N) = \min\{|i| K_i \subseteq \sqrt{N}\}$ for every vertex N of $G(\tau_+)$.

Theorem 4.2. Assume that \bar{M} is a faithful multiplication module. Then the following statements are equivalent.

(a) $\chi(G(\tau_{Spec(M)}^*)) = 2$.

(b) $G(\tau_{Spec(M)}^*)$ is a bipartite graph.

(c) $G(\tau_{Spec(M)}^*)$ is a complete bipartite graph.

(d) Either R is a reduced ring with exactly two minimal prime ideals or $G(\tau_{Spec(M)}^*)$ is a star graph with more than one vertex.

Proof. By using Lemma 2.7, $G(\tau_{Spec(M)}^*)$ and $AG(M)$ are the same and so [6, Theorem 3.2] completes the proof. ☐

Lemma 4.3. Assume that T is a finite closed subset of $Spec(M)$. Then $\chi(G(\tau_+))$ is finite. In particular, $\omega(G(\tau_+))$ is finite.

Proof. Suppose that $T = \{P_1, P_2, \ldots, P_n\}$ is a finite set of distinct prime submodules of M. Define a coloring $f(N) = \min\{|n \in N| P_n \notin V^*(N)\}$, where N is a vertex of $G(\tau_+)$. We can see that $\chi(G(\tau_+)) \leq k$. ☐

Corollary 4.4. Assume that $e \in R$ is an idempotent element and M is a multiplication module. Then $G(\tau_{eM})$ is a complete bipartite graph if and only if M_1 and M_2 are prime modules.

Proof. Assume that $G(\tau_{eM})$ is a complete bipartite graph. Therefore $G(\tau_{eM})$ is a triangle-free graph. So Lemma 3.3 follows that M_1 and M_2 are prime modules. The conversely holds by Proposition 3.1 (b). ☐

Remark 4.5. Assume that S is a multiplicatively closed subset of R such that $S \cap (\cup_{P \in T}(P : M)) = \emptyset$. Let $T_S = \{S^{-1}P : P \in T\}$. One can see that $V^*(N) = T$ if and only if $V^*(S^{-1}N) = T_S$, where M is a finitely generated module.

Theorem 4.6. Let S be a multiplicatively closed subset of R defined in Remark 4.5 and M is a finitely generated module. Then $G(\tau_{eM})$ is a retract of $G(\tau_S)$ and $\omega(G(\tau_{eM})) = \omega(G(\tau_S))$.

Proof. Consider a vertex map $\phi : V(G(\tau_{S})) \rightarrow V(G(\tau_{eM})); N \rightarrow N_S$. Clearly, $N_S \neq K_S$ implies that $N \neq K$ and $V^*(N) \cup V^*(K) = T$ if and only if $V^*(N_S) \cup V^*(K_S) = T_S$. Thus ϕ is surjective and hence $\omega(G(\tau_{eM})) \leq \omega(G(\tau_S))$. If $N \neq K$ and $V^*(N) \cup V^*(K) = T$, then we show that $N_S \neq K_S$. On the contrary suppose that $N_S = K_S$. Then $V^*(N_S) = V^*(\sqrt{N_S}) = V^*(\sqrt{N_S} \cap \sqrt{K_S}) = V^*(N_S) \cup V^*(K_S) = T_S$ and so $V^*(N) = T$, a contradiction. This shows that the map ϕ is a graph homomorphism. Now, for any vertex N_S of $G(\tau_{eM})$, we can choose a fixed vertex N of $G(\tau_S)$. Then ϕ is a retract (graph) homomorphism which clearly implies that $\omega(G(\tau_{eM})) = \omega(G(\tau_S))$ under the assumption. ☐
Corollary 4.7. Let S be a multiplicatively closed subset of R defined in Remark 4.5 and let M be a finitely generated module. Then $\chi(AG(M_S)) = \chi(AG(M))$.

Corollary 4.8. Assume that M is a semiprime module and $AG(M)\tau$ does not have an infinite clique. Then M is a faithful module and $0 = (P_1 \cap \ldots \cap P_k : M)$, where P_i is a prime submodule of M for $i = 1, \ldots, k$.

Proof. By [6, Theorem 3.7 (b)], M is a faithful module and the last assertion follows directly from the proof of [6, Theorem 3.7 (b)]. □

Proposition 4.9. Let M be a cyclic module and let T be a closed subset of $\text{Spec}(M)$. We have the following statements.

(a) If $\{P_1, \ldots, P_k\} \subseteq \text{Min}(T)$, then there exists a clique of size n in $G(\tau^*_T)$.

(b) We have $\omega(G(\tau^*_T)) \geq |\text{Min}(T)|$ and if $|\text{Min}(T)| \geq 3$, then $gr(G(\tau^*_T)) = 3$.

(c) If $\sqrt{(0)} = (0)$, then $\chi(G(\tau^*_\text{Spec}(M))) = \omega(G(\tau^*_\text{Spec}(M))) = |\text{Min}(T)|$.

Proof. (a) The proof is straightforward by the facts that $AG(M) = AG(M)\tau$ has a clique of size n by [7, Theorem 2.18] and $AG(M)$ is isomorphic with a subgraph of $G(\tau^*_T)$ by Lemma 2.6.

(b) This is clear by item (a).

(c) If $|\text{Min}(T)| = \infty$, then by Proposition 4.9 (b), there is nothing to prove. Otherwise, [7, Theorem 2.20] implies that $AG(M)$ does not have an infinite clique. So M is a faithful module by Corollary 4.8. Next, Lemma 2.7 says that $G(\tau^*_\text{Spec}(M))$ and $AG(M)$ are the same. Now the result follows by [7, Theorem 2.20]. □

Lemma 4.10. Assume that M is a semiprime multiplication module. Then the following statements are equivalent.

(a) $\chi(G(\tau^*_\text{Spec}(M)))$ is finite.

(b) $\omega(G(\tau^*_\text{Spec}(M)))$ is finite.

(c) $G(\tau^*_\text{Spec}(M))$ does not have an infinite clique.

Proof. (a) \Rightarrow (b) \Rightarrow (c) is clear.

(c) \Rightarrow (d) Suppose that $G(\tau^*_\text{Spec}(M))$ does not have an infinite clique. By Lemma 2.6, $AG(M)$ does not have an infinite clique and so by Corollary 4.8, there exists a finite number of prime submodules P_1, \ldots, P_k of M such that $\cap_{i \in T} P = P_1 \cap \ldots \cap P_k$. Define a coloring $f(N) = \min \{n \in \mathbb{N} | P_n \notin V^*(N)\}$, where N is a vertex of $G(\tau^*_T)$. Then we have $\chi(G(\tau^*_\text{Spec}(M))) \leq k$. □

Corollary 4.11. Assume that M is a multiplication module and $AG(M)$ does not have an infinite clique. Then $G(\tau^*_\text{Spec}(M))$ and $AG(M)\tau$ are the same. Also, $\chi(G(\tau^*_\text{Spec}(M)))$ is finite.

Proof. Since M is a semiprime module, by Corollary 4.8, M is a faithful module and there exists a finite number of prime submodules P_1, \ldots, P_k of M such that $\cap_{i \in T} P = P_1 \cap \ldots \cap P_k$. So the result follows by Lemma 2.7 and from the proof of (c) \Rightarrow (d) of Lemma 4.10. □

Proposition 4.12. Suppose that $\sqrt{(0)} = (0)$ and M is a multiplication module. Then the following statements are equivalent.

(a) $\chi(G(\tau^*_\text{Spec}(M)))$ is finite.

(b) $\omega(G(\tau^*_\text{Spec}(M)))$ is finite.

(c) $G(\tau^*_\text{Spec}(M))$ does not have an infinite clique.

(d) $\text{Min}(T)$ is a finite set.
Proof. (a) \(\implies\) (b) \(\implies\) (c) is clear.

(c) \(\implies\) (d) Suppose \(G(\tau_{\text{Spec}(M)})\) does not have an infinite clique. By Lemma 2.6, \(AG(M)\) does not have an infinite clique and hence by Corollary 4.8, there exists a finite number of prime submodules \(P_1, ..., P_k\) of \(M\) such that \(\bigcap_{P \in T} P = P_1 \cap P_2 \cap ... \cap P_k\). By assumptions, one can see that \(\text{Min}(T)\) is a finite set.

(d) \(\implies\) (a) Assume that \(\text{Min}(T)\) is a finite set (equivalently, \(M\) has a finite number of minimal prime submodules) so that \(\bigcap_{P \in T} P = P_1 \cap P_2 \cap ... \cap P_k\), where \(\text{Min}(T) = \{P_1, ..., P_k\}\). Define a coloring \(f(N) = \min\{n \in N | P_n \notin V^*(N)\}\), where \(N\) is a vertex of \(G(\tau_{\text{Spec}(M)})\). Then we have \(\chi(G(\tau_{\text{Spec}(M)})) \leq k\).

Proposition 4.13. Assume that \(\sqrt{(0)} = (0)\) and \(M\) is a faithful multiplication module. Then the following statements are equivalent.

(a) \(\chi(G(\tau_{\text{Spec}(M)}))\) is finite.

(b) \(\omega(G(\tau_{\text{Spec}(M)}))\) is finite.

(c) \(G(\tau_{\text{Spec}(M)})\) does not have an infinite clique.

(d) \(R\) has a finite number of minimal prime ideals.

(e) \(\chi(G(\tau_{\text{Spec}(M)})) = \omega(G(\tau_{\text{Spec}(M)})) = |\text{Min}(R)| = k\), where \(k\) is finite.

Proof. This is clear by Lemma 2.7, [6, Proposition 3.11], and [6, Corollary 3.12].

Acknowledgments. We would like to thank the referees for valuable comments and the careful reading of our manuscript.

References