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The Multiplicity of -2 as an Eigenvalue
of the Distance Matrix of Graphs

Dan Li? Jixiang Meng?
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Abstract. Let D(G) be the distance matrix and let A;(D(G)) = --- = A,(D(G)) be the corresponding
eigenvalues of a connected graph G. Let m,(D) denote the multiplicity of the eigenvalue A of the distance
matrix D of G. In this paper, we characterize the graphs with m_,(D(G)) = n — i, where i = 1,2,3,4.
Furthermore, we show that both S} and S, (@ + b = n — 2) are determined by their D-spectrum..

1. Introduction

In this paper we consider simple and connected graphs. Let G be a simple graph with vertex set
V(G) = {v1,02,- - ,v,} and edge set E(G). Let A(G) = (aij)uxn be the (0, 1)-adjacency matrix of G, where a;; = 1
if v;v; € E(G) and a;; = 0 otherwise. The diameter of G, denoted by d or d(G), is the maximum distance
between any pair of vertices of G. The induced subgraph G[X] is the subgraph of G whose vertex set is X
and whose edge set consists of all edges of G which have both ends in X.

Let D(G) = (dij)uxn be the distance matrix of a connected graph G, where d;; = dg(v;,v)) is defined to
be the length of shortest path between v; and v;. The polynomial Pp(A) = det(AI — D(G)) is defined as the
distance characteristic polynomial of the graph G. Let A1(D(G)) > --- > A,(D(G)) be the distance spectrum
of G. Let m; (D) denote the multiplicity of the eigenvalue A of the distance matrix D of G. As usual, let K,,,

k
P, and Ky, n, .. n,, where Y, n; = n, denote the complete graph, the path and the complete k-partite graph
i=1
with order n, respectively. The complete product G; V G, of graphs G; and G, is the graph obtained from
G1 U G; by joining every vertex of G; with every vertex of G,. Let K, =KV (Ks UK;) with r > 1. A block of
G is a maximal connected subgraph of G that has no cut-vertex. A graph G is a clique tree if each block of G
isa clique. Let S} denote the graph obtained from Kj ,—1 by adding an edge and let S,;, (@ + b = n—2) denote
the double star obtained by adding a pendent vertices to one end vertex of P, and b pendent vertices to the
other.

The distance matrix of a connected graph has been studied extensively. Lin, Liu and Lu [4] showed that
the distance matrix of a clique tree is non-singular. Moreover, they also proved that the distance matrix of
a clique tree has exactly one positive D-eigenvalue. In addition, they determined the extremal graphs with
maximum and minimum distance energy among all clique trees.
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Two graphs are said to be D-cospectral if they have the same distance spectrum. A graph G is said
to be determined by the D-spectra if there is no other nonisomorphic graph D-cospectral to G. Lin et
al.[3] proved that the complete bipartite graph and the complete split K, V K] graph are determined by
their D-spectra, and conjectured that the complete k-partite graph is determined by its D-spectra. Jin and
Zhang [8] confirmed the conjecture. Lin, Zhai and Gong [6] showed that the graph K{ , is determined by its

D-spectra. Lin [5] showed that connected graphs with A,(D) > -1 - V2 are determined by their distance
spectra.

Céamara and Haemers [7] characterized graphs with m_;(A(G)) = n — i, where i = 2,3, and they showed
that the graphs are determined by their adjacency spectrum, as well. So far, there are not many results
on the multiplicity of eigenvalues of the distance matrix. In this paper, we characterize the graphs with
m_y(D(G)) = n —i, where i = 1,2,3,4. Furthermore, we show that S;; and S, (@ + b = n — 2) are determined
by their D-spectrum.

2. The multiplicity of -2

In this section, we characterize the graphs with m_,(D(G)) = n —i, where i = 1,2, 3,4. Obviously, K is
the only graph with m_»(D(G)) = n — 1. Since m_»(D(K,)) = 0, in the following we just consider the graphs
with m_,(D(G)) > 1.

Lemma 2.1. [3]. Let G be a connected graph and D be the distance matrix of G. Then A,(D) = =2 with multiplicity
n — k if and only if G is a complete k-partite graph for2 <k <n —1.

k
Lemma 2.2. [8]. Let G = Ky, n, be a complete k-partite graph with Y, n; = n. Then G is determined by its
i=1

D-spectrum.

Theorem 2.3. Let G be a graph on n vertices and D(G) be its distance matrix. If m_,(D(G)) = n—2, then G = K, »,,
and therefore G is determined by its D-spectrum.

Proof. Suppose that G has eigenvalue -2 with multiplicity n—2, then 2+ D(G) has rank 2. If diam(G) > 3, then
21 + D(Py) is a principal submatrix of 2I + D(G), and rank(2I + D(G)) = rank(2I + D(P4)) = 4, a contradiction.
Since G # K, diam(G) = 2. If G has two nonadjacent vertices with different neighbors, then G must contain
H which is a triangle with one pendant edge or Cs as an induced subgraph. However, rank(2] + D(H)) = 4
and rank(2I + D(Cs)) = 5, i.e., rank(2] + D(G)) > 4, a contradiction. Therefore, any two nonadjacent vertices
of G have the same neighbors, which means that G is a complete multipartite graph. By the sufficiency of
Lemma 2.1, we have that -2 is the least distance eigenvalue of G. Note that m_, = n—2, then by the necessity
of Lemma 2.1 we know that G = K, ,,. Clearly, G is determined by its D-spectrum by Lemma 2.2. [J

Theorem 2.4. Let G be a graph on n vertices and D(G) be its distance matrix. If m_»(D(G)) = n — 3, then
G = Ky, i, n5, and therefore G is determined by its D-spectrum.

Proof. Suppose that G has eigenvalue -2 with multiplicity n—3, then 2+ D(G) has rank 3. If diam(G) > 3, then
21 + D(Py) is a principal submatrix of 2I + D(G), and rank(2I + D(G)) = rank(2I + D(P4)) = 4, a contradiction.
Since G # K, diam(G) = 2. If G has two nonadjacent vertices with different neighbors, then G must contain
H which is a triangle with one pendant edge or Cs as an induced subgraph. However, rank(2I + D(H)) = 4
and rank(2I + D(Cs)) = 5, i.e., rank(2] + D(G)) > 4, a contradiction. Therefore, any two nonadjacent vertices
of G have the same neighbors, which means that G is a complete multipartite graph. By the sufficiency of
Lemma 2.1, we have that -2 is the least distance eigenvalue of G. Note that m_, = n—3, then by the necessity
of Lemma 2.1 we know that G = K, n, »,- By Lemma 2.2, G is determined by its D-spectrum. [J

Let Kj}*)° be the graph depicted in Fig 1.
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Fig. 1 The graph K}!/*}*.

The inertia of the matrix M is the triple of integers (1n..(M), no(M), n_(M)), where n, (M), ng(M) and n_(M)
denote the number of positive, 0 and negative eigenvalues of M, respectively. If det(M) = 0, then we call M
singular; otherwise, we call M non-singular.

Lemma 2.5. [2]. Let A be a real symmetric n X n matrix, partitioned as

A Ap
A= .
( Ay Ap )

If A1y is square and nonsingular, then In(A) = In(A11) + In(Ax — A21AI11A12), where In(A) denotes the inertia of A.

Lemma 2.6. Let G be a connected graph with order n and diameter 2. Let D(G) be its distance matrix. If m_»(D(G)) =

n—4, then G = Ky, nynyn,, Whereny > ny > nz > ng > 1or G = K‘Zj‘;zzz where a1,a,,a3 > 1, at least one of {by, by, bs}

3 3
greater than O and Y a; =n — ), b;.
i=1 i=1

Proof. 21 + D(G) is a symmetric matrix with rank 4, and we can assume that
[ A X
21+D(G)—(XT A ),

where A; is a nonsingular 4 X 4 matrix.

Note that rank(2I + D(G)) = rank(A1) = 4. Then we get that A, = XTAl‘lX by Lemma 2.5, where each
column x of X satisfies X’ A;'x = 2 and for any different columns x; and x; of X satisfy x] A;'x; =1 or 2.
There are only two cases for which rank(A;) = 4:

2111 5 —F —F &
121 1 - ¢ -1 -l
when A;= 11 21 , in which case A;'= _% _5% %5 _g ;
1 4
1112 5 75 5 5
211 2 0 -1 0 1
Jtr 212, 4| -1 0 0 1
when A= 112 1 , in which case A" = 0 0 % _%
2 21 2 1 1 -% -3

In the first case, the possible columns of Xare (1 1 1 2)T,(1 12 1), (121 1)Tand (2 1 1 1)T. In the
second case, the possible columnsof Xare (2 1 1 2), (12 127,112 17, 22127212 1)Tand
(1 2 2 1)". Combining with A; = X" A['X, we can obtain the following two possibilities for 2I + D(G):
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2]H1><H1 ]Vl1><712 ]VI1XVI3 ]H1><Vl4

21 D G —_ ]nzxnl 2]n2><n2 ]n2Xn3 ]n2Xn4
PO T Twen 2

n3Xny nzXmnp n3Xnsz N3 XNy

]H4XH1 ]1’!4)(112 ]1’14)(113 2]114)(7!4

or
2]:11 Xaq ]m Xap ]111 Xaz ]alxbl 2]a1 Xby 2]a1 Xbs
]azxu1 ZIazxaz ]uzxag Zjaszl Iaszz 2]112><b3
oI + D(G) — ]ﬂ3><u1 ]u3><a2 2]a3><a3 2]a3><b1 2]113><b2 ]/13><b3
Joixa; 2 bixas  2Jbixas 2 bixte Joixbs  Joixbs
2]b2xa1 ]hz Xan 2]172)(5{3 ]bszl 2]h2><h2 ]bsz3
2fboxar  2bixa,  Tosxas  Josxtr Josxby  2Jbyxbs

~ ~ 142,43
Therefore, G = K, 1 13,1, OF G = Kb1,bz,b3' O

Hy H, Hj

Fig. 2 The forbidden subgraphs Hy, Hp, Hs.

Let K> denote the graph depicted in Fig 3.

Lemma 2.7. Let G be a connected graph with order n > 5 and diameter 3. Let D(G) be its distance matrix. If
m_(D(G)) =n—4, then G = Kfl’f},’,t;, wheres+t +t) =n—ny —ny, s, ty, My, ny > 0and t; > 0.

Proof. Suppose that G has eigenvalue -2 with multiplicity n — 4, then rank(2] + D(G)) = 4. Since d(G) =3, G
must contain Py = 017,374 as an induced subgraph and N,, N N,, = 0. Then we can obtain the following
claims.
Claim 1. For any vertex v € V(G)\V(Py), 4 € Ny, U Ny, U Ny, U Ny,.

Otherwise, 2] + D(G) must contain a principal submatrix of the type B, where b; =2 or 3,i = 1,2,3,4.
Obviously, there are 16 possibilities of B, however, the rank of B is always greater than 4, a contradiction.

2 1 2 3 b 21 2 31 21 2 3 1
1 2 1 2 b 1 21 21 12 1 2 2
B=|2 1 2 1 by |,Bi=|l2 12 1 2[B=[212 1 o
32 1 2 b 321 2 a 321 2 a
b1 bz b3 b4 2 1 1 2 a 2 1 2 a  ap 2

Claim 2. For any vertex u € Ny, \{v2}, uv, ¢ E(G).

Otherwise, 2I + D(G) must contain By, where a = 2 or 3, or 2I + D(H,) as a principal submatrix. Note
that det(B1) = —12a + 12 # 0 and rank(2I + D(H;)) = 5, a contradiction.

Similarly, we obtain that uvs ¢ E(G) for any vertex u € Ny, \{vs}.

Claim 3. N, € Ny, and Ny, € No,.

By the symmetry, we just consider N,, C N,,. The result is trivial when |N,,| = 1. We suppose that
there exists a vertex u € N, but u ¢ N,,, then 2I + D(G) must contain By, where a; = 2 or 3. Note that
det(B,) = 4(a1 — 1)(2a1 — 3a2 + 4) # 0, thus Ny, C N,,. Similarly, Ny, € No,.

Claim 4. N,, and N, are independent sets.

By the symmetry, we just consider N,,. The result is trivial when |Ny,| = 1 or 2. Now suppose that
there are two vertices u, v € Ny, \{v2} such that uv € E(G), then H, must be an induced subgraph of G since
u,v € Ny, by Claim 3. Note that rank(2I + D(H,)) = 5, a contradiction. Thus N,, and N,, are independent
sets.
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2123 3 212 3 1 212 3 2
12122 21 2 2 1212 a
Bi=| 2 1 2 1 2 |Bi={ 21 21 alB=21212]
32121 32123 321 21
32212 12 a3 2 2 4212
212312 2 1 3 1 1 2
f;%;i 1212 21 12 2 2 2 g
Bl 2 1 2 m 2B 2121121322221
N 321221Y 12 2 2 2 a
25 3 a2 12122 a 12 2 2 21
2121 a2 2 4 1 o 1 2

Claim 5. G[N,,, Ny, ] is a complete bipartite graph.

Otherwise, if [Ny, | = 1 or [Ny,| = 1, then Bz must be a principal submatrix of 2I + D(G) since d = 3 and
Claim 4. However, rank(2I + D(G)) > rank(B3) = 5, a contradiction. If [N, | > 1 and |N,,| > 1, then the
following fact must hold:

Fact. For any vertex v € Ny, (or Ny,), Ny, N Ny, (or Ny,) # 0.

Otherwise, without loss of generality, suppose that there exists a vertex u € Ny, such that N, " N,, = 0,
then d(u,v4) = 3, d(u,v3) = 2 or 3 and d(u,v1) = 1, d(u, v2) = 2 by Claim 4. Thus 2I + D(G) contains B, as a
principal submatrix, where a = 2 or 3. However, rank(2] + D(G)) > rank(Bs) = 5 (a = 2 or 3), a contradiction.

If G[Ny,, Ny,] is not a complete bipartite graph, then there exists a vertex u € N;, and a vertex v € N,
such that uv ¢ E(G).

Casel. u =v, or v =vs.

Without loss of generality, we just consider # = v,. Then v # v3 and d(v, v1) = 2 by Fact. Thus 2I + D(G)
contains Bs as a principal submatrix, where a = 2 or 3. However, rank(Bs) = 5 (a = 2 or 3), a contradiction.
Case 2. u # v, and v # vs.

d(v,v1) = 2 by Fact and d(u, vp) = d(v, v3) = 2 by Claim 4.

Subcase 2.1 {uvs, vv,} € E(G).

We consider the vertices vy, v5, v3, 1, v, then 21+ D(G) contains a principal submatrix of the type Bs, where
a; =2or3,i=1,2,3. Obviously, there are 8 possibilities of B, however, the rank of B is always greater
than 4, a contradiction.

212 3 2 2 212 321 212 322
121 2 1 1 121212 121211
2121 2 21, 212121, |212122
1321 2 aqp ap 73 212327113212 21
21 2 a4 2 1 212 3 2 a 2122 21
212 a 1 2 1212 a2 212112

Subcase 2.2 {uv3, vvy} C E(G).

Then 2] + D(G) contains a principal submatrix of the type B, where a = 2 or 3. Obviously, there are 2
possibilities of By, however, the rank of By is always greater than 4, a contradiction.

Subcase 2.3 uv; € E(G) or v, € E(G).

Without loss of generality, suppose that uv; € E(G). By Fact, there must exist a vertex u’ € Ny, \{u, v,}
such that v € E(G). We consider vertice vy, v, v4, 1, 4', v, then 2I + D(G) contains a principal submatrix of
the type Bs, where a; = 2 or 3 (i = 1,2). Obviously, there are 4 possibilities of Bg, however, the rank of Bg is
always greater than 4, a contradiction.

Claim 6. For any vertex w € V(G)\{v1,v4, Np,, Ny, }, w is either the vertex of N,, or the vertex of No,.
Otherwise, H; must be an induced subgraph of G. Note that rank(2I + D(H1)) = 5, a contradiction.
Let N = Ny, \N,, and N’ = N,,\Ny,.

Claim 7. N and N’ are independent sets
Without loss of generality, we only consider N. Note that uv; ¢ E(G) for every vertex u € N\{v;} by

Claim 4. If IN] = 1 or 2, then the assertion holds obviously. If IN| > 3, suppose that there exist two vertices

v,w € N\{v1} such that vw € E(G), then 2I + D(G) contains By as a principal submatrix, where a; = 2 or 3

(i =1,2). However, rank(By) = 6, a contradiction.
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Claim 8. G[N,,, N] and G[N,,, N’] are complete bipartite graphs.

We just consider G[N,,, N] by the symmetry. If [N| = 1 or [N,,| = 1, then the assertion holds by the
definition of N and N,,. Now suppose that |[N,,| > 1 and IN| > 1. Let u € N\v; and v € Ny \v,. By the
definition of N, we have u ¢ N,,, i.e., d(u,v4) # 1. And d(u,v4) # 2 since H; is a forbidden subgraph of G.
Thus d(u,v4) = 3. Then 21 + D(G) contains a principal submatrix of the type Byg, where a = 2 or 3. However,
the rank of By is always greater than 4, a contradiction.

Claim 9. N U N,, and N’ U N,, are independent set.

Without loss of generality, we only consider N U N,,. If IN| = 1 or [N,,| = 1, then the claim holds
obviously. If [N| > 1 and |[Ny,| > 1, let u € N\v; and v € N, \v3, then 2I + D(G) contains Bi; as a principal
submatrix. However, rank(B11) = 6, a contradiction.

Let N’ = W; U W,, where W; € N’ such that N, "N # 0 for u € Wy. Sinced = 3, W, # 0.

Claim 10. G[W;, N] is a complete bipartite graph.

Otherwise, H3 must be an induced subgraph of G, however, rank(2l + D(G)) > rank(2I + D(H3)) = 6, a
contradiction.

By the above discussion, we have G = K,i’f},fj, wheret; >0and t, > 1. O

Ke K, K,
Fig. 3 The graph Kflflntj

Theorem 2.8. Let G be a graph on n vertices and D(G) be its distance matrix. If m_»(D(G)) = n — 4, then

3 3
G = Ky namas K;Zziz, or Ki'f}c’ztz, where ay,ay,a3 > 1, at least one of {by, by, b3} greater than 0 and Y, a; = n— Y, b;
b2, i=1 i=1

ands+t +th =n—c1—cy, 8,t,01,¢0 > 0and t; > 0.

Proof. m_»(D(G)) = n — 4, then we have rank(2] + D(G)) = 4. If d(G) > 4, then G must contain Ps as an
induced subgraph, however, rank(2] + D(G)) > rank(2I + D(Ps)) = 5. This contradiction shows that d4(G) < 3.
Thus we can complete the proof by Lemmas 2.6 and 2.7. [

3. Further results on D-cospectral

Lemma 3.1. [1]. For n X n matrices A and B, the following are equivalent:

1. A and B are cospectral;
2. A and B have the same characteristic polynomial;
3. tr(Al) = tr(B)) fori=1,2,--- ,n.

n

n
Remark. Note that tr(D*(G)) = Y, Y dlzj Then tr(Dz(Kz’gi’ZZ)) =4n®—4n— 6|E(K; )l and tr(DA(K32)) =
i=1 j=1,j#i 2 s

4n? — 4n — 6|E(KS/2)| + 10st,.

3 3
Lemma 3.2. Let G = Kﬁil‘zzz, where ay,a,,a3 > 1, at least one of {b1, by, bs} greater than 0 and Y., a; = n — Y. b;.
b, i1 i=1
Then

Pp)(A) = (A +2)"H(A* = 2n = 8)A° + a1A* + apd + a3),

where a1 = 3a1a; + 3&11&13 + 3a1b1 + 3612613 + 3ﬂ2b2 + 3613b3 +3 blbz +3 blbg, +3 bzb3 —12n+24, anp = -4 ai1aas3 +
2611612b3 + 2a1a3b2 + 2a1b2b3 + 2ﬂ2ﬂ3b1 + 2ﬂ2b1b3 + 2ﬂ3b1b2 - 4b1b2b3 + 12 a1a, + 12611513 +12 a1b1 + 12612613 +
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12 Elzbz +12 ﬂ3b3 +12 blbz +12 b1b3 +12 b2b3 —24n+32 and az =-3 El1ﬂlzﬂ3b1 -3 alazﬂgbz -3 a1a2a3b3 -3 a1a2b1b3 -
3a1a2b2b3—3 ﬂ1ﬂ3b1b2—3 a1a3b2b3—3 ﬂ1b1b2b3—3ﬂ2ﬂ3b1b2—3 a2a3b1b3—3a2b1b2b3—3 a3b1b2b3—8 a1a2a3+4a1a2b3+
4011&13[)2 + 4011b2b3 + 4612613171 + 4a2b1b3 + 4ﬂ3b1b2 - 8b1b2b3 + 12410, + 12&11513 + 12ﬂ1b1 + 12 aras + 12 azbz +
12ﬂ3b3 +12b1by + 12 b1b3 +12 b2b3 —16n + 16.

Proof. Note that

2];11 - 21[41 ]m Xap ]m Xaz ]alxbl 2]a1><b2 2]a1><b3
]azxul 2]a2 - Zluz ]uzxa3 ZIathl ]uszz 2]112><b3
D(G) — ]a3><u1 ]a3><a2 2]33 - 21{13 2]a3><b1 2]a3><bz ]u3Xb3
]b1 Xay 2]bl><ﬂ2 2]171><ﬂ3 2]b1 - 21[71 ]b1><b2 ]b1><b3 ’
2] xay Jbsxay 2] xay Jooxbr 26, = 2Ib,  Joyxhs
2]pyxa 2]pyxa, Jbsxas Jbsxby Josxb, 2]y — 2,
then det(Al — D(G)) = (A +2)"~° - f(A), where
A—2a1+2 —ay —a3 —bl —21’)2 —2b3
—a A=2a,+2 —a3 —2b1 —bz —2b3
f(}k) _ —aq —ay A—2a3+2 —2b1 —2b2 —b3
- —aq —2a, —2a3 A—=2b1+2 -b, —bg
-2 —ap —2a3 -b; A=2by, +2 —b3
—-2m —2a, —as —bl —b2 A— 2b3 +2

= (A +2)A* — 21— 8)A% + a1 A% + apA + a),
where a1 = 3a1a, + 3 a1a3 + 3[111’)1 +3asas + 302b2 + 3a3b3 +3 blbz +3 b1b3 +3 b2b3 —12n+24, oy = -4 aiaras +
2a1a2b3 + 2a1a3b2 + 2ﬂ1b2b3 + 2a2a3b1 + 2ﬂ2b1b3 + 2a3b1b2 - 4b1b2b3 +12a1a; + 12a1a3 + 12 ﬂlbl + 12 aza3 +
12 lebz +12 a3b3 +12 blbz +12 b1b3 +12 b2b3 —24n+32 and az =-3 a1a2a3b1 -3 a1ﬂ2ﬂ3b2 -3 a1a2a3b3 -3 a1a2b1b3 -
3011(12[7253—3 ﬂ1ﬂ3b1b2—3 a1a3b2b3—3 a1b1b2b3—3a2a3b1b2—3 u2a3b1b3—3a2b1b2b3—3 a3b1b2b3—8 a1a2a3+4a1a2b3+
4{11{13bz + 4{11b2b3 + 4a2a3b1 + 4ﬂ2b1b3 + 4ﬂ3b1b2 - 8b1b2b3 +12a1a> + 12a1a3 + 12a1by + 12 aaz + 12 arb, +
12113173 +12b1by +12 b1b3 +12 b2b3 —-l6n+16. O

Lemma3.3. Let G = Kf,’f},’fzz, where s, ty, 11, 1y are positive integers t1 > 0and s + t1 + t, = n —ny — ny. Then

Ppy(A) = (A +2)"*[A* = (21 = 8)A% + B1A% + Bad + B3],

where p1 = 3sny +3st1 =55ty +3niny +3tny + 3 thny —12n+ 24, By = 8snyty +8stity +8strny +12sny +12st —
20sty + 12mny + 1211y + 121, — 24n + 32 and ﬁg, = —12snytany — 12 stytony, + 16 snqty + 16 styty + 16 ston, +
12snq + 12sty — 20st, + 12nyny + 121y + 12tn, — 16m + 16.

Proof. Note that

2];11 - 21711 ]nlxnz ]nlxs 2]n1><t1 2]n1><t2
]712><711 2]712 - 21712 2]712><S ]antl ]Yl2><f2
D(G) = ]sxm 2]s><n2 2]5 - 215 ]s><t1 3]s><tz ’
2]t1><n1 ]t1><n2 ]t1><s 2]t1 - thl 2]t1><t2
2]1,5xm, Jezxn, 3Jtrxs 2foxy, 2], 2,
then
det(AI — D(G)) = (A +2)"g(A),
where
A= (27’11 - 2) —My —S —2t1 —2t2
—n1 A= (21’12 - 2) —2s -t )
g(A) = —ni —My A=(2s-2) -t =3t
—21’11 (%) =S A= (21’1 - 2) —2t2
—21’11 —MNny —3s —2t1 A= (2t2 - 2)

Therefore, we can get the result through a simple calculation. [
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Lemma 3.4. Let G = S}, then G is determined by its D-spectrum.
Proof. By Lemma 3.2 we know that
Ppsiy(A) = (A +2)"4(A* = (21 — 8)A° + (=91 + 24)A% + (=101 + 22)A — 3n + 5).

Let H be a connected graph such that Spec(D(H)) = Spec(D(S}})), then H = K}'7*7* or H = Kf““,f;

o ooa b1,b2,b3
Casel. H= Kbi’bz’bi.

Since tr(D*(H)) = tr(D*(S;))), we know that |V(H)| = |[E(H)| = n, i.e., H must be a unicyclic graphs. Thus
@ =ay=az=1andby =n-3,by=b;=0,ie, H=S.
Case 2. H= Ksytl,fz

GV

Since tr(D*(H)) = tr(D*(S};)), we know that 3|E(K"?)| - 5st, = 3n. And by Pp)(A) = Pps(A), we get
that B, = 8sta(n1 + na + t1) + 4B|E(KS12)| — 5sty) — 24n + 32 = —10n + 22, then 4sty(n1 + ny + t) = n — 5 and

n —>5is even. In particular, g(—=2) = —12styny(n1 + t1), thus we get that 4styny(n; + t1) = n — 3. Note that
2(n—5) =n—-5+n—-3-2, then we discover that n — 5 = 2stp[n1 + np + t; + n2(n1 + £1)] — 1 which means that
n —51is odd, a contradiction.

Therefore, S;; is determined by its D-spectrum. []

The following result is proved by Xue, Liu and Jia [9] in a different way.
Theorem 3.5. Let G =S, (a+ b =n —2), then G is determined by its D-spectrum.
Proof. By Lemma 3.3 we know that
Pps,)(A) = (A +2)"#(A* = (2n — 8)A% + (=5ab — 9n + 21)A* + (—4ab — 12n + 20)A — 4n + 4).

Let H be a connected graph such that Spec(D(H)) = Spec(D(S,)), then H = K% or H = K}/

o oo by,b2,bs
Casel. H = Kb?b?bi'

Since tr(D*(H)) = tr(D?(S,,)), we know that |[E(H)| = |E(S,)| — 3ab. We observe that |E(S,)| = n — 1, but
it is impossible that the number of edges of H less than n — 1.

Case 2. H = K/,

We first know that |[E(H)| = |[E(Sq5)| + %(stz —ab) by tr(D*(H)) = tr(D?(S,;)). Since Ppg(A) = Pps,,)(A) and
9(=2) = =12stony(n1 + t1), we get that stony(my + +1) = ab, If ny(nq + t1) > 1, then st, < ab. Thus [E(H)| <n -1,
a contradiction. So we have ny(n; +t1) = 1,i.e, ny =np =land t; = 0. Thus H = S;;,. Combining st, = ab
the result can be obtained easily.

Therefore, S, ;, is determined by its D-spectrum. [

Problem Is any graph G with m_,(D(G)) = n — 4 determined by its D-spectrum?
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