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Abstract. Let D(G) be the distance matrix and let λ1(D(G)) ≥ · · · ≥ λn(D(G)) be the corresponding
eigenvalues of a connected graph G. Let mλ(D) denote the multiplicity of the eigenvalue λ of the distance
matrix D of G. In this paper, we characterize the graphs with m−2(D(G)) = n − i, where i = 1, 2, 3, 4.
Furthermore, we show that both S+

n and Sa,b (a + b = n − 2) are determined by their D-spectrum..

1. Introduction

In this paper we consider simple and connected graphs. Let G be a simple graph with vertex set
V(G) = {v1, v2, · · · , vn} and edge set E(G). Let A(G) = (ai j)n×n be the (0, 1)-adjacency matrix of G, where ai j = 1
if viv j ∈ E(G) and ai j = 0 otherwise. The diameter of G, denoted by d or d(G), is the maximum distance
between any pair of vertices of G. The induced subgraph G[X] is the subgraph of G whose vertex set is X
and whose edge set consists of all edges of G which have both ends in X.

Let D(G) = (di j)n×n be the distance matrix of a connected graph G, where di j = dG(vi, v j) is defined to
be the length of shortest path between vi and v j. The polynomial PD(λ) = det(λI − D(G)) is defined as the
distance characteristic polynomial of the graph G. Let λ1(D(G)) ≥ · · · ≥ λn(D(G)) be the distance spectrum
of G. Let mλ(D) denote the multiplicity of the eigenvalue λ of the distance matrix D of G. As usual, let Kn,

Pn and Kn1,n2,··· ,nk , where
k∑

i=1
ni = n, denote the complete graph, the path and the complete k-partite graph

with order n, respectively. The complete product G1 ∨ G2 of graphs G1 and G2 is the graph obtained from
G1 ∪G2 by joining every vertex of G1 with every vertex of G2. Let Kr

s,t = Kr ∨ (Ks ∪Kt) with r ≥ 1. A block of
G is a maximal connected subgraph of G that has no cut-vertex. A graph G is a clique tree if each block of G
is a clique. Let S+

n denote the graph obtained from K1,n−1 by adding an edge and let Sa,b (a + b = n−2) denote
the double star obtained by adding a pendent vertices to one end vertex of P2 and b pendent vertices to the
other.

The distance matrix of a connected graph has been studied extensively. Lin, Liu and Lu [4] showed that
the distance matrix of a clique tree is non-singular. Moreover, they also proved that the distance matrix of
a clique tree has exactly one positive D-eigenvalue. In addition, they determined the extremal graphs with
maximum and minimum distance energy among all clique trees.
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Two graphs are said to be D-cospectral if they have the same distance spectrum. A graph G is said
to be determined by the D-spectra if there is no other nonisomorphic graph D-cospectral to G. Lin et
al.[3] proved that the complete bipartite graph and the complete split Ka ∨ Kc

b graph are determined by
their D-spectra, and conjectured that the complete k-partite graph is determined by its D-spectra. Jin and
Zhang [8] confirmed the conjecture. Lin, Zhai and Gong [6] showed that the graph Kr

s,t is determined by its
D-spectra. Lin [5] showed that connected graphs with λn(D) ≥ −1 −

√
2 are determined by their distance

spectra.
Cámara and Haemers [7] characterized graphs with m−1(A(G)) = n − i, where i = 2, 3, and they showed

that the graphs are determined by their adjacency spectrum, as well. So far, there are not many results
on the multiplicity of eigenvalues of the distance matrix. In this paper, we characterize the graphs with
m−2(D(G)) = n − i, where i = 1, 2, 3, 4. Furthermore, we show that S+

n and Sa,b (a + b = n − 2) are determined
by their D-spectrum.

2. The multiplicity of -2

In this section, we characterize the graphs with m−2(D(G)) = n− i, where i = 1, 2, 3, 4. Obviously, K1 is
the only graph with m−2(D(G)) = n − 1. Since m−2(D(Kn)) = 0, in the following we just consider the graphs
with m−2(D(G)) ≥ 1.

Lemma 2.1. [3]. Let G be a connected graph and D be the distance matrix of G. Then λn(D) = −2 with multiplicity
n − k if and only if G is a complete k-partite graph for 2 ≤ k ≤ n − 1.

Lemma 2.2. [8]. Let G = Kn1,n2,··· ,nk be a complete k-partite graph with
k∑

i=1
ni = n. Then G is determined by its

D-spectrum.

Theorem 2.3. Let G be a graph on n vertices and D(G) be its distance matrix. If m−2(D(G)) = n−2, then G � Kn1,n2 ,
and therefore G is determined by its D-spectrum.

Proof. Suppose that G has eigenvalue -2 with multiplicity n−2, then 2I+D(G) has rank 2. If diam(G) ≥ 3, then
2I + D(P4) is a principal submatrix of 2I + D(G), and rank(2I + D(G)) ≥ rank(2I + D(P4)) = 4, a contradiction.
Since G � Kn, diam(G) = 2. If G has two nonadjacent vertices with different neighbors, then G must contain
H which is a triangle with one pendant edge or C5 as an induced subgraph. However, rank(2I + D(H)) = 4
and rank(2I + D(C5)) = 5, i.e., rank(2I + D(G)) ≥ 4, a contradiction. Therefore, any two nonadjacent vertices
of G have the same neighbors, which means that G is a complete multipartite graph. By the sufficiency of
Lemma 2.1, we have that -2 is the least distance eigenvalue of G. Note that m−2 = n−2, then by the necessity
of Lemma 2.1 we know that G � Kn1,n2 . Clearly, G is determined by its D-spectrum by Lemma 2.2.

Theorem 2.4. Let G be a graph on n vertices and D(G) be its distance matrix. If m−2(D(G)) = n − 3, then
G � Kn1,n2,n3 , and therefore G is determined by its D-spectrum.

Proof. Suppose that G has eigenvalue -2 with multiplicity n−3, then 2I+D(G) has rank 3. If diam(G) ≥ 3, then
2I + D(P4) is a principal submatrix of 2I + D(G), and rank(2I + D(G)) ≥ rank(2I + D(P4)) = 4, a contradiction.
Since G � Kn, diam(G) = 2. If G has two nonadjacent vertices with different neighbors, then G must contain
H which is a triangle with one pendant edge or C5 as an induced subgraph. However, rank(2I + D(H)) = 4
and rank(2I + D(C5)) = 5, i.e., rank(2I + D(G)) ≥ 4, a contradiction. Therefore, any two nonadjacent vertices
of G have the same neighbors, which means that G is a complete multipartite graph. By the sufficiency of
Lemma 2.1, we have that -2 is the least distance eigenvalue of G. Note that m−2 = n−3, then by the necessity
of Lemma 2.1 we know that G � Kn1,n2,n3 . By Lemma 2.2, G is determined by its D-spectrum.

Let Ka1,a2,a3
b1,b2,b3

be the graph depicted in Fig 1.
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Fig. 1 The graph Ka1,a2,a2
b1,b2,b3

.

The inertia of the matrix M is the triple of integers (n+(M),n0(M),n−(M)), where n+(M), n0(M) and n−(M)
denote the number of positive, 0 and negative eigenvalues of M, respectively. If det(M) = 0, then we call M
singular; otherwise, we call M non-singular.

Lemma 2.5. [2]. Let A be a real symmetric n × n matrix, partitioned as

A =

(
A11 A12
A21 A22

)
.

If A11 is square and nonsingular, then In(A) = In(A11) + In(A22 −A21A−1
11 A12), where In(A) denotes the inertia of A.

Lemma 2.6. Let G be a connected graph with order n and diameter 2. Let D(G) be its distance matrix. If m−2(D(G)) =
n−4, then G � Kn1,n2,n3,n4 , where n1 ≥ n2 ≥ n3 ≥ n4 ≥ 1 or G � Ka1,a2,a2

b1,b2,b3
, where a1, a2, a3 ≥ 1, at least one of {b1, b2, b3}

greater than 0 and
3∑

i=1
ai = n −

3∑
i=1

bi.

Proof. 2I + D(G) is a symmetric matrix with rank 4, and we can assume that

2I + D(G) =

(
A1 X
XT A2

)
,

where A1 is a nonsingular 4 × 4 matrix.
Note that rank(2I + D(G)) = rank(A1) = 4. Then we get that A2 = XTA−1

1 X by Lemma 2.5, where each
column x of X satisfies xTA−1

1 x = 2 and for any different columns xi and x j of X satisfy xT
i A−1

1 x j =1 or 2.
There are only two cases for which rank(A1) = 4:

when A1=


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

, in which case A−1
1 =


4
5 −

1
5 −

1
5 −

1
5

−
1
5

4
5 −

1
5 −

1
5

−
1
5 −

1
5

4
5 −

1
5

−
1
5 −

1
5 −

1
5

4
5

;

when A1=


2 1 1 2
1 2 1 2
1 1 2 1
2 2 1 2

, in which case A−1
1 =


0 −1 0 1
−1 0 0 1
0 0 2

3 −
1
3

1 1 −
1
3 −

4
3

.

In the first case, the possible columns of X are (1 1 1 2)T, (1 1 2 1)T, (1 2 1 1)T and (2 1 1 1)T. In the
second case, the possible columns of X are (2 1 1 2)T, (1 2 1 2)T, (1 1 2 1)T, (2 2 1 2)T, (2 1 2 1)T and
(1 2 2 1)T. Combining with A2 = XTA−1

1 X, we can obtain the following two possibilities for 2I + D(G):
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2I + D(G) =


2Jn1×n1 Jn1×n2 Jn1×n3 Jn1×n4

Jn2×n1 2Jn2×n2 Jn2×n3 Jn2×n4

Jn3×n1 Jn3×n2 2Jn3×n3 Jn3×n4

Jn4×n1 Jn4×n2 Jn4×n3 2Jn4×n4


or

2I + D(G) =



2Ja1×a1 Ja1×a2 Ja1×a3 Ja1×b1 2Ja1×b2 2Ja1×b3

Ja2×a1 2Ja2×a2 Ja2×a3 2Ja2×b1 Ja2×b2 2Ja2×b3

Ja3×a1 Ja3×a2 2Ja3×a3 2Ja3×b1 2Ja3×b2 Ja3×b3

Jb1×a1 2Jb1×a2 2Jb1×a3 2Jb1×b1 Jb1×b2 Jb1×b3

2Jb2×a1 Jb2×a2 2Jb2×a3 Jb2×b1 2Jb2×b2 Jb2×b3

2Jb3×a1 2Jb3×a2 Jb3×a3 Jb3×b1 Jb3×b2 2Jb3×b3


.

Therefore, G � Kn1,n2,n3,n4 or G � Ka1,a2,a3
b1,b2,b3

.

q q q q
q

q q q q
q qq qq qq

H1 H2 H3

Fig. 2 The forbidden subgraphs H1, H2, H3.

Let Ks,t1,t2
n1,n2

denote the graph depicted in Fig 3.

Lemma 2.7. Let G be a connected graph with order n ≥ 5 and diameter 3. Let D(G) be its distance matrix. If
m−2(D(G)) = n − 4, then G � Ks,t1,t2

n1,n2
, where s + t1 + t2 = n − n1 − n2, s, t2,n1,n2 > 0 and t1 ≥ 0.

Proof. Suppose that G has eigenvalue -2 with multiplicity n − 4, then rank(2I + D(G)) = 4. Since d(G) = 3, G
must contain P4 = v1v2v3v4 as an induced subgraph and Nv1 ∩ Nv4 = ∅. Then we can obtain the following
claims.
Claim 1. For any vertex v ∈ V(G)\V(P4), u ∈ Nv1 ∪Nv2 ∪Nv3 ∪Nv4 .

Otherwise, 2I + D(G) must contain a principal submatrix of the type B, where bi = 2 or 3, i = 1, 2, 3, 4.
Obviously, there are 16 possibilities of B, however, the rank of B is always greater than 4, a contradiction.

B =


2 1 2 3 b1
1 2 1 2 b2
2 1 2 1 b3
3 2 1 2 b4
b1 b2 b3 b4 2

 , B1=


2 1 2 3 1
1 2 1 2 1
2 1 2 1 2
3 2 1 2 a
1 1 2 a 2

, B2=


2 1 2 3 1
1 2 1 2 2
2 1 2 1 a1
3 2 1 2 a2
1 2 a1 a2 2

.

Claim 2. For any vertex u ∈ Nv1\{v2}, uv2 < E(G).
Otherwise, 2I + D(G) must contain B1, where a = 2 or 3, or 2I + D(H2) as a principal submatrix. Note

that det(B1) = −12a + 12 , 0 and rank(2I + D(H2)) = 5, a contradiction.
Similarly, we obtain that uv3 < E(G) for any vertex u ∈ Nv4\{v3}.

Claim 3. Nv1 ⊆ Nv3 and Nv4 ⊆ Nv2 .
By the symmetry, we just consider Nv1 ⊆ Nv3 . The result is trivial when |Nv1 | = 1. We suppose that

there exists a vertex u ∈ Nv1 but u < Nv3 , then 2I + D(G) must contain B2, where ai = 2 or 3. Note that
det(B2) = 4(a1 − 1)(2a1 − 3a2 + 4) , 0, thus Nv1 ⊆ Nv3 . Similarly, Nv4 ⊆ Nv2 .
Claim 4. Nv1 and Nv4 are independent sets.

By the symmetry, we just consider Nv1 . The result is trivial when |Nv1 | = 1 or 2. Now suppose that
there are two vertices u, v ∈ Nv1\{v2} such that uv ∈ E(G), then H2 must be an induced subgraph of G since
u, v ∈ Nv3 by Claim 3. Note that rank(2I + D(H2)) = 5, a contradiction. Thus Nv1 and Nv4 are independent
sets.
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B3=


2 1 2 3 3
1 2 1 2 2
2 1 2 1 2
3 2 1 2 1
3 2 2 1 2

, B4=


2 1 2 3 1
1 2 1 2 2
2 1 2 1 a
3 2 1 2 3
1 2 a 3 2

, B5=


2 1 2 3 2
1 2 1 2 a
2 1 2 1 2
3 2 1 2 1
2 a 2 1 2

,

B6=


2 1 2 1 2
1 2 1 2 a1
2 1 2 a2 2
1 2 a2 2 a3
2 a1 2 a3 2

, B7=



2 1 2 3 1 2
1 2 1 2 2 1
2 1 2 1 1 2
3 2 1 2 2 1
1 2 1 2 2 a
2 1 2 1 a 2


, B8=



2 1 3 1 1 2
1 2 2 2 2 a1
3 2 2 2 2 1
1 2 2 2 2 a2
1 2 2 2 2 1
2 a1 1 a2 1 2


.

Claim 5. G[Nv1 ,Nv4 ] is a complete bipartite graph.
Otherwise, if |Nv1 | = 1 or |Nv4 | = 1, then B3 must be a principal submatrix of 2I + D(G) since d = 3 and

Claim 4. However, rank(2I + D(G)) ≥ rank(B3) = 5, a contradiction. If |Nv1 | > 1 and |Nv4 | > 1, then the
following fact must hold:
Fact. For any vertex v ∈ Nv1 (or Nv4 ), Nv ∩Nv4 (or Nv1 ) , ∅.

Otherwise, without loss of generality, suppose that there exists a vertex u ∈ Nv1 such that Nu ∩Nv4 = ∅,
then d(u, v4) = 3, d(u, v3) = 2 or 3 and d(u, v1) = 1, d(u, v2) = 2 by Claim 4. Thus 2I + D(G) contains B4 as a
principal submatrix, where a = 2 or 3. However, rank(2I + D(G)) ≥ rank(B4) = 5 (a = 2 or 3), a contradiction.

If G[Nv1 ,Nv4 ] is not a complete bipartite graph, then there exists a vertex u ∈ Nv1 and a vertex v ∈ Nv4

such that uv < E(G).
Case 1. u = v2 or v = v3.

Without loss of generality, we just consider u = v2. Then v , v3 and d(v, v1) = 2 by Fact. Thus 2I + D(G)
contains B5 as a principal submatrix, where a = 2 or 3. However, rank(B5) = 5 (a = 2 or 3), a contradiction.
Case 2. u , v2 and v , v3.

d(v, v1) = 2 by Fact and d(u, v2) = d(v, v3) = 2 by Claim 4.
Subcase 2.1 {uv3, vv2} * E(G).

We consider the vertices v1, v2, v3,u, v, then 2I+D(G) contains a principal submatrix of the type B6, where
ai = 2 or 3, i = 1, 2, 3. Obviously, there are 8 possibilities of B6, however, the rank of B6 is always greater
than 4, a contradiction.

B9=



2 1 2 3 2 2
1 2 1 2 1 1
2 1 2 1 2 2
3 2 1 2 a1 a2
2 1 2 a1 2 1
2 1 2 a2 1 2


, B10=



2 1 2 3 2 1
1 2 1 2 1 2
2 1 2 1 2 1
3 2 1 2 3 2
2 1 2 3 2 a
1 2 1 2 a 2


, B11=



2 1 2 3 2 2
1 2 1 2 1 1
2 1 2 1 2 2
3 2 1 2 2 1
2 1 2 2 2 1
2 1 2 1 1 2


.

Subcase 2.2 {uv3, vv2} ⊆ E(G).
Then 2I + D(G) contains a principal submatrix of the type B7, where a = 2 or 3. Obviously, there are 2

possibilities of B7, however, the rank of B7 is always greater than 4, a contradiction.
Subcase 2.3 uv3 ∈ E(G) or vv2 ∈ E(G).

Without loss of generality, suppose that uv3 ∈ E(G). By Fact, there must exist a vertex u′ ∈ Nv1\{u, v2}

such that u′v ∈ E(G). We consider vertice v1, v2, v4,u,u′, v, then 2I + D(G) contains a principal submatrix of
the type B8, where ai = 2 or 3 (i = 1, 2). Obviously, there are 4 possibilities of B8, however, the rank of B8 is
always greater than 4, a contradiction.
Claim 6. For any vertex w ∈ V(G)\{v1, v4,Nv1 ,Nv4 }, w is either the vertex of Nv2 or the vertex of Nv3 .

Otherwise, H1 must be an induced subgraph of G. Note that rank(2I + D(H1)) = 5, a contradiction.
Let N = Nv2\Nv4 and N′ = Nv3\Nv1 .

Claim 7. N and N′ are independent sets
Without loss of generality, we only consider N. Note that uv1 < E(G) for every vertex u ∈ N\{v1} by

Claim 4. If |N| = 1 or 2, then the assertion holds obviously. If |N| ≥ 3, suppose that there exist two vertices
v,w ∈ N\{v1} such that vw ∈ E(G), then 2I + D(G) contains B9 as a principal submatrix, where ai = 2 or 3
(i = 1, 2). However, rank(B9) = 6, a contradiction.
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Claim 8. G[Nv1 ,N] and G[Nv4 ,N′] are complete bipartite graphs.
We just consider G[Nv1 ,N] by the symmetry. If |N| = 1 or |Nv1 | = 1, then the assertion holds by the

definition of N and Nv1 . Now suppose that |Nv1 | > 1 and |N| > 1. Let u ∈ N\v1 and v ∈ Nv1\v2. By the
definition of N, we have u < Nv4 , i.e., d(u, v4) , 1. And d(u, v4) , 2 since H1 is a forbidden subgraph of G.
Thus d(u, v4) = 3. Then 2I + D(G) contains a principal submatrix of the type B10, where a = 2 or 3. However,
the rank of B10 is always greater than 4, a contradiction.
Claim 9. N ∪Nv4 and N′ ∪Nv1 are independent set.

Without loss of generality, we only consider N ∪ Nv4 . If |N| = 1 or |Nv4 | = 1, then the claim holds
obviously. If |N| > 1 and |Nv4 | > 1, let u ∈ N\v1 and v ∈ Nv4\v3, then 2I + D(G) contains B11 as a principal
submatrix. However, rank(B11) = 6, a contradiction.

Let N′ = W1 ∪W2, where W1 ⊂ N′ such that Nu ∩N , ∅ for u ∈W1. Since d = 3, W2 , ∅.
Claim 10. G[W1,N] is a complete bipartite graph.

Otherwise, H3 must be an induced subgraph of G, however, rank(2I + D(G)) ≥ rank(2I + D(H3)) = 6, a
contradiction.

By the above discussion, we have G � Ks,t1,t2
n1,n2

, where t1 ≥ 0 and t2 ≥ 1.

q
q

q
q q

q

Kc
s Kc

t1

Kc
n1 Kc

n2

q qq q
q

Kc
t2

Fig. 3 The graph Ks,t1,t2
n1,n2

.

Theorem 2.8. Let G be a graph on n vertices and D(G) be its distance matrix. If m−2(D(G)) = n − 4, then

G � Kn1,n2,n3,n4 , Ka1,a2,a3
b1,b2,b3

, or Ks,t1,t2
c1,c2

, where a1, a2, a3 ≥ 1, at least one of {b1, b2, b3} greater than 0 and
3∑

i=1
ai = n −

3∑
i=1

bi

and s + t1 + t2 = n − c1 − c2, s, t2, c1, c2 > 0 and t1 ≥ 0.

Proof. m−2(D(G)) = n − 4, then we have rank(2I + D(G)) = 4. If d(G) ≥ 4, then G must contain P5 as an
induced subgraph, however, rank(2I + D(G)) ≥ rank(2I + D(P5)) = 5. This contradiction shows that d(G) ≤ 3.
Thus we can complete the proof by Lemmas 2.6 and 2.7.

3. Further results on D-cospectral

Lemma 3.1. [1]. For n × n matrices A and B, the following are equivalent:

1. A and B are cospectral;
2. A and B have the same characteristic polynomial;
3. tr(Ai) = tr(Bi) for i = 1, 2, · · · ,n.

Remark. Note that tr(D2(G)) =
n∑

i=1

n∑
j=1, j,i

d2
i j. Then tr(D2(Ka1,a2,a3

b1,b2,b3
)) = 4n2

−4n−6|E(Ka1,a2,a3
b1,b2,b3

)| and tr(D2(Ks,t1,t2
n1,n2

)) =

4n2
− 4n − 6|E(Ks,t1,t2

n1,n2
)| + 10st2.

Lemma 3.2. Let G = Ka1,a2,a3
b1,b2,b3

, where a1, a2, a3 ≥ 1, at least one of {b1, b2, b3} greater than 0 and
3∑

i=1
ai = n −

3∑
i=1

bi.

Then
PD(G)(λ) = (λ + 2)n−4(λ4

− (2n − 8)λ3 + α1λ
2 + α2λ + α3),

where α1 = 3 a1a2 + 3 a1a3 + 3 a1b1 + 3 a2a3 + 3 a2b2 + 3 a3b3 + 3 b1b2 + 3 b1b3 + 3 b2b3 − 12n + 24, α2 = −4 a1a2a3 +
2 a1a2b3 + 2 a1a3b2 + 2 a1b2b3 + 2 a2a3b1 + 2 a2b1b3 + 2 a3b1b2 − 4 b1b2b3 + 12 a1a2 + 12 a1a3 + 12 a1b1 + 12 a2a3 +
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12 a2b2 +12 a3b3 +12 b1b2 +12 b1b3 +12 b2b3−24n+32 and α3 = −3 a1a2a3b1−3 a1a2a3b2−3 a1a2a3b3−3 a1a2b1b3−

3 a1a2b2b3−3 a1a3b1b2−3 a1a3b2b3−3 a1b1b2b3−3 a2a3b1b2−3 a2a3b1b3−3 a2b1b2b3−3 a3b1b2b3−8 a1a2a3+4 a1a2b3+
4 a1a3b2 + 4 a1b2b3 + 4 a2a3b1 + 4 a2b1b3 + 4 a3b1b2 − 8 b1b2b3 + 12 a1a2 + 12 a1a3 + 12 a1b1 + 12 a2a3 + 12 a2b2 +
12 a3b3 + 12 b1b2 + 12 b1b3 + 12 b2b3 − 16n + 16.

Proof. Note that

D(G) =



2Ja1 − 2Ia1 Ja1×a2 Ja1×a3 Ja1×b1 2Ja1×b2 2Ja1×b3

Ja2×a1 2Ja2 − 2Ia2 Ja2×a3 2Ja2×b1 Ja2×b2 2Ja2×b3

Ja3×a1 Ja3×a2 2Ja3 − 2Ia3 2Ja3×b1 2Ja3×b2 Ja3×b3

Jb1×a1 2Jb1×a2 2Jb1×a3 2Jb1 − 2Ib1 Jb1×b2 Jb1×b3

2Jb2×a1 Jb2×a2 2Jb2×a3 Jb2×b1 2Jb2 − 2Ib2 Jb2×b3

2Jb3×a1 2Jb3×a2 Jb3×a3 Jb3×b1 Jb3×b2 2Jb3 − 2Ib3


,

then det(λI −D(G)) = (λ + 2)n−6
· f (λ), where

f (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − 2a1 + 2 −a2 −a3 −b1 −2b2 −2b3
−a1 λ − 2a2 + 2 −a3 −2b1 −b2 −2b3
−a1 −a2 λ − 2a3 + 2 −2b1 −2b2 −b3
−a1 −2a2 −2a3 λ − 2b1 + 2 −b2 −b3
−2a1 −a2 −2a3 −b1 λ − 2b2 + 2 −b3
−2a1 −2a2 −a3 −b1 −b2 λ − 2b3 + 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

= (λ + 2)(λ4
− (2n − 8)λ3 + α1λ2 + α2λ + α3),

where α1 = 3 a1a2 + 3 a1a3 + 3 a1b1 + 3 a2a3 + 3 a2b2 + 3 a3b3 + 3 b1b2 + 3 b1b3 + 3 b2b3 − 12n + 24, α2 = −4 a1a2a3 +
2 a1a2b3 + 2 a1a3b2 + 2 a1b2b3 + 2 a2a3b1 + 2 a2b1b3 + 2 a3b1b2 − 4 b1b2b3 + 12 a1a2 + 12 a1a3 + 12 a1b1 + 12 a2a3 +
12 a2b2 +12 a3b3 +12 b1b2 +12 b1b3 +12 b2b3−24n+32 and α3 = −3 a1a2a3b1−3 a1a2a3b2−3 a1a2a3b3−3 a1a2b1b3−

3 a1a2b2b3−3 a1a3b1b2−3 a1a3b2b3−3 a1b1b2b3−3 a2a3b1b2−3 a2a3b1b3−3 a2b1b2b3−3 a3b1b2b3−8 a1a2a3+4 a1a2b3+
4 a1a3b2 + 4 a1b2b3 + 4 a2a3b1 + 4 a2b1b3 + 4 a3b1b2 − 8 b1b2b3 + 12 a1a2 + 12 a1a3 + 12 a1b1 + 12 a2a3 + 12 a2b2 +
12 a3b3 + 12 b1b2 + 12 b1b3 + 12 b2b3 − 16n + 16.

Lemma 3.3. Let G = Ks,t1,t2
n1,n2

, where s, t2,n1,n2 are positive integers ,t1 ≥ 0 and s + t1 + t2 = n − n1 − n2. Then

PD(G)(λ) = (λ + 2)n−4[λ4
− (2n − 8)λ3 + β1λ

2 + β2λ + β3],

where β1 = 3 sn1 + 3 st1−5 st2 + 3 n1n2 + 3 t1n2 + 3 t2n2−12n + 24, β2 = 8 sn1t2 + 8 st1t2 + 8 st2n2 + 12 sn1 + 12 st1−

20 st2 + 12 n1n2 + 12 t1n2 + 12 t2n2 − 24n + 32 and β3 = −12 sn1t2n2 − 12 st1t2n2 + 16 sn1t2 + 16 st1t2 + 16 st2n2 +
12 sn1 + 12 st1 − 20 st2 + 12 n1n2 + 12 t1n2 + 12 t2n2 − 16n + 16.

Proof. Note that

D(G) =


2Jn1 − 2In1 Jn1×n2 Jn1×s 2Jn1×t1 2Jn1×t2

Jn2×n1 2Jn2 − 2In2 2Jn2×s Jn2×t1 Jn2×t2

Js×n1 2Js×n2 2Js − 2Is Js×t1 3Js×t2

2Jt1×n1 Jt1×n2 Jt1×s 2Jt1 − 2It1 2Jt1×t2

2Jt2×n1 Jt2×n2 3Jt2×s 2Jt2×t1 2Jt2 − 2It2

 ,
then

det(λI −D(G)) = (λ + 2)n−51(λ),

where

1(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
λ − (2n1 − 2) −n2 −s −2t1 −2t2
−n1 λ − (2n2 − 2) −2s −t1 −t2
−n1 −n2 λ − (2s − 2) −t1 −3t2
−2n1 −n2 −s λ − (2t1 − 2) −2t2
−2n1 −n2 −3s −2t1 λ − (2t2 − 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, we can get the result through a simple calculation.
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Lemma 3.4. Let G = S+
n , then G is determined by its D-spectrum.

Proof. By Lemma 3.2 we know that

PD(S+
n )(λ) = (λ + 2)n−4(λ4

− (2n − 8)λ3 + (−9n + 24)λ2 + (−10n + 22)λ − 3n + 5).

Let H be a connected graph such that Spec(D(H)) = Spec(D(S+
n )), then H � Ka1,a2,a3

b1,b2,b3
or H � Ks,t1,t2

n1,n2
.

Case 1. H � Ka1,a2,a3
b1,b2,b3

.
Since tr(D2(H)) = tr(D2(S+

n )), we know that |V(H)| = |E(H)| = n, i.e., H must be a unicyclic graphs. Thus
a1 = a2 = a3 = 1 and b1 = n − 3, b2 = b3 = 0, i.e., H � S+

n .
Case 2. H � Ks,t1,t2

n1,n2
.

Since tr(D2(H)) = tr(D2(S+
n )), we know that 3|E(Ks,t1,t2

n1,n2
)| − 5st2 = 3n. And by PD(H)(λ) = PD(S+

n )(λ), we get
that β2 = 8st2(n1 + n2 + t1) + 4(3|E(Ks,t1,t2

n1,n2
)| − 5st2) − 24n + 32 = −10n + 22, then 4st2(n1 + n2 + t1) = n − 5 and

n − 5 is even. In particular, 1(−2) = −12st2n2(n1 + t1), thus we get that 4st2n2(n1 + t1) = n − 3. Note that
2(n− 5) = n− 5 + n− 3− 2, then we discover that n− 5 = 2st2[n1 + n2 + t1 + n2(n1 + t1)]− 1 which means that
n − 5 is odd, a contradiction.

Therefore, S+
n is determined by its D-spectrum.

The following result is proved by Xue, Liu and Jia [9] in a different way.

Theorem 3.5. Let G = Sa,b (a + b = n − 2), then G is determined by its D-spectrum.

Proof. By Lemma 3.3 we know that

PD(Sa,b)(λ) = (λ + 2)n−4(λ4
− (2n − 8)λ3 + (−5ab − 9n + 21)λ2 + (−4ab − 12n + 20)λ − 4n + 4).

Let H be a connected graph such that Spec(D(H)) = Spec(D(Sa,b)), then H � Ka1,a2,a3
b1,b2,b3

or H � Ks,t1,t2
n1,n2

.
Case 1. H � Ka1,a2,a3

b1,b2,b3
.

Since tr(D2(H)) = tr(D2(Sa,b)), we know that |E(H)| = |E(Sa,b)| − 5
3 ab. We observe that |E(Sa,b)| = n − 1, but

it is impossible that the number of edges of H less than n − 1.
Case 2. H � Ks,t1,t2

n1,n2
.

We first know that |E(H)| = |E(Sa,b)|+ 5
3 (st2 − ab) by tr(D2(H)) = tr(D2(Sa,b)). Since PD(H(λ) = PD(Sa,b)(λ) and

1(−2) = −12st2n2(n1 + t1), we get that st2n2(n1 + t1) = ab, If n2(n1 + t1) > 1, then st2 < ab. Thus |E(H)| < n − 1,
a contradiction. So we have n2(n1 + t1) = 1, i.e., n1 = n2 = 1 and t1 = 0. Thus H � Ss,t2 . Combining st2 = ab
the result can be obtained easily.

Therefore, Sa,b is determined by its D-spectrum.

Problem Is any graph G with m−2(D(G)) = n − 4 determined by its D-spectrum?
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