The Multiplicity of -2 as an Eigenvalue of the Distance Matrix of Graphs

Dan Li ${ }^{\text {a }}$, Jixiang Meng ${ }^{\text {a }}$
${ }^{a}$ College of Mathematics and System Sciences, Xinjiang University,Urumqi, Xinjiang 830046, P.R.China

Abstract

Let $D(G)$ be the distance matrix and let $\lambda_{1}(D(G)) \geq \cdots \geq \lambda_{n}(D(G))$ be the corresponding eigenvalues of a connected graph G. Let $m_{\lambda}(D)$ denote the multiplicity of the eigenvalue λ of the distance matrix D of G. In this paper, we characterize the graphs with $m_{-2}(D(G))=n-i$, where $i=1,2,3,4$. Furthermore, we show that both S_{n}^{+}and $S_{a, b}(a+b=n-2)$ are determined by their D-spectrum..

1. Introduction

In this paper we consider simple and connected graphs. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $E(G)$. Let $A(G)=\left(a_{i j}\right)_{n \times n}$ be the $(0,1)$-adjacency matrix of G, where $a_{i j}=1$ if $v_{i} v_{j} \in E(G)$ and $a_{i j}=0$ otherwise. The diameter of G, denoted by d or $d(G)$, is the maximum distance between any pair of vertices of G. The induced subgraph $G[X]$ is the subgraph of G whose vertex set is X and whose edge set consists of all edges of G which have both ends in X.

Let $D(G)=\left(d_{i j}\right)_{n \times n}$ be the distance matrix of a connected graph G, where $d_{i j}=d_{G}\left(v_{i}, v_{j}\right)$ is defined to be the length of shortest path between v_{i} and v_{j}. The polynomial $P_{D}(\lambda)=\operatorname{det}(\lambda I-D(G))$ is defined as the distance characteristic polynomial of the graph G. Let $\lambda_{1}(D(G)) \geq \cdots \geq \lambda_{n}(D(G))$ be the distance spectrum of G. Let $m_{\lambda}(D)$ denote the multiplicity of the eigenvalue λ of the distance matrix D of G. As usual, let K_{n}, P_{n} and $K_{n_{1}, n_{2}, \cdots, n_{k}}$, where $\sum_{i=1}^{k} n_{i}=n$, denote the complete graph, the path and the complete k-partite graph with order n, respectively. The complete product $G_{1} \vee G_{2}$ of graphs G_{1} and G_{2} is the graph obtained from $G_{1} \cup G_{2}$ by joining every vertex of G_{1} with every vertex of G_{2}. Let $K_{s, t}^{r}=K_{r} \vee\left(K_{s} \cup K_{t}\right)$ with $r \geq 1$. A block of G is a maximal connected subgraph of G that has no cut-vertex. A graph G is a clique tree if each block of G is a clique. Let S_{n}^{+}denote the graph obtained from $K_{1, n-1}$ by adding an edge and let $S_{a, b}(a+b=n-2)$ denote the double star obtained by adding a pendent vertices to one end vertex of P_{2} and b pendent vertices to the other.

The distance matrix of a connected graph has been studied extensively. Lin , Liu and Lu [4] showed that the distance matrix of a clique tree is non-singular. Moreover, they also proved that the distance matrix of a clique tree has exactly one positive D-eigenvalue. In addition, they determined the extremal graphs with maximum and minimum distance energy among all clique trees.

[^0]Two graphs are said to be D-cospectral if they have the same distance spectrum. A graph G is said to be determined by the D-spectra if there is no other nonisomorphic graph D-cospectral to G. Lin et al.[3] proved that the complete bipartite graph and the complete split $K_{a} \vee K_{b}^{c}$ graph are determined by their D-spectra, and conjectured that the complete k-partite graph is determined by its D-spectra. Jin and Zhang [8] confirmed the conjecture. Lin, Zhai and Gong [6] showed that the graph $K_{s, t}^{r}$ is determined by its D-spectra. Lin [5] showed that connected graphs with $\lambda_{n}(D) \geq-1-\sqrt{2}$ are determined by their distance spectra.

Cámara and Haemers [7] characterized graphs with $m_{-1}(A(G))=n-i$, where $i=2,3$, and they showed that the graphs are determined by their adjacency spectrum, as well. So far, there are not many results on the multiplicity of eigenvalues of the distance matrix. In this paper, we characterize the graphs with $m_{-2}(D(G))=n-i$, where $i=1,2,3,4$. Furthermore, we show that S_{n}^{+}and $S_{a, b}(a+b=n-2)$ are determined by their D-spectrum.

2. The multiplicity of $\mathbf{- 2}$

In this section, we characterize the graphs with $m_{-2}(D(G))=n-i$, where $i=1,2,3,4$. Obviously, K_{1} is the only graph with $m_{-2}(D(G))=n-1$. Since $m_{-2}\left(D\left(K_{n}\right)\right)=0$, in the following we just consider the graphs with $m_{-2}(D(G)) \geq 1$.

Lemma 2.1. [3]. Let G be a connected graph and D be the distance matrix of G. Then $\lambda_{n}(D)=-2$ with multiplicity $n-k$ if and only if G is a complete k-partite graph for $2 \leq k \leq n-1$.

Lemma 2.2. [8]. Let $G=K_{n_{1}, n_{2}, \cdots, n_{k}}$ be a complete k-partite graph with $\sum_{i=1}^{k} n_{i}=n$. Then G is determined by its D-spectrum.

Theorem 2.3. Let G be a graph on n vertices and $D(G)$ be its distance matrix. If $m_{-2}(D(G))=n-2$, then $G \cong K_{n_{1}, n_{2}}$, and therefore G is determined by its D-spectrum.

Proof. Suppose that G has eigenvalue -2 with multiplicity $n-2$, then $2 I+D(G)$ has rank 2. If $\operatorname{diam}(G) \geq 3$, then $2 I+D\left(P_{4}\right)$ is a principal submatrix of $2 I+D(G)$, and $\operatorname{rank}(2 I+D(G)) \geq \operatorname{rank}\left(2 I+D\left(P_{4}\right)\right)=4$, a contradiction. Since $G \not \approx K_{n}$, $\operatorname{diam}(G)=2$. If G has two nonadjacent vertices with different neighbors, then G must contain H which is a triangle with one pendant edge or C_{5} as an induced subgraph. However, $\operatorname{rank}(2 I+D(H))=4$ and $\operatorname{rank}\left(2 I+D\left(C_{5}\right)\right)=5$, i.e., $\operatorname{rank}(2 I+D(G)) \geq 4$, a contradiction. Therefore, any two nonadjacent vertices of G have the same neighbors, which means that G is a complete multipartite graph. By the sufficiency of Lemma 2.1, we have that -2 is the least distance eigenvalue of G. Note that $m_{-2}=n-2$, then by the necessity of Lemma 2.1 we know that $G \cong K_{n_{1}, n_{2}}$. Clearly, G is determined by its D-spectrum by Lemma 2.2 .

Theorem 2.4. Let G be a graph on n vertices and $D(G)$ be its distance matrix. If $m_{-2}(D(G))=n-3$, then $G \cong K_{n_{1}, n_{2}, n_{3}}$, and therefore G is determined by its D-spectrum.

Proof. Suppose that G has eigenvalue -2 with multiplicity $n-3$, then $2 I+D(G)$ has rank 3 . If $\operatorname{diam}(G) \geq 3$, then $2 I+D\left(P_{4}\right)$ is a principal submatrix of $2 I+D(G)$, and $\operatorname{rank}(2 I+D(G)) \geq \operatorname{rank}\left(2 I+D\left(P_{4}\right)\right)=4$, a contradiction. Since $G \not \equiv K_{n}$, $\operatorname{diam}(G)=2$. If G has two nonadjacent vertices with different neighbors, then G must contain H which is a triangle with one pendant edge or C_{5} as an induced subgraph. However, $\operatorname{rank}(2 I+D(H))=4$ and $\operatorname{rank}\left(2 I+D\left(C_{5}\right)\right)=5$, i.e., $\operatorname{rank}(2 I+D(G)) \geq 4$, a contradiction. Therefore, any two nonadjacent vertices of G have the same neighbors, which means that G is a complete multipartite graph. By the sufficiency of Lemma 2.1, we have that -2 is the least distance eigenvalue of G. Note that $m_{-2}=n-3$, then by the necessity of Lemma 2.1 we know that $G \cong K_{n_{1}, n_{2}, n_{3}}$. By Lemma 2.2, G is determined by its D-spectrum.

Let $K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}$ be the graph depicted in Fig 1.

Fig. 1 The graph $K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{2}}$.
The inertia of the matrix M is the triple of integers $\left(n_{+}(M), n_{0}(M), n_{-}(M)\right)$, where $n_{+}(M), n_{0}(M)$ and $n_{-}(M)$ denote the number of positive, 0 and negative eigenvalues of M, respectively. If $\operatorname{det}(M)=0$, then we call M singular; otherwise, we call M non-singular.

Lemma 2.5. [2]. Let A be a real symmetric $n \times n$ matrix, partitioned as

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

If A_{11} is square and nonsingular, then $\operatorname{In}(A)=\operatorname{In}\left(A_{11}\right)+\operatorname{In}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)$, where $\operatorname{In}(A)$ denotes the inertia of A.
Lemma 2.6. Let G be a connected graph with order n and diameter 2. Let $D(G)$ be its distance matrix. If $m_{-2}(D(G))=$ $n-4$, then $G \cong K_{n_{1}, n_{2}, n_{3}, n_{4}}$, where $n_{1} \geq n_{2} \geq n_{3} \geq n_{4} \geq 1$ or $G \cong K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{2}}$, where $a_{1}, a_{2}, a_{3} \geq 1$, at least one of $\left\{b_{1}, b_{2}, b_{3}\right\}$ greater than 0 and $\sum_{i=1}^{3} a_{i}=n-\sum_{i=1}^{3} b_{i}$.

Proof. $2 I+D(G)$ is a symmetric matrix with rank 4 , and we can assume that

$$
2 I+D(G)=\left(\begin{array}{cc}
A_{1} & X \\
X^{T} & A_{2}
\end{array}\right)
$$

where A_{1} is a nonsingular 4×4 matrix.
Note that $\operatorname{rank}(2 I+D(G))=\operatorname{rank}\left(A_{1}\right)=4$. Then we get that $A_{2}=X^{T} A_{1}^{-1} X$ by Lemma 2.5 , where each column \mathbf{x} of X satisfies $\mathbf{x}^{T} A_{1}^{-1} \mathbf{x}=2$ and for any different columns \mathbf{x}_{i} and \mathbf{x}_{j} of X satisfy $\mathbf{x}_{i}^{T} A_{1}^{-1} \mathbf{x}_{j}=1$ or 2 . There are only two cases for which $\operatorname{rank}\left(A_{1}\right)=4$:

$$
\begin{aligned}
& \text { when } A_{1}=\left(\begin{array}{llll}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right) \text {, in which case } A_{1}^{-1}=\left(\begin{array}{cccc}
\frac{4}{5} & -\frac{1}{5} & -\frac{1}{5} & -\frac{1}{5} \\
-\frac{1}{5} & \frac{4}{5} & -\frac{1}{5} & -\frac{1}{5} \\
-\frac{1}{5} & -\frac{1}{5} & \frac{4}{5} & -\frac{1}{5} \\
-\frac{1}{5} & -\frac{1}{5} & -\frac{1}{5} & \frac{4}{5}
\end{array}\right) \text {; } \\
& \text { when } A_{1}=\left(\begin{array}{llll}
2 & 1 & 1 & 2 \\
1 & 2 & 1 & 2 \\
1 & 1 & 2 & 1 \\
2 & 2 & 1 & 2
\end{array}\right) \text {, in which case } A_{1}^{-1}=\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \\
-1 & 0 & 0 & 1 \\
0 & 0 & \frac{2}{3} & -\frac{1}{3} \\
1 & 1 & -\frac{1}{3} & -\frac{4}{3}
\end{array}\right) .
\end{aligned}
$$

In the first case, the possible columns of X are $\left(\begin{array}{llll}1 & 1 & 1 & 2\end{array}\right)^{T},\left(\begin{array}{llll}1 & 1 & 2 & 1\end{array}\right)^{T},\left(\begin{array}{llll}1 & 2 & 1 & 1\end{array}\right)^{T}$ and $\left(\begin{array}{lll}2 & 1 & 1\end{array}\right)^{T}$. In the second case, the possible columns of X are $\left(\begin{array}{llll}2 & 1 & 1 & 2\end{array}\right)^{T},\left(\begin{array}{llll}1 & 2 & 1 & 2\end{array}\right)^{T},\left(\begin{array}{lll}1 & 1 & 2\end{array}\right)^{T},\left(\begin{array}{lll}2 & 2 & 1\end{array}\right)^{T},\left(\begin{array}{lll}2 & 1 & 2\end{array}\right)^{T}$ and (1 22211$)^{T}$. Combining with $A_{2}=X^{T} A_{1}^{-1} X$, we can obtain the following two possibilities for $2 I+D(G)$:

$$
2 I+D(G)=\left(\begin{array}{cccc}
2 J_{n_{1} \times n_{1}} & J_{n_{1} \times n_{2}} & J_{n_{1} \times n_{3}} & J_{n_{1} \times n_{4}} \\
J_{n_{2} \times n_{1}} & 2 J_{n_{2} \times n_{2}} & J_{n_{2} \times n_{3}} & J_{n_{2} \times n_{4}} \\
J_{n_{3} \times n_{1}} & J_{n_{3} \times n_{2}} & 2 J_{n_{3} \times n_{3}} & J_{n_{3} \times n_{4}} \\
J_{n_{4} \times n_{1}} & J_{n_{4} \times n_{2}} & J_{n_{4} \times n_{3}} & 2 J_{n_{4} \times n_{4}}
\end{array}\right)
$$

or

$$
2 I+D(G)=\left(\begin{array}{cccccc}
2 J_{a_{1} \times a_{1}} & J_{a_{1} \times a_{2}} & J_{a_{1} \times a_{3}} & J_{a_{1} \times b_{1}} & 2 J_{a_{1} \times b_{2}} & 2 J_{a_{1} \times b_{3}} \\
J_{a_{2} \times a_{1}} & 2 J_{a_{2} \times a_{2}} & J_{a_{2} \times a_{3}} & 2 J_{a_{2} \times b_{1}} & J_{a_{2} \times b_{2}} & 2 J_{a_{2} \times b_{3}} \\
J_{a_{3} \times a_{1}} & J_{a_{3} \times a_{2}} & 2 J_{a_{3} \times a_{3}} & 2 J_{a_{3} \times b_{1}} & 2 J_{a_{3} \times b_{2}} & J_{a_{3} \times b_{3}} \\
J_{b_{1} \times a_{1}} & 2 J_{b_{1} \times a_{2}} & 2 J_{b_{1} \times a_{3}} & 2 J_{b_{1} \times b_{1}} & J_{b_{1} \times b_{2}} & J_{b_{1} \times b_{3}} \\
2 J_{b_{2} \times a_{1}} & J_{b_{2} \times a_{2}} & 2 J_{b_{2} \times a_{3}} & J_{b_{2} \times b_{1}} & 2 J_{b_{2} \times b_{2}} & J_{b_{2} \times b_{3}} \\
2 J_{b_{3} \times a_{1}} & 2 \int_{b_{3} \times a_{2}} & J_{b_{3} \times a_{3}} & J_{b_{3} \times b_{1}} & J_{b_{3} \times b_{2}} & 2 J_{b_{3} \times b_{3}}
\end{array}\right) .
$$

Therefore, $G \cong K_{n_{1}, n_{2}, n_{3}, n_{4}}$ or $G \cong K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}$.

Fig. 2 The forbidden subgraphs H_{1}, H_{2}, H_{3}.
Let $K_{n_{1}, n_{2}}^{S, t_{1}, t_{2}}$ denote the graph depicted in Fig 3.
Lemma 2.7. Let G be a connected graph with order $n \geq 5$ and diameter 3. Let $D(G)$ be its distance matrix. If $m_{-2}(D(G))=n-4$, then $G \cong K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}$, where $s+t_{1}+t_{2}=n-n_{1}-n_{2}, s, t_{2}, n_{1}, n_{2}>0$ and $t_{1} \geq 0$.

Proof. Suppose that G has eigenvalue -2 with multiplicity $n-4$, then $\operatorname{rank}(2 I+D(G))=4$. Since $d(G)=3, G$ must contain $P_{4}=v_{1} v_{2} v_{3} v_{4}$ as an induced subgraph and $N_{v_{1}} \cap N_{v_{4}}=\emptyset$. Then we can obtain the following claims.
Claim 1. For any vertex $v \in V(G) \backslash V\left(P_{4}\right), u \in N_{v_{1}} \cup N_{v_{2}} \cup N_{v_{3}} \cup N_{v_{4}}$.
Otherwise, $2 I+D(G)$ must contain a principal submatrix of the type B, where $b_{i}=2$ or $3, i=1,2,3,4$. Obviously, there are 16 possibilities of B, however, the rank of B is always greater than 4 , a contradiction.
$B=\left(\begin{array}{ccccc}2 & 1 & 2 & 3 & b_{1} \\ 1 & 2 & 1 & 2 & b_{2} \\ 2 & 1 & 2 & 1 & b_{3} \\ 3 & 2 & 1 & 2 & b_{4} \\ b_{1} & b_{2} & b_{3} & b_{4} & 2\end{array}\right), B_{1}=\left(\begin{array}{ccccc}2 & 1 & 2 & 3 & 1 \\ 1 & 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 1 & 2 \\ 3 & 2 & 1 & 2 & a \\ 1 & 1 & 2 & a & 2\end{array}\right), B_{2}=\left(\begin{array}{ccccc}2 & 1 & 2 & 3 & 1 \\ 1 & 2 & 1 & 2 & 2 \\ 2 & 1 & 2 & 1 & a_{1} \\ 3 & 2 & 1 & 2 & a_{2} \\ 1 & 2 & a_{1} & a_{2} & 2\end{array}\right)$.
Claim 2. For any vertex $u \in N_{v_{1}} \backslash\left\{v_{2}\right\}, u v_{2} \notin E(G)$.
Otherwise, $2 I+D(G)$ must contain B_{1}, where $a=2$ or 3 , or $2 I+D\left(H_{2}\right)$ as a principal submatrix. Note that $\operatorname{det}\left(B_{1}\right)=-12 a+12 \neq 0$ and $\operatorname{rank}\left(2 I+D\left(H_{2}\right)\right)=5$, a contradiction.

Similarly, we obtain that $u v_{3} \notin E(G)$ for any vertex $u \in N_{v_{4}} \backslash\left\{v_{3}\right\}$.
Claim 3. $N_{v_{1}} \subseteq N_{v_{3}}$ and $N_{v_{4}} \subseteq N_{v_{2}}$.
By the symmetry, we just consider $N_{v_{1}} \subseteq N_{v_{3}}$. The result is trivial when $\left|N_{v_{1}}\right|=1$. We suppose that there exists a vertex $u \in N_{v_{1}}$ but $u \notin N_{v_{3}}$, then $2 I+D(G)$ must contain B_{2}, where $a_{i}=2$ or 3 . Note that $\operatorname{det}\left(B_{2}\right)=4\left(a_{1}-1\right)\left(2 a_{1}-3 a_{2}+4\right) \neq 0$, thus $N_{v_{1}} \subseteq N_{v_{3}}$. Similarly, $N_{v_{4}} \subseteq N_{v_{2}}$.
Claim 4. $N_{v_{1}}$ and $N_{v_{4}}$ are independent sets.
By the symmetry, we just consider $N_{v_{1}}$. The result is trivial when $\left|N_{v_{1}}\right|=1$ or 2 . Now suppose that there are two vertices $u, v \in N_{v_{1}} \backslash\left\{v_{2}\right\}$ such that $u v \in E(G)$, then H_{2} must be an induced subgraph of G since $u, v \in N_{v_{3}}$ by Claim 3. Note that $\operatorname{rank}\left(2 I+D\left(H_{2}\right)\right)=5$, a contradiction. Thus $N_{v_{1}}$ and $N_{v_{4}}$ are independent sets.
$B_{3}=\left(\begin{array}{lllll}2 & 1 & 2 & 3 & 3 \\ 1 & 2 & 1 & 2 & 2 \\ 2 & 1 & 2 & 1 & 2 \\ 3 & 2 & 1 & 2 & 1 \\ 3 & 2 & 2 & 1 & 2\end{array}\right), B_{4}=\left(\begin{array}{lllll}2 & 1 & 2 & 3 & 1 \\ 1 & 2 & 1 & 2 & 2 \\ 2 & 1 & 2 & 1 & a \\ 3 & 2 & 1 & 2 & 3 \\ 1 & 2 & a & 3 & 2\end{array}\right), B_{5}=\left(\begin{array}{lllll}2 & 1 & 2 & 3 & 2 \\ 1 & 2 & 1 & 2 & a \\ 2 & 1 & 2 & 1 & 2 \\ 3 & 2 & 1 & 2 & 1 \\ 2 & a & 2 & 1 & 2\end{array}\right)$,
$B_{6}=\left(\begin{array}{ccccc}2 & 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 & a_{1} \\ 2 & 1 & 2 & a_{2} & 2 \\ 1 & 2 & a_{2} & 2 & a_{3} \\ 2 & a_{1} & 2 & a_{3} & 2\end{array}\right), B_{7}=\left(\begin{array}{cccccc}2 & 1 & 2 & 3 & 1 & 2 \\ 1 & 2 & 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 1 & 1 & 2 \\ 3 & 2 & 1 & 2 & 2 & 1 \\ 1 & 2 & 1 & 2 & 2 & a \\ 2 & 1 & 2 & 1 & a & 2\end{array}\right), B_{8}=\left(\begin{array}{cccccc}2 & 1 & 3 & 1 & 1 & 2 \\ 1 & 2 & 2 & 2 & 2 & a_{1} \\ 3 & 2 & 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 2 & 2 & a_{2} \\ 1 & 2 & 2 & 2 & 2 & 1 \\ 2 & a_{1} & 1 & a_{2} & 1 & 2\end{array}\right)$.
Claim 5. $G\left[N_{v_{1}}, N_{v_{4}}\right]$ is a complete bipartite graph.
Otherwise, if $\left|N_{v_{1}}\right|=1$ or $\left|N_{v_{4}}\right|=1$, then B_{3} must be a principal submatrix of $2 I+D(G)$ since $d=3$ and Claim 4. However, $\operatorname{rank}(2 I+D(G)) \geq \operatorname{rank}\left(B_{3}\right)=5$, a contradiction. If $\left|N_{v_{1}}\right|>1$ and $\left|N_{v_{4}}\right|>1$, then the following fact must hold:
Fact. For any vertex $v \in N_{v_{1}}\left(\right.$ or $\left.N_{v_{4}}\right), N_{v} \cap N_{v_{4}}\left(\right.$ or $\left.N_{v_{1}}\right) \neq \emptyset$.
Otherwise, without loss of generality, suppose that there exists a vertex $u \in N_{v_{1}}$ such that $N_{u} \cap N_{v_{4}}=\emptyset$, then $d\left(u, v_{4}\right)=3, d\left(u, v_{3}\right)=2$ or 3 and $d\left(u, v_{1}\right)=1, d\left(u, v_{2}\right)=2$ by Claim 4. Thus $2 I+D(G)$ contains B_{4} as a principal submatrix, where $a=2$ or 3 . However, $\operatorname{rank}(2 I+D(G)) \geq \operatorname{rank}\left(B_{4}\right)=5(a=2$ or 3$)$, a contradiction.

If $G\left[N_{v_{1}}, N_{v_{4}}\right]$ is not a complete bipartite graph, then there exists a vertex $u \in N_{v_{1}}$ and a vertex $v \in N_{v_{4}}$ such that $u v \notin E(G)$.
Case 1. $u=v_{2}$ or $v=v_{3}$.
Without loss of generality, we just consider $u=v_{2}$. Then $v \neq v_{3}$ and $d\left(v, v_{1}\right)=2$ by Fact. Thus $2 I+D(G)$ contains B_{5} as a principal submatrix, where $a=2$ or 3 . However, $\operatorname{rank}\left(B_{5}\right)=5(a=2$ or 3$)$, a contradiction.
Case 2. $u \neq v_{2}$ and $v \neq v_{3}$.
$d\left(v, v_{1}\right)=2$ by Fact and $d\left(u, v_{2}\right)=d\left(v, v_{3}\right)=2$ by Claim 4.
Subcase $2.1\left\{u v_{3}, v v_{2}\right\} \nsubseteq E(G)$.
We consider the vertices $v_{1}, v_{2}, v_{3}, u, v$, then $2 I+D(G)$ contains a principal submatrix of the type B_{6}, where $a_{i}=2$ or $3, i=1,2,3$. Obviously, there are 8 possibilities of B_{6}, however, the rank of B_{6} is always greater than 4 , a contradiction.
$B_{9}=\left(\begin{array}{cccccc}2 & 1 & 2 & 3 & 2 & 2 \\ 1 & 2 & 1 & 2 & 1 & 1 \\ 2 & 1 & 2 & 1 & 2 & 2 \\ 3 & 2 & 1 & 2 & a_{1} & a_{2} \\ 2 & 1 & 2 & a_{1} & 2 & 1 \\ 2 & 1 & 2 & a_{2} & 1 & 2\end{array}\right), B_{10}=\left(\begin{array}{cccccc}2 & 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 \\ 3 & 2 & 1 & 2 & 3 & 2 \\ 2 & 1 & 2 & 3 & 2 & a \\ 1 & 2 & 1 & 2 & a & 2\end{array}\right), B_{11}=\left(\begin{array}{llllll}2 & 1 & 2 & 3 & 2 & 2 \\ 1 & 2 & 1 & 2 & 1 & 1 \\ 2 & 1 & 2 & 1 & 2 & 2 \\ 3 & 2 & 1 & 2 & 2 & 1 \\ 2 & 1 & 2 & 2 & 2 & 1 \\ 2 & 1 & 2 & 1 & 1 & 2\end{array}\right)$.
Subcase $2.2\left\{u v_{3}, v v_{2}\right\} \subseteq E(G)$.
Then $2 I+D(G)$ contains a principal submatrix of the type B_{7}, where $a=2$ or 3 . Obviously, there are 2 possibilities of B_{7}, however, the rank of B_{7} is always greater than 4 , a contradiction.
Subcase $2.3 u v_{3} \in E(G)$ or $v v_{2} \in E(G)$.
Without loss of generality, suppose that $u v_{3} \in E(G)$. By Fact, there must exist a vertex $u^{\prime} \in N_{v_{1}} \backslash\left\{u, v_{2}\right\}$ such that $u^{\prime} v \in E(G)$. We consider vertice $v_{1}, v_{2}, v_{4}, u, u^{\prime}, v$, then $2 I+D(G)$ contains a principal submatrix of the type B_{8}, where $a_{i}=2$ or $3(i=1,2)$. Obviously, there are 4 possibilities of B_{8}, however, the rank of B_{8} is always greater than 4 , a contradiction.
Claim 6. For any vertex $w \in V(G) \backslash\left\{v_{1}, v_{4}, N_{v_{1}}, N_{v_{4}}\right\}, w$ is either the vertex of $N_{v_{2}}$ or the vertex of $N_{v_{3}}$.
Otherwise, H_{1} must be an induced subgraph of G. Note that $\operatorname{rank}\left(2 I+D\left(H_{1}\right)\right)=5$, a contradiction.
Let $N=N_{v_{2}} \backslash N_{v_{4}}$ and $N^{\prime}=N_{v_{3}} \backslash N_{v_{1}}$.
Claim 7. N and N^{\prime} are independent sets
Without loss of generality, we only consider N. Note that $u v_{1} \notin E(G)$ for every vertex $u \in N \backslash\left\{v_{1}\right\}$ by Claim 4. If $|N|=1$ or 2 , then the assertion holds obviously. If $|N| \geq 3$, suppose that there exist two vertices $v, w \in N \backslash\left\{v_{1}\right\}$ such that $v w \in E(G)$, then $2 I+D(G)$ contains B_{9} as a principal submatrix, where $a_{i}=2$ or 3 $(i=1,2)$. However, $\operatorname{rank}\left(B_{9}\right)=6$, a contradiction.

Claim 8. $G\left[N_{v_{1}}, N\right]$ and $G\left[N_{v_{4}}, N^{\prime}\right]$ are complete bipartite graphs.
We just consider $G\left[N_{v_{1}}, N\right]$ by the symmetry. If $|N|=1$ or $\left|N_{v_{1}}\right|=1$, then the assertion holds by the definition of N and $N_{v_{1}}$. Now suppose that $\left|N_{v_{1}}\right|>1$ and $|N|>1$. Let $u \in N \backslash v_{1}$ and $v \in N_{v_{1}} \backslash v_{2}$. By the definition of N, we have $u \notin N_{v_{4}}$, i.e., $d\left(u, v_{4}\right) \neq 1$. And $d\left(u, v_{4}\right) \neq 2$ since H_{1} is a forbidden subgraph of G. Thus $d\left(u, v_{4}\right)=3$. Then $2 I+D(G)$ contains a principal submatrix of the type B_{10}, where $a=2$ or 3 . However, the rank of B_{10} is always greater than 4 , a contradiction.
Claim 9. $N \cup N_{v_{4}}$ and $N^{\prime} \cup N_{v_{1}}$ are independent set.
Without loss of generality, we only consider $N \cup N_{v_{4}}$. If $|N|=1$ or $\left|N_{v_{4}}\right|=1$, then the claim holds obviously. If $|N|>1$ and $\left|N_{v_{4}}\right|>1$, let $u \in N \backslash v_{1}$ and $v \in N_{v_{4}} \backslash v_{3}$, then $2 I+D(G)$ contains B_{11} as a principal submatrix. However, $\operatorname{rank}\left(B_{11}\right)=6$, a contradiction.

Let $N^{\prime}=W_{1} \cup W_{2}$, where $W_{1} \subset N^{\prime}$ such that $N_{u} \cap N \neq \emptyset$ for $u \in W_{1}$. Since $d=3, W_{2} \neq \emptyset$.
Claim 10. $G\left[W_{1}, N\right]$ is a complete bipartite graph.
Otherwise, H_{3} must be an induced subgraph of G, however, $\operatorname{rank}(2 I+D(G)) \geq \operatorname{rank}\left(2 I+D\left(H_{3}\right)\right)=6$, a contradiction.

By the above discussion, we have $G \cong K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}$, where $t_{1} \geq 0$ and $t_{2} \geq 1$.

Fig. 3 The graph $K_{n_{1}, n_{2}}^{S, t_{1}, t_{2}}$.
Theorem 2.8. Let G be a graph on n vertices and $D(G)$ be its distance matrix. If $m_{-2}(D(G))=n-4$, then $G \cong K_{n_{1}, n_{2}, n_{3}, n_{4}}, K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}$, or $K_{c_{1}, c_{2}}^{s, t_{1}, t_{2}}$, where $a_{1}, a_{2}, a_{3} \geq 1$, at least one of $\left\{b_{1}, b_{2}, b_{3}\right\}$ greater than 0 and $\sum_{i=1}^{3} a_{i}=n-\sum_{i=1}^{3} b_{i}$ and $s+t_{1}+t_{2}=n-c_{1}-c_{2}, s, t_{2}, c_{1}, c_{2}>0$ and $t_{1} \geq 0$.

Proof. $m_{-2}(D(G))=n-4$, then we have $\operatorname{rank}(2 I+D(G))=4$. If $d(G) \geq 4$, then G must contain P_{5} as an induced subgraph, however, $\operatorname{rank}(2 I+D(G)) \geq \operatorname{rank}\left(2 I+D\left(P_{5}\right)\right)=5$. This contradiction shows that $d(G) \leq 3$. Thus we can complete the proof by Lemmas 2.6 and 2.7.

3. Further results on D-cospectral

Lemma 3.1. [1]. For $n \times n$ matrices A and B, the following are equivalent:

1. A and B are cospectral;
2. A and B have the same characteristic polynomial;
3. $\operatorname{tr}\left(A^{i}\right)=\operatorname{tr}\left(B^{i}\right)$ for $i=1,2, \cdots, n$.

Remark. Note that $\operatorname{tr}\left(D^{2}(G)\right)=\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} d_{i j}^{2}$. Then $\operatorname{tr}\left(D^{2}\left(K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}\right)\right)=4 n^{2}-4 n-6\left|E\left(K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}\right)\right|$ and $\operatorname{tr}\left(D^{2}\left(K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}\right)\right)=$ $4 n^{2}-4 n-6\left|E\left(K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}\right)\right|+10 s t_{2}$.

Lemma 3.2. Let $G=K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}$, where $a_{1}, a_{2}, a_{3} \geq 1$, at least one of $\left\{b_{1}, b_{2}, b_{3}\right\}$ greater than 0 and $\sum_{i=1}^{3} a_{i}=n-\sum_{i=1}^{3} b_{i}$. Then

$$
P_{D(G)}(\lambda)=(\lambda+2)^{n-4}\left(\lambda^{4}-(2 n-8) \lambda^{3}+\alpha_{1} \lambda^{2}+\alpha_{2} \lambda+\alpha_{3}\right)
$$

where $\alpha_{1}=3 a_{1} a_{2}+3 a_{1} a_{3}+3 a_{1} b_{1}+3 a_{2} a_{3}+3 a_{2} b_{2}+3 a_{3} b_{3}+3 b_{1} b_{2}+3 b_{1} b_{3}+3 b_{2} b_{3}-12 n+24, \alpha_{2}=-4 a_{1} a_{2} a_{3}+$ $2 a_{1} a_{2} b_{3}+2 a_{1} a_{3} b_{2}+2 a_{1} b_{2} b_{3}+2 a_{2} a_{3} b_{1}+2 a_{2} b_{1} b_{3}+2 a_{3} b_{1} b_{2}-4 b_{1} b_{2} b_{3}+12 a_{1} a_{2}+12 a_{1} a_{3}+12 a_{1} b_{1}+12 a_{2} a_{3}+$
$12 a_{2} b_{2}+12 a_{3} b_{3}+12 b_{1} b_{2}+12 b_{1} b_{3}+12 b_{2} b_{3}-24 n+32$ and $\alpha_{3}=-3 a_{1} a_{2} a_{3} b_{1}-3 a_{1} a_{2} a_{3} b_{2}-3 a_{1} a_{2} a_{3} b_{3}-3 a_{1} a_{2} b_{1} b_{3}-$ $3 a_{1} a_{2} b_{2} b_{3}-3 a_{1} a_{3} b_{1} b_{2}-3 a_{1} a_{3} b_{2} b_{3}-3 a_{1} b_{1} b_{2} b_{3}-3 a_{2} a_{3} b_{1} b_{2}-3 a_{2} a_{3} b_{1} b_{3}-3 a_{2} b_{1} b_{2} b_{3}-3 a_{3} b_{1} b_{2} b_{3}-8 a_{1} a_{2} a_{3}+4 a_{1} a_{2} b_{3}+$ $4 a_{1} a_{3} b_{2}+4 a_{1} b_{2} b_{3}+4 a_{2} a_{3} b_{1}+4 a_{2} b_{1} b_{3}+4 a_{3} b_{1} b_{2}-8 b_{1} b_{2} b_{3}+12 a_{1} a_{2}+12 a_{1} a_{3}+12 a_{1} b_{1}+12 a_{2} a_{3}+12 a_{2} b_{2}+$ $12 a_{3} b_{3}+12 b_{1} b_{2}+12 b_{1} b_{3}+12 b_{2} b_{3}-16 n+16$.

Proof. Note that

$$
D(G)=\left(\begin{array}{cccccc}
2 J_{a_{1}}-2 I_{a_{1}} & J_{a_{1} \times a_{2}} & J_{a_{1} \times a_{3}} & J_{a_{1} \times b_{1}} & 2 J_{a_{1} \times b_{2}} & 2 J_{a_{1} \times b_{3}} \\
J_{a_{2} \times a_{1}} & 2 J_{a_{2}}-2 I_{a_{2}} & J_{a_{2} \times a_{3}} & 2 J_{a_{2} \times b_{1}} & J_{a_{2} \times b_{2}} & 2 J_{a_{2} \times b_{3}} \\
J_{a_{3} \times a_{1}} & J_{a_{3} \times a_{2}} & 2 J_{a_{3}}-2 I_{a_{3}} & 2 J_{a_{3} \times b_{1}} & 2 J_{a_{3} \times b_{2}} & J_{a_{3} \times b_{3}} \\
J_{b_{1} \times a_{1}} & 2 J_{b_{1} \times a_{2}} & 2 J_{b_{1} \times a_{3}} & 2 J_{b_{1}}-2 I_{b_{1}} & J_{b_{1} \times b_{2}} & J_{b_{1} \times b_{3}} \\
2 J_{b_{2} \times a_{1}} & J_{b_{2} \times a_{2}} & 2 J_{b_{2} \times a_{3}} & J_{b_{2} \times b_{1}} & 2 J_{b_{2}}-2 I_{b_{2}} & J_{b_{2} \times b_{3}} \\
2 J_{b_{3} \times a_{1}} & 2 J_{b_{3} \times a_{2}} & J_{b_{3} \times a_{3}} & J_{b_{3} \times b_{1}} & J_{b_{3} \times b_{2}} & 2 J_{b_{3}}-2 I_{b_{3}}
\end{array}\right),
$$

then $\operatorname{det}(\lambda I-D(G))=(\lambda+2)^{n-6} \cdot f(\lambda)$, where
$f(\lambda)=\left|\begin{array}{cccccc}\lambda-2 a_{1}+2 & -a_{2} & -a_{3} & -b_{1} & -2 b_{2} & -2 b_{3} \\ -a_{1} & \lambda-2 a_{2}+2 & -a_{3} & -2 b_{1} & -b_{2} & -2 b_{3} \\ -a_{1} & -a_{2} & \lambda-2 a_{3}+2 & -2 b_{1} & -2 b_{2} & -b_{3} \\ -a_{1} & -2 a_{2} & -2 a_{3} & \lambda-2 b_{1}+2 & -b_{2} & -b_{3} \\ -2 a_{1} & -a_{2} & -2 a_{3} & -b_{1} & \lambda-2 b_{2}+2 & -b_{3} \\ -2 a_{1} & -2 a_{2} & -a_{3} & -b_{1} & -b_{2} & \lambda-2 b_{3}+2\end{array}\right|$.

$$
\left.=(\lambda+2)^{(} \lambda^{4}-(2 n-8) \lambda^{3}+\alpha_{1} \lambda^{2}+\alpha_{2} \lambda+\alpha_{3}\right)
$$

where $\alpha_{1}=3 a_{1} a_{2}+3 a_{1} a_{3}+3 a_{1} b_{1}+3 a_{2} a_{3}+3 a_{2} b_{2}+3 a_{3} b_{3}+3 b_{1} b_{2}+3 b_{1} b_{3}+3 b_{2} b_{3}-12 n+24, \alpha_{2}=-4 a_{1} a_{2} a_{3}+$ $2 a_{1} a_{2} b_{3}+2 a_{1} a_{3} b_{2}+2 a_{1} b_{2} b_{3}+2 a_{2} a_{3} b_{1}+2 a_{2} b_{1} b_{3}+2 a_{3} b_{1} b_{2}-4 b_{1} b_{2} b_{3}+12 a_{1} a_{2}+12 a_{1} a_{3}+12 a_{1} b_{1}+12 a_{2} a_{3}+$ $12 a_{2} b_{2}+12 a_{3} b_{3}+12 b_{1} b_{2}+12 b_{1} b_{3}+12 b_{2} b_{3}-24 n+32$ and $\alpha_{3}=-3 a_{1} a_{2} a_{3} b_{1}-3 a_{1} a_{2} a_{3} b_{2}-3 a_{1} a_{2} a_{3} b_{3}-3 a_{1} a_{2} b_{1} b_{3}-$ $3 a_{1} a_{2} b_{2} b_{3}-3 a_{1} a_{3} b_{1} b_{2}-3 a_{1} a_{3} b_{2} b_{3}-3 a_{1} b_{1} b_{2} b_{3}-3 a_{2} a_{3} b_{1} b_{2}-3 a_{2} a_{3} b_{1} b_{3}-3 a_{2} b_{1} b_{2} b_{3}-3 a_{3} b_{1} b_{2} b_{3}-8 a_{1} a_{2} a_{3}+4 a_{1} a_{2} b_{3}+$ $4 a_{1} a_{3} b_{2}+4 a_{1} b_{2} b_{3}+4 a_{2} a_{3} b_{1}+4 a_{2} b_{1} b_{3}+4 a_{3} b_{1} b_{2}-8 b_{1} b_{2} b_{3}+12 a_{1} a_{2}+12 a_{1} a_{3}+12 a_{1} b_{1}+12 a_{2} a_{3}+12 a_{2} b_{2}+$ $12 a_{3} b_{3}+12 b_{1} b_{2}+12 b_{1} b_{3}+12 b_{2} b_{3}-16 n+16$.
Lemma 3.3. Let $G=K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}$, where s, t_{2}, n_{1}, n_{2} are positive integers,$t_{1} \geq 0$ and $s+t_{1}+t_{2}=n-n_{1}-n_{2}$. Then

$$
P_{D(G)}(\lambda)=(\lambda+2)^{n-4}\left[\lambda^{4}-(2 n-8) \lambda^{3}+\beta_{1} \lambda^{2}+\beta_{2} \lambda+\beta_{3}\right]
$$

where $\beta_{1}=3 s n_{1}+3 s t_{1}-5 s t_{2}+3 n_{1} n_{2}+3 t_{1} n_{2}+3 t_{2} n_{2}-12 n+24, \beta_{2}=8 s n_{1} t_{2}+8 s t_{1} t_{2}+8 s t_{2} n_{2}+12 s n_{1}+12 s t_{1}-$ $20 s t_{2}+12 n_{1} n_{2}+12 t_{1} n_{2}+12 t_{2} n_{2}-24 n+32$ and $\beta_{3}=-12 s n_{1} t_{2} n_{2}-12 s t_{1} t_{2} n_{2}+16 s n_{1} t_{2}+16 s t_{1} t_{2}+16 s t_{2} n_{2}+$ $12 s n_{1}+12 s t_{1}-20 s t_{2}+12 n_{1} n_{2}+12 t_{1} n_{2}+12 t_{2} n_{2}-16 n+16$.

Proof. Note that

$$
D(G)=\left(\begin{array}{ccccc}
2 J_{n_{1}}-2 I_{n_{1}} & J_{n_{1} \times n_{2}} & J_{n_{1} \times s} & 2 J_{n_{1} \times t_{1}} & 2 J_{n_{1} \times t_{2}} \\
J_{n_{2} \times n_{1}} & 2 J_{n_{2}}-2 I_{n_{2}} & 2 J_{n_{2} \times s} & J_{n_{2} \times t_{1}} & J_{n_{2} \times t_{2}} \\
J_{s \times n_{1}} & 2 J_{s \times n_{2}} & 2 J_{s}-2 I_{s} & J_{s \times t_{1}} & 3 J_{s \times t_{2}} \\
2 J_{t_{1} \times n_{1}} & J_{t_{1} \times n_{2}} & J_{t_{1} \times s} & 2 J_{t_{1}}-2 I_{t_{1}} & 2 J_{t_{1} \times t_{2}} \\
2 J_{t_{2} \times n_{1}} & J_{t_{2} \times n_{2}} & 3 J_{t_{2} \times s} & 2 J_{t_{2} \times t_{1}} & 2 J_{t_{2}}-2 I_{t_{2}}
\end{array}\right),
$$

then

$$
\operatorname{det}(\lambda I-D(G))=(\lambda+2)^{n-5} g(\lambda)
$$

where
$g(\lambda)=\left|\begin{array}{ccccc}\lambda-\left(2 n_{1}-2\right) & -n_{2} & -s & -2 t_{1} & -2 t_{2} \\ -n_{1} & \lambda-\left(2 n_{2}-2\right) & -2 s & -t_{1} & -t_{2} \\ -n_{1} & -n_{2} & \lambda-(2 s-2) & -t_{1} & -3 t_{2} \\ -2 n_{1} & -n_{2} & -s & \lambda-\left(2 t_{1}-2\right) & -2 t_{2} \\ -2 n_{1} & -n_{2} & -3 s & -2 t_{1} & \lambda-\left(2 t_{2}-2\right)\end{array}\right|$.
Therefore, we can get the result through a simple calculation.

Lemma 3.4. Let $G=S_{n}^{+}$, then G is determined by its D-spectrum.
Proof. By Lemma 3.2 we know that

$$
P_{D\left(S_{n}^{+}\right)}(\lambda)=(\lambda+2)^{n-4}\left(\lambda^{4}-(2 n-8) \lambda^{3}+(-9 n+24) \lambda^{2}+(-10 n+22) \lambda-3 n+5\right)
$$

Let H be a connected graph such that $\operatorname{Spec}(D(H))=\operatorname{Spec}\left(D\left(S_{n}^{+}\right)\right)$, then $H \cong K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}$ or $H \cong K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}$.
Case 1. $H \cong K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}$.
Since $\operatorname{tr}\left(D^{2}(H)\right)=\operatorname{tr}\left(D^{2}\left(S_{n}^{+}\right)\right)$, we know that $|V(H)|=|E(H)|=n$, i.e., H must be a unicyclic graphs. Thus $a_{1}=a_{2}=a_{3}=1$ and $b_{1}=n-3, b_{2}=b_{3}=0$, i.e., $H \cong S_{n}^{+}$.
Case 2. $H \cong K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}$.
Since $\operatorname{tr}\left(D^{2}(H)\right)=\operatorname{tr}\left(D^{2}\left(S_{n}^{+}\right)\right)$, we know that $3\left|E\left(K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}\right)\right|-5 s t_{2}=3 n$. And by $P_{D(H)}(\lambda)=P_{D\left(S_{n}^{+}\right)}(\lambda)$, we get that $\beta_{2}=8 s t_{2}\left(n_{1}+n_{2}+t_{1}\right)+4\left(3\left|E\left(K_{n_{1}, n_{2}}^{s, t_{1}}\right)\right|-5 s t_{2}\right)-24 n+32=-10 n+22$, then $4 s t_{2}\left(n_{1}+n_{2}+t_{1}\right)=n-5$ and $n-5$ is even. In particular, $g(-2)=-12 s t_{2} n_{2}\left(n_{1}+t_{1}\right)$, thus we get that $4 s t_{2} n_{2}\left(n_{1}+t_{1}\right)=n-3$. Note that $2(n-5)=n-5+n-3-2$, then we discover that $n-5=2 s t_{2}\left[n_{1}+n_{2}+t_{1}+n_{2}\left(n_{1}+t_{1}\right)\right]-1$ which means that $n-5$ is odd, a contradiction.

Therefore, S_{n}^{+}is determined by its D-spectrum.
The following result is proved by Xue, Liu and Jia [9] in a different way.
Theorem 3.5. Let $G=S_{a, b}(a+b=n-2)$, then G is determined by its D-spectrum.
Proof. By Lemma 3.3 we know that

$$
P_{D\left(S_{a, b}\right)}(\lambda)=(\lambda+2)^{n-4}\left(\lambda^{4}-(2 n-8) \lambda^{3}+(-5 a b-9 n+21) \lambda^{2}+(-4 a b-12 n+20) \lambda-4 n+4\right)
$$

Let H be a connected graph such that $\operatorname{Spec}(D(H))=\operatorname{Spec}\left(D\left(S_{a, b}\right)\right)$, then $H \cong K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}$ or $H \cong K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}$.
Case 1. $H \cong K_{b_{1}, b_{2}, b_{3}}^{a_{1}, a_{2}, a_{3}}$.
Since $\operatorname{tr}\left(D^{2}(H)\right)=\operatorname{tr}\left(D^{2}\left(S_{a, b}\right)\right)$, we know that $|E(H)|=\left|E\left(S_{a, b}\right)\right|-\frac{5}{3} a b$. We observe that $\left|E\left(S_{a, b}\right)\right|=n-1$, but it is impossible that the number of edges of H less than $n-1$.
Case 2. $H \cong K_{n_{1}, n_{2}}^{s, t_{1}, t_{2}}$.
We first know that $|E(H)|=\left|E\left(S_{a, b}\right)\right|+\frac{5}{3}\left(s t_{2}-a b\right)$ by $\operatorname{tr}\left(D^{2}(H)\right)=\operatorname{tr}\left(D^{2}\left(S_{a, b}\right)\right)$. Since $P_{D(H}(\lambda)=P_{D\left(S_{a, b}\right)}(\lambda)$ and $g(-2)=-12 s t_{2} n_{2}\left(n_{1}+t_{1}\right)$, we get that $s t_{2} n_{2}\left(n_{1}+t_{1}\right)=a b$, If $n_{2}\left(n_{1}+t_{1}\right)>1$, then $s t_{2}<a b$. Thus $|E(H)|<n-1$, a contradiction. So we have $n_{2}\left(n_{1}+t_{1}\right)=1$, i.e., $n_{1}=n_{2}=1$ and $t_{1}=0$. Thus $H \cong S_{s, t_{2}}$. Combining st $t_{2}=a b$ the result can be obtained easily.

Therefore, $S_{a, b}$ is determined by its D-spectrum.
Problem Is any graph G with $m_{-2}(D(G))=n-4$ determined by its D-spectrum?

References

[1] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectra? Linear Algebra Appl. 373 (2003) 241-272.
[2] E. V. Haynsworth, Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl. 1 (1968) 73-81.
[3] H.Q. Lin, Y. Hong, J.F. Wang, J.L. Shu, On the distance spectrum of graphs, Linear Multilinear Algebra. 439 (2013) 1662-1669.
[4] H.Q. Lin, R.F. Liu, X.W. Lu, The inertia and energy of the distance matrix of a connected graph, Linear Algebra Appl. 467 (2015) 2939.
[5] H.Q. Lin, On the least distance eigenvalue and its applications on the distance spread, Discrete Mathematics 338 (2015) $868-874$.
[6] H.Q. Lin, M.Q. Zhai, S.C. Gong, On graphs with at least three distance eigenvalues less than -1, Linear Algebra Appl. 458 (2014) 548-558.
[7] M. Cámara, W.H. Haemers, Spectral characterizations of almost complete graphs, Discrete Applied Mathematics 176 (2014) 19-23.
[8] Y.L. Jin, X.D. Zhang, Complete multipartite graphs are determined by their distance spectra, Linear Algebra Appl. 448 (2014) 285-291.
[9] J. Xue, R.F. Liu, H.C. Jia, On the Distance Spectrum of Trees, Filomat 30:6 (2016) 1559-1565.

[^0]: 2010 Mathematics Subject Classification. Primary 05C50, Secondary 05C12
 Keywords. Distance matrix; Multiplicity; Cospectral
 Received: 25 January 2016; Accepted: 24 July 2017
 Communicated by Francesco Belardo
 Research supported by NSFC (No.11531011), NSFXJ(No.2015KL019), XJTCDP (No.62002046), XJUDP (No.62006001).
 Email addresses: ldxjedu@163.com (Dan Li), mjxxju@sina.com (Jixiang Meng)

