Filomat 32:10 (2018), 3709–3715 https://doi.org/10.2298/FIL1810709Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

An Application of Quasi-Monotone Sequences to Absolute Matrix Summability

Şebnem Yıldız^a

^aAhi Evran University, Department of Mathematics, Faculty of Arts and Sciences, Kırşehir, Turkey

Abstract. Recently, Bor [5] has obtained two main theorems dealing with $|\bar{N}, p_n|_k$ summability factors of infinite series and Fourier series. In the present paper, we have generalized these theorems for $|A, \theta_n|_k$ summability method by using quasi-monotone sequences.

1. Introduction

A sequence (d_n) is said to be δ -quasi-monotone, if $d_n \to 0$, $d_n > 0$ ultimately, and $\Delta d_n \ge -\delta_n$, where $\Delta d_n = d_n - d_{n+1}$ and $\delta = (\delta_n)$ is a sequence of positive numbers (see [1]). For any sequence (λ_n) we write that $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$. The sequence (λ_n) is said to be of bounded variation, denoted by $(\lambda_n) \in \mathcal{BV}$, if $\sum_{n=1}^{\infty} |\Delta \lambda_n| < \infty$. Let $\sum a_n$ be a given infinite series with partial sums (s_n) . We denote by u_n^{α} and t_n^{α} the *n*th Cesàro means of order α , with $\alpha > -1$, of the sequences (s_n) and (na_n) , respectively, that is (see [6]),

$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} s_v \quad \text{and} \quad t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v, \quad (t_n^{-1} = t_n)$$
(1)

where

$$A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)...(\alpha+n)}{n!} = O(n^{\alpha}), \quad A_{-n}^{\alpha} = 0 \quad \text{for} \quad n > 0.$$
⁽²⁾

A series $\sum a_n$ is said to be summable $| C, \alpha |_k, k \ge 1$, if (see [8], [10])

$$\sum_{n=1}^{\infty} n^{k-1} | u_n^{\alpha} - u_{n-1}^{\alpha} |^k = \sum_{n=1}^{\infty} \frac{1}{n} | t_n^{\alpha} |^k < \infty.$$
(3)

If we set $\alpha = 1$, then we have $|C, 1|_k$ summability. Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^{\infty} p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \ i \ge 1).$$

$$\tag{4}$$

 ∞

²⁰¹⁰ Mathematics Subject Classification. Primary: 26D15; Secondary: 40D15, 40F05, 40G99, 42A24

Keywords. Riesz mean, absolute matrix summability, summability factors, infinite series, Fourier series, Hölder inequality, Minkowski inequality, sequence space

Received: 07 June 2017; Revised: 18 October 2017; Accepted: 20 October 2017

Communicated by Ljubiša D.R. Kočinac

Email address: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com (Şebnem Yıldız)

The sequence-to-sequence transformation

$$w_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \tag{5}$$

defines the sequence (w_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [9]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$, $k \ge 1$, if (see [2])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |w_n - w_{n-1}|^k < \infty.$$
(6)

In the special case when $p_n = 1$ for all values of n (respect. k = 1), then $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ (respect. $|\bar{N}, p_n|$) summability. We write $X_n = \sum_{v=1}^n \frac{p_v}{p_v}$, then (X_n) is a positive increasing sequence tending to infinity with n. Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$A_n(s) = \sum_{v=0}^n a_{nv} s_v, \quad n = 0, 1, \dots$$
(7)

Let (θ_n) be any sequence of positive real numbers. The series $\sum a_n$ is said to be summable $|A, \theta_n|_k, k \ge 1$, if (see [11])

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \left| \bar{\Delta} A_n(s) \right|^k < \infty, \tag{8}$$

where

$$\bar{\Delta}A_n(s) = A_n(s) - A_{n-1}(s). \tag{9}$$

If we take $\theta_n = \frac{p_n}{p_n}$, then $|A, \theta_n|_k$ summability, then we have $|A, p_n|_k$ summability (see [12]), and if we take $\theta_n = n$, then we have $|A|_k$ summability (see [13]). And also if we take $\theta_n = \frac{p_n}{p_n}$ and $a_{nv} = \frac{p_v}{p_n}$, then we have $|\bar{N}, p_n|_k$ summability. Furthermore, if we take $\theta_n = n$, $a_{nv} = \frac{p_v}{p_n}$ and $p_n = 1$ for all values of n, then $|A, \theta_n|_k$ summability reduces to $|C, 1|_k$ summability (see [8]). Finally, if we take $\theta_n = n$ and $a_{nv} = \frac{p_v}{p_n}$, then we obtain $|R, p_n|_k$ summability (see [3]).

2. Known Results

The following theorem is known dealing with $|\bar{N}, p_n|_k$ summability of infinite series (see [5]).

Theorem 2.1. Let $\lambda_n \to 0$ as $n \to \infty$ and let (p_n) be a sequence of positive numbers such that

$$P_n = O(np_n) \quad as \ n \to \infty. \tag{10}$$

Suppose that there exists a sequence of numbers (A_n) which is δ -quasi-monotone with $\sum nX_n\delta_n < \infty$, $\sum A_nX_n$ is convergent, and $|\Delta\lambda_n| \le |A_n|$ for all n. If

$$\sum_{n=1}^{m} \frac{p_n}{P_n} \frac{|t_n|^k}{X_n^{k-1}} = O(X_m) \quad as \quad m \to \infty,$$
(11)

satisfies, then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

3. Main Results

The aim of this paper is to generalize Theorem 2.1 for $|A, \theta_n|_k$ summability factors of infinite series, and is to apply this theorem to Fourier series.

Before stating the main theorem, we must first introduce some further notations.

Given a normal matrix $A = (a_{nv})$, we associate two lower semimatrices $\overline{A} = (\overline{a}_{nv})$ and $\widehat{A} = (\widehat{a}_{nv})$ as follows:

$$\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots \quad \bar{\Delta}a_{nv} = a_{nv} - a_{n-1,v}, \quad a_{-1,0} = 0$$
(12)

and

$$\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \Delta \bar{a}_{nv}, \quad n = 1, 2, \dots$$
(13)

It may be noted that \overline{A} and \widehat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$A_n(s) = \sum_{\nu=0}^n a_{n\nu} s_{\nu} = \sum_{\nu=0}^n \bar{a}_{n\nu} a_{\nu}$$
(14)

and

$$\bar{\Delta}A_n(s) = \sum_{\nu=0}^n \hat{a}_{n\nu} a_\nu.$$
(15)

Theorem 3.1. Let $\lambda_n \to 0$ as $n \to \infty$ and let (p_n) be a sequence of positive numbers satisfying the condition (10). Suppose that there exists a sequence of numbers (A_n) which is δ -quasi-monotone with $\sum nX_n\delta_n < \infty$, $\sum A_nX_n$ is convergent, and $|\Delta\lambda_n| \le |A_n|$ for all n. Let $(\theta_n a_{nn})$ be a non-increasing sequence. If $A = (a_{nv})$ is a positive normal matrix such that

$$\bar{a}_{n0} = 1, n = 0, 1, ...,$$
 (16)

$$a_{n-1,v} \ge a_{nv}, \text{ for } n \ge v+1,$$
 (17)

$$\hat{a}_{n,v+1} = O(v|\Delta a_{nv}|),\tag{18}$$

$$\sum_{n=1}^{\infty} \theta_n^{k-1} a_{nn}^k \frac{|t_n|^k}{X_n^{k-1}} = O(X_m) \quad as \quad m \to \infty,$$
(19)

then the series $\sum a_n \lambda_n$ is summable $|A, \theta_n|_k, k \ge 1$.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.2. ([4]) Under the conditions of Theorem 2.1, we have that

 $|\lambda_n|X_n = O(1) \text{ as } n \to \infty, \tag{20}$

$$nX_n|A_n| = O(1) \text{ as } n \to \infty, \tag{21}$$

$$\sum_{n=1}^{\infty} nX_n |\Delta A_n| < \infty.$$
⁽²²⁾

4. Proof of Theorem 3.1

Proof. Let (V_n) denotes the A-transform of the series $\sum_{n=1}^{\infty} a_n \lambda_n$. Then, by (14) and (15), we have

$$\bar{\Delta}V_n = \sum_{v=1}^n \hat{a}_{nv} a_v \lambda_v.$$

Applying Abel's transformation to this sum, we get that

$$\begin{split} \bar{\Delta}V_n &= \sum_{v=1}^n \hat{a}_{nv} a_v \lambda_v \frac{v}{v} = \sum_{v=1}^{n-1} \bar{\Delta}(\frac{a_{nv}\lambda_v}{v}) \sum_{r=1}^v ra_r + \frac{\hat{a}_{nn}\lambda_n}{n} \sum_{r=1}^n ra_r = \sum_{v=1}^{n-1} \bar{\Delta}(\frac{a_{nv}\lambda_v}{v})(v+1)t_v + \hat{a}_{nn}\lambda_n \frac{n+1}{n}t_n \\ &= \sum_{v=1}^{n-1} \bar{\Delta}a_{nv}\lambda_v t_v \frac{v+1}{v} + \sum_{v=1}^{n-1} \hat{a}_{n,v+1}\Delta\lambda_v t_v \frac{v+1}{v} + \sum_{v=1}^{n-1} \hat{a}_{n,v+1}\lambda_{v+1} \frac{t_v}{v} + a_{nn}\lambda_n t_n \frac{n+1}{n} \\ &= V_{n,1} + V_{n,2} + V_{n,3} + V_{n,4}. \end{split}$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |V_{n,r}|^k < \infty, \quad \text{for} \quad r = 1, 2, 3, 4.$$
(23)

It may be noted that, the following results can be seen by condition (16) and (17), we have

$$\sum_{n=\nu+1}^{m+1} |\bar{\Delta}a_{n\nu}| \le a_{\nu\nu},$$

$$\sum_{\nu=1}^{n-1} |\bar{\Delta}a_{n\nu}| \le a_{nn}.$$
(24)
(25)

First, by applying Hölder's inequality with indices *k* and *k*', where k > 1 and $\frac{1}{k} + \frac{1}{k'} = 1$, and using conditions (24) and (25) for the third sum, and since $(\theta_n a_{nn})$ is a non-increasing sequence, we have that

$$\begin{split} &\sum_{n=2}^{m+1} \theta_n^{k-1} \mid V_{n,1} \mid^k \leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left\{ \sum_{v=1}^{n-1} |\frac{v+1}{v}| \left| \bar{\Delta}a_{nv} \right| |\lambda_v| |t_v| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \sum_{v=1}^{n-1} \left| \bar{\Delta}a_{nv} \right| |\lambda_v|^k |t_v|^k \times \left\{ \sum_{v=1}^{n-1} \left| \bar{\Delta}a_{nv} \right| \right\}^{k-1} = O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} a_{nn}^{k-1} \left\{ \sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| |\lambda_v|^k |t_v|^k \right\} \\ &= O(1) \sum_{v=1}^{m} |\lambda_v|^{k-1} |\lambda_v| |t_v|^k \sum_{n=v+1}^{m+1} (\theta_n a_{nn})^{k-1} |\bar{\Delta}a_{nv}| = O(1) \sum_{v=1}^{m} (\theta_v a_{vv})^{k-1} \frac{1}{X_v^{k-1}} |\lambda_v| |t_v|^k a_{vv} \\ &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_v| \sum_{r=1}^{v} \theta_r^{k-1} a_{rr}^k \frac{|t_r|^k}{X_r^{k-1}} + O(1) |\lambda_m| \sum_{v=1}^{m} \theta_v^{k-1} a_{vv}^k \frac{|t_v|^k}{X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_m| X_m = O(1) \sum_{v=1}^{m-1} |A_v| X_v + O(1) |\lambda_m| X_m \\ &= O(1) \text{ as } m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Now, using Hölder's inequality we have that

$$\begin{split} &\sum_{n=2}^{m+1} \Theta_n^{k-1} \mid V_{n,2} \mid^k \leq \sum_{n=2}^{m+1} \Theta_n^{k-1} \left\{ \sum_{v=1}^{n-1} |\frac{v+1}{v}| |\hat{a}_{n,v+1}| |\Delta \lambda_v| |t_v| \right\}^k = O(1) \sum_{n=2}^{m+1} \Theta_n^{k-1} \left\{ \sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |A_v| |t_v| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \Theta_n^{k-1} \sum_{v=1}^{n-1} (v|A_v|)^k |\bar{\Delta}a_{nv}| |t_v|^k \times \left\{ \sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| \right\}^{k-1} = O(1) \sum_{n=2}^{m+1} \Theta_n^{k-1} a_{nn}^{k-1} \sum_{v=1}^{n-1} (v|A_v|)^k |\bar{\Delta}a_{nv}| |t_v|^k \\ &= O(1) \sum_{v=1}^m (v|A_v|)^{k-1} (v|A_v|) |t_v|^k \sum_{n=v+1}^{m+1} (\Theta_n a_{nn})^{k-1} |\bar{\Delta}a_{nv}| = O(1) \sum_{v=1}^m \Theta_v^{k-1} a_{vv}^k \frac{1}{X_v^{k-1}} |t_v|^k (v|A_v|) \\ &= O(1) \sum_{v=1}^m (v|A_v|) \sum_{r=1}^v \Theta_r^{k-1} a_{rr}^k \frac{1}{X_r^{k-1}} |t_r|^k + O(1)m|A_m| \sum_{v=1}^m \Theta_v^{k-1} a_{vv}^k \frac{1}{X_v^{k-1}} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} |\Delta(v|A_v|)| X_v + O(1)m|A_m| X_m \\ &= O(1) \sum_{v=1}^{m-1} |vX_v|\Delta A_v| + O(1) \sum_{v=1}^{m-1} |A_v|X_v + O(1)m|A_m| X_m \\ &= O(1) \sum_{v=1}^{m-1} vX_v|\Delta A_v| + O(1) \sum_{v=1}^{m-1} |A_v|X_v + O(1)m|A_m| X_m \end{aligned}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Again, as in $V_{n,1}$ we have that

$$\begin{split} &\sum_{n=2}^{m+1} \theta_n^{k-1} \mid V_{n,3} \mid^k = \sum_{n=2}^{m+1} \theta_n^{k-1} \left| \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \lambda_{v+1} \frac{t_v}{v} \right|^k \leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left\{ \sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\lambda_{v+1}| \frac{|t_v|}{v} \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left\{ \sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| |\lambda_{v+1}| |t_v| \right\}^k = O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| |\lambda_{v+1}|^k |t_v|^k \times \left\{ \sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} a_{nn}^{k-1} \sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| |\lambda_{v+1}|^k |t_v|^k = O(1) \sum_{v=1}^{m} |\lambda_{v+1}|^k |t_v|^k \sum_{n=v+1}^{m+1} (\theta_n a_{nn})^{k-1} |\bar{\Delta}a_{nv}| \\ &= O(1) \sum_{v=1}^{m} \theta_v^{k-1} a_{vv}^k |t_v|^k |\lambda_{v+1}|^{k-1} |\lambda_{v+1}| = O(1) \sum_{v=1}^{m} \theta_v^{k-1} a_{vv}^k \frac{1}{X_v^{k-1}} |\lambda_{v+1}| |t_v|^k \\ &= O(1) \text{ as } m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Finally, as in $V_{n,1}$, we have that

$$\sum_{n=1}^{m} \theta_n^{k-1} |V_{n,4}|^k = O(1) \sum_{n=1}^{m} \theta_n^{k-1} a_{nn}^{k-1} a_{nn} |\lambda_n|^k |t_n|^k = O(1) \sum_{n=1}^{m} \theta_n^{k-1} a_{nn}^k |\lambda_n|^{k-1} |\lambda_n| |t_n|^k$$
$$= O(1) \sum_{n=1}^{m} \theta_n^{k-1} a_{nn}^k \frac{1}{X_n^{k-1}} |\lambda_n| |t_n|^k = O(1) \quad \text{as} \quad m \to \infty,$$

by virtue of hypotheses of the Theorem 3.1 and Lemma 3.2. This completes the proof of Theorem 3.1. \Box

4. Applications

4.1. An Application to Trigonometric Fourier Series

Let *f* be a periodic function with period 2π and integrable (*L*) over $(-\pi, \pi)$. We may assume that the constant term in the Fourier series of *f*(*t*) is zero, so that

$$\int_{-\pi}^{\pi} f(t)dt = 0$$

and

$$f(t) \sim \sum_{n=1}^{\infty} (a_n cosnt + b_n sinnt) = \sum_{n=1}^{\infty} C_n(t),$$
(26)

where

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt.$$

We write

$$\phi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) \},$$
(27)

$$\phi_{\alpha}(t) = \frac{\alpha}{t^{\alpha}} \int_0^t (t-u)^{\alpha-1} \phi(u) \, du, \quad (\alpha > 0).$$
⁽²⁸⁾

It is well known that if $\phi(t) \in \mathcal{BV}(0, \pi)$, then $t_n(x) = O(1)$, where $t_n(x)$ is the (C, 1) mean of the sequence $(nC_n(x))$ (see [7]).

Using this fact, the following theorem has been proved.

Theorem 4.1. ([5]) If $\phi_1(t) \in \mathcal{BV}(0, \pi)$, and the sequences (A_n) , (λ_n) , and (X_n) satisfy the conditions of Theorem 2.1, then the series $\sum C_n(x)\lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

We have generalized Theorem 4.1 for $|A, \theta_n|_k$ summability method in the following form.

Theorem 4.2. Let A be a normal matrix as in Theorem 3.1. If $\phi_1(t) \in \mathcal{BV}(0, \pi)$, and the sequences (A_n) , (λ_n) , and (X_n) satisfy the conditions of Theorem 3.1, then the series $\sum C_n(x)\lambda_n$ is summable $|A, \theta_n|_k$, $k \ge 1$.

In this paper, the concept of absolute matrix summability is investigated. In this investigation, we prove an interesting theorem related to $|A, \theta_n|_k$. We also obtain applications to Fourier series. We can apply Theorem 3.1 and Theorem 4.2 to weighted mean $A = (a_{nv})$ is defined as $a_{nv} = \frac{p_v}{p_n}$ when $0 \le v \le n$, where $P_n = p_0 + p_1 + ... + p_n$. We have that,

$$\bar{a}_{nv} = \frac{P_n - P_{v-1}}{P_n}$$
 and $\hat{a}_{n,v+1} = \frac{p_n P_v}{P_n P_{n-1}}$.

The following results can be easily verified.

1. If we take $\theta_n = \frac{p_n}{p_n}$ in Theorem 3.1 and Theorem 4.2, then we have a result dealing with $|A, p_n|_k$ summability.

2. If we take $\theta_n = n$ in Theorem 3.1 and Theorem 4.2, then we have a result dealing with $|A|_k$ summability. 3. If we take $\theta_n = \frac{P_n}{p_n}$ and $a_{nv} = \frac{P_v}{P_n}$ in Theorem 3.1 and Theorem 4.2, then we have Theorem 2.1 and Theorem 4.1, respectively.

4. If we take $\theta_n = n$, $a_{nv} = \frac{p_v}{p_n}$ and $p_n = 1$ for all values of *n* in Theorem 3.1 and Theorem 4.2, then we have a new result concerning $|C, 1|_k$ summability.

5. If we take $\theta_n = n$ and $a_{nv} = \frac{p_v}{P_n}$ in Theorem 3.1 and Theorem 4.2, then we have $|R, p_n|_k$ summability.

Acknowledgment

The author would like to express her sincerest thanks to the referee for valuable suggestions for the improvement of this paper.

References

- [1] R.P. Boas (Jr.), Quasi-positive sequences and trigonometric series, Proc. Lond. Math. Soc. 14A (1965) 38-46.
- [2] H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985) 147-149.
- [3] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991) 1009–1012.
- [4] H. Bor, On quasi-monotone sequences and their applications, Bull. Austral. Math. Soc. 43 (1991) 187–192.
- [5] H. Bor, An application of quasi-monotone sequences to infinite series and Fourier series, Anal. Math. Phys 8 (2018) 77-83.
- [6] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890) 114–120.
- [7] K.K. Chen, Functions of bounded variation and Cesàro means of Fourier series, Acad. Sinica Sci. Record 1 (1954) 283–289.
- [8] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957) 113–141.
- [9] G.H. Hardy, Divergent Series, Oxford Univ., Clarendon Press, 1949.
- [10] E. Kogbetliantz, Sur les sàries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49 (1925) 234–256.
- [11] M.A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comp. 216 (2010) 3386–3390.
- [12] W.T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series, IV, Indian J. Pure Appl. Math. 34 (2003) 1547–1557.
- [13] N. Tanović-Miller, On strong summability, Glas. Mat. Ser III 14 (34) (1979) 87–97.