An Application of Quasi-Monotone Sequences to Absolute Matrix Summability

Şebnem Yıldız ${ }^{\text {a }}$
${ }^{a}$ Ahi Evran University, Department of Mathematics, Faculty of Arts and Sciences, Kırşehir, Turkey

Abstract

Recently, Bor [5] has obtained two main theorems dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series and Fourier series. In the present paper, we have generalized these theorems for $\left|A, \theta_{n}\right|_{k}$ summability method by using quasi-monotone sequences.

1. Introduction

A sequence $\left(d_{n}\right)$ is said to be δ-quasi-monotone, if $d_{n} \rightarrow 0, d_{n}>0$ ultimately, and $\Delta d_{n} \geq-\delta_{n}$, where $\Delta d_{n}=d_{n}-d_{n+1}$ and $\delta=\left(\delta_{n}\right)$ is a sequence of positive numbers (see [1]). For any sequence (λ_{n}) we write that $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. The sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|<\infty$. Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} and t_{n}^{α} the nth Cesàro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and ($n a_{n}$), respectively, that is (see [6]),

$$
\begin{equation*}
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \quad \text { and } \quad t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \quad\left(t_{n}{ }^{1}=t_{n}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots .(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 \tag{2}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [8], [10])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

If we set $\alpha=1$, then we have $|C, 1|_{k}$ summability. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{\infty} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right) \tag{4}
\end{equation*}
$$

[^0]The sequence-to-sequence transformation

$$
\begin{equation*}
w_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{5}
\end{equation*}
$$

defines the sequence $\left(w_{n}\right)$ of the Riesz mean or simply the (\bar{N}, p_{n}) mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [9]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{p_{n}}{p_{n}}\right)^{k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty . \tag{6}
\end{equation*}
$$

In the special case when $p_{n}=1$ for all values of n (respect. $k=1$), then $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ (respect. $\left|\bar{N}, p_{n}\right|$) summability. We write $X_{n}=\sum_{v=1}^{n} \frac{p_{v}}{P_{v}}$, then $\left(X_{n}\right)$ is a positive increasing sequence tending to infinity with n. Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{7}
\end{equation*}
$$

Let $\left(\theta_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$, if (see [11])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s) \tag{9}
\end{equation*}
$$

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|A, \theta_{n}\right|_{k}$ summability, then we have $\left|A, p_{n}\right|_{k}$ summability (see [12]), and if we take $\theta_{n}=n$, then we have $|A|_{k}$ summability (see [13]). And also if we take $\theta_{n}=\frac{p_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we have $\left|\bar{N}, p_{n}\right|_{k}$ summability. Furthermore, if we take $\theta_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then $\left|A, \theta_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ summability (see [8]). Finally, if we take $\theta_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we obtain $\left|R, p_{n}\right|_{k}$ summability (see [3]).

2. Known Results

The following theorem is known dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability of infinite series (see [5]).
Theorem 2.1. Let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ and let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \text { as } n \rightarrow \infty . \tag{10}
\end{equation*}
$$

Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ which is δ-quasi-monotone with $\sum n X_{n} \delta_{n}<\infty, \sum A_{n} X_{n}$ is convergent, and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{p_{n}} \frac{\left|t_{n}\right|^{k}}{X_{n}{ }^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty, \tag{11}
\end{equation*}
$$

satisfies, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3. Main Results

The aim of this paper is to generalize Theorem 2.1 for $\left|A, \theta_{n}\right|_{k}$ summability factors of infinite series, and is to apply this theorem to Fourier series.

Before stating the main theorem, we must first introduce some further notations.
Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \quad \bar{\Delta} a_{n v}=a_{n v}-a_{n-1, v}, \quad a_{-1,0}=0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{\Delta} \bar{a}_{n v}, \quad n=1,2, \ldots \tag{13}
\end{equation*}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{15}
\end{equation*}
$$

Theorem 3.1. Let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ and let $\left(p_{n}\right)$ be a sequence of positive numbers satisfying the condition (10). Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ which is δ-quasi-monotone with $\sum n X_{n} \delta_{n}<\infty, \sum A_{n} X_{n}$ is convergent, and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. Let $\left(\theta_{n} a_{n n}\right)$ be a non-increasing sequence. If $A=\left(a_{n v}\right)$ is a positive normal matrix such that

$$
\begin{align*}
\bar{a}_{n 0} & =1, n=0,1, \ldots, \tag{16}\\
a_{n-1, v} & \geq a_{n v}, \text { for } n \geq v+1, \tag{17}\\
\hat{a}_{n, v+1} & =O\left(v\left|\bar{\Delta} a_{n v}\right|\right), \tag{18}\\
\sum_{n=1}^{\infty} \theta_{n}^{k-1} a_{n n}^{k} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}} & =O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty, \tag{19}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$.
We need the following lemma for the proof of Theorem 3.1.
Lemma 3.2. ([4]) Under the conditions of Theorem 2.1, we have that

$$
\begin{align*}
\left|\lambda_{n}\right| X_{n} & =O(1) \text { as } n \rightarrow \infty, \tag{20}\\
n X_{n}\left|A_{n}\right| & =O(1) \text { as } n \rightarrow \infty, \tag{21}\\
\sum_{n=1}^{\infty} n X_{n}\left|\Delta A_{n}\right| & <\infty . \tag{22}
\end{align*}
$$

4. Proof of Theorem 3.1

Proof. Let (V_{n}) denotes the A-transform of the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n}$. Then, by (14) and (15), we have

$$
\bar{\Delta} V_{n}=\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \lambda_{v}
$$

Applying Abel's transformation to this sum, we get that

$$
\begin{aligned}
& \bar{\Delta} V_{n}=\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \lambda_{v} \frac{v}{v}=\sum_{v=1}^{n-1} \bar{\Delta}\left(\frac{a_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r}=\sum_{v=1}^{n-1} \bar{\Delta}\left(\frac{a_{n v} \lambda_{v}}{v}\right)(v+1) t_{v}+\hat{a}_{n n} \lambda_{n} \frac{n+1}{n} t_{n} \\
& =\sum_{v=1}^{n-1} \bar{\Delta} a_{n v} \lambda_{v} t_{v} \frac{v+1}{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v} \frac{v+1}{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}}{v}+a_{n n} \lambda_{n} t_{n} \frac{n+1}{n} \\
& =V_{n, 1}+V_{n, 2}+V_{n, 3}+V_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|V_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{23}
\end{equation*}
$$

It may be noted that, the following results can be seen by condition (16) and (17), we have

$$
\begin{align*}
& \sum_{n=v+1}^{m+1}\left|\bar{\Delta} a_{n v}\right| \leq a_{v v} \tag{24}\\
& \sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right| \leq a_{n n} \tag{25}
\end{align*}
$$

First, by applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, and using conditions (24) and (25) for the third sum, and since $\left(\theta_{n} a_{n n}\right)$ is a non-increasing sequence, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 1}\right|^{k} \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\frac{v+1}{v}\right|\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} \sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \times\left\{\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\right\}^{k-1}=O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right\} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v} \|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\right| \bar{\Delta} a_{n v} \left\lvert\,=O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} \frac{1}{X_{v}^{k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} a_{v v}}\right. \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \theta_{r}^{k-1} a_{r r}^{k} \frac{\left|t_{r}\right|^{k}}{X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \theta_{v}^{k-1} a_{v v}^{k} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \sum_{v=1}^{m-1}\left|A_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Now, using Hölder's inequality we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 2}\right|^{k} \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\frac{v+1}{v}\right|\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\}^{k}=O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|A_{v} \|\left|t_{v}\right|\right\}^{k}\right. \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} \sum_{v=1}^{n-1}\left(v\left|A_{v}\right|\right)^{k}\left|\bar{\Delta} a_{n v}\right|\left|t_{v}\right|^{k} \times\left\{\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\right\}^{k-1}=O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left(v\left|A_{v}\right|\right)^{k}\left|\bar{\Delta} a_{n v} \| t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(v\left|A_{v}\right|\right)^{k-1}\left(v\left|A_{v}\right|\right)\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\bar{\Delta} a_{n v}\right|=O(1) \sum_{v=1}^{m} \theta_{v}^{k-1} a_{v v}^{k} \frac{1}{X_{v}^{k-1}}\left|t_{v}\right|^{k}\left(v\left|A_{v}\right|\right) \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|A_{v}\right|\right) \sum_{r=1}^{v} \theta_{r}^{k-1} a_{r r}^{k} \frac{1}{X_{r}^{k-1}}\left|t_{r}\right|^{k}+O(1) m\left|A_{m}\right| \sum_{v=1}^{m} \theta_{v}^{k-1} a_{v v}^{k} \frac{1}{X_{v}^{k-1}}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|A_{v}\right|\right)\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1}|(v+1) \Delta| A_{v}\left|-\left|A_{v} \|\left|X_{v}+O(1) m\right| A_{m}\right| X_{m}\right. \\
& =O(1) \sum_{v=1}^{m-1} v X_{v}\left|\Delta A_{v}\right|+O(1) \sum_{v=1}^{m-1}\left|A_{v}\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Again, as in $V_{n, 1}$ we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|V_{n, 3}\right|^{k}=\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} t_{v}\right|^{k} \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v+1}\right|\left|t_{v}\right|\right\}^{k}=O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} \sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right| \|\left.\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \times\left\{\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}=O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\bar{\Delta} a_{n v}\right| \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1} a_{v v}^{k}\left|t_{v}\right|^{k}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|=O(1) \sum_{v=1}^{m} \theta_{v}^{k-1} a_{v v}^{k} \frac{1}{X_{v}^{k-1}}\left|\lambda_{v+1} \| t_{v}\right|^{k} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Finally, as in $V_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|V_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} a_{n n}^{k-1} a_{n n}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k}=O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n} \| t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} a_{n n}^{k} \frac{1}{X_{n}^{k-1}}\left|\lambda_{n}\right|\left|t_{n}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of hypotheses of the Theorem 3.1 and Lemma 3.2. This completes the proof of Theorem 3.1.

4. Applications

4.1. An Application to Trigonometric Fourier Series

Let f be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. We may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\int_{-\pi}^{\pi} f(t) d t=0
$$

and

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} C_{n}(t) \tag{26}
\end{equation*}
$$

where

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t, \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t
$$

We write

$$
\begin{array}{r}
\phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\}, \\
\phi_{\alpha}(t)=\frac{\alpha}{t^{\alpha}} \int_{0}^{t}(t-u)^{\alpha-1} \phi(u) d u, \quad(\alpha>0) \tag{28}
\end{array}
$$

It is well known that if $\phi(t) \in \mathcal{B V}(0, \pi)$, then $t_{n}(x)=O(1)$, where $t_{n}(x)$ is the $(C, 1)$ mean of the sequence $\left(n C_{n}(x)\right)$ (see [7]).
Using this fact, the following theorem has been proved.
Theorem 4.1. ([5]) If $\phi_{1}(t) \in \mathcal{B V}(0, \pi)$, and the sequences $\left(A_{n}\right),\left(\lambda_{n}\right)$, and $\left(X_{n}\right)$ satisfy the conditions of Theorem 2.1, then the series $\sum C_{n}(x) \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

We have generalized Theorem 4.1 for $\left|A, \theta_{n}\right|_{k}$ summability method in the following form.
Theorem 4.2. Let A be a normal matrix as in Theorem 3.1. If $\phi_{1}(t) \in \mathcal{B V}(0, \pi)$, and the sequences $\left(A_{n}\right)$, $\left(\lambda_{n}\right)$, and $\left(X_{n}\right)$ satisfy the conditions of Theorem 3.1, then the series $\sum C_{n}(x) \lambda_{n}$ is summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$.

In this paper, the concept of absolute matrix summability is investigated. In this investigation, we prove an interesting theorem related to $\left|A, \theta_{n}\right|_{k}$. We also obtain applications to Fourier series. We can apply Theorem 3.1 and Theorem 4.2 to weighted mean $A=\left(a_{n v}\right)$ is defined as $a_{n v}=\frac{p_{v}}{P_{n}}$ when $0 \leq v \leq n$, where $P_{n}=p_{0}+p_{1}+\ldots+p_{n}$. We have that,

$$
\bar{a}_{n v}=\frac{P_{n}-P_{v-1}}{P_{n}} \quad \text { and } \quad \hat{a}_{n, v+1}=\frac{p_{n} P_{v}}{P_{n} P_{n-1}} .
$$

The following results can be easily verified.

1. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$ in Theorem 3.1 and Theorem 4.2, then we have a result dealing with $\left|A, p_{n}\right|_{k}$ summability.
2. If we take $\theta_{n}=n$ in Theorem 3.1 and Theorem 4.2, then we have a result dealing with $|A|_{k}$ summability.
3. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 3.1 and Theorem 4.2, then we have Theorem 2.1 and Theorem 4.1, respectively.
4. If we take $\theta_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n in Theorem 3.1 and Theorem 4.2, then we have a new result concerning $|C, 1|_{k}$ summability.
5. If we take $\theta_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 3.1 and Theorem 4.2, then we have $\left|R, p_{n}\right|_{k}$ summability.

Acknowledgment

The author would like to express her sincerest thanks to the referee for valuable suggestions for the improvement of this paper.

References

[1] R.P. Boas (Jr.), Quasi-positive sequences and trigonometric series, Proc. Lond. Math. Soc. 14A (1965) 38-46.
[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985) 147-149.
[3] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991) 1009-1012.
[4] H. Bor, On quasi-monotone sequences and their applications, Bull. Austral. Math. Soc. 43 (1991) 187-192.
[5] H. Bor, An application of quasi-monotone sequences to infinite series and Fourier series, Anal. Math. Phys 8 (2018) 77-83.
[6] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math. 14 (1890) 114-120.
[7] K.K. Chen, Functions of bounded variation and Cesàro means of Fourier series, Acad. Sinica Sci. Record 1 (1954) 283-289.
[8] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957) 113-141.
[9] G.H. Hardy, Divergent Series, Oxford Univ., Clarendon Press, 1949.
[10] E. Kogbetliantz, Sur les sàries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49 (1925) 234-256.
[11] M.A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comp. 216 (2010) 3386-3390.
[12] W.T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series, IV, Indian J. Pure Appl. Math. 34 (2003) 1547-1557.
[13] N. Tanović-Miller, On strong summability, Glas. Mat. Ser III 14 (34) (1979) 87-97.

[^0]: 2010 Mathematics Subject Classification. Primary: 26D15; Secondary: 40D15, 40F05, 40G99, 42A24
 Keywords. Riesz mean, absolute matrix summability, summability factors, infinite series, Fourier series, Hölder inequality, Minkowski inequality, sequence space

 Received: 07 June 2017; Revised: 18 October 2017; Accepted: 20 October 2017
 Communicated by Ljubiša D.R. Kočinac
 Email address: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com (Şebnem Yıldız)

