Filomat 32:10 (2018), 3429–3434 https://doi.org/10.2298/FIL1810429K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Compactification of an Orbit Space

Dünya Karapınar^a

^aDepartment of Mathematics, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey

Abstract. Let *X* be a Tychonoff *G*–space, *G* be a finite discrete group and *A* be a dense and invariant subspace of *X*. In this paper, by means of Gelfand's method, we construct a compactification of the orbit space A/G. As an application, we show that the set of maximal ideals of even function ring with Stone topology is a compactification of non-negative rationals.

1. Introduction

By a topological transformation group, we mean a triple (X, G, θ) where G is a topological group, X is a Tychonoff space and θ is a continuous action of G on X. In this case, X will be called a G-space. Using the notation $\theta_g(x) = \theta(g, x)$ for each (g, x) $\in G \times X$, we have $\theta_e = 1_X$ (e denotes the identity element in G) and $\theta_g \circ \theta_h = \theta_{gh}$. So $g \to \theta_g$ determines a homomorphism of G into the group of homeomorphisms of X.

A compactification γX of X is called a *G*-compactification, if the action of *G* on X extends to γX . X may not have a *G*-compactification. For example, Megrelishvili [3] established a Tychonoff *G*-space admitting no compact Hausdorff extension. But there are some partial results for sufficient conditions for existing *G*-compactification. For instance, R. Palais [4] showed that the Alexandroff compactification for locally compact *G*-space X is its *G*-compactification, and J. de Vries [7] proved that if *G* is a locally compact group, then every Tychonoff *G*-space X has a *G*-compactification and also proved that a *G*-space X has a *G*-compactification if and only if the action is bounded. If X has a *G*- compactification, then it has a largest one(in the usual order of compactifications), denoted by $\beta_G X$.

The following problems in the theory of *G*–spaces are well-known:

(1) the problem of existence of a *G*-compactification, say γX , of a Tychonoff *G*-space *X* and a compactification $\gamma(X/G)$ of its orbit space *X/G*.

(2) in case of existence of these compactifications, the question of how $\gamma(X/G)$ is related with the orbit space $\gamma X/G$.

Srivastava [6] proved that $\beta_G X = \beta X$ and $\beta(X/G) = \beta X/G$ for finite group *G*. (βX and $\beta(X/G)$ are Stone-Cech compactifications of *X* and *X/G*.)

In this paper, for finite G, we give some useful description of the compactification of the orbit space A/G for dense and invariant subspace A of X. Among different methods for constructing compactifications, we use Gelfand's method.

²⁰¹⁰ Mathematics Subject Classification. Primary 54D35; Secondary 54H15

Keywords. Gelfand compactification, finite group action, continuous and bounded functions ring

Received: 04 September 2017; Revised: 20 July 2018; Accepted: 24 July 2018

Communicated by Ljubiša D.R. Kočinac

Email address: dunyakarapinar@ktu.edu.tr (Dünya Karapınar)

2. Preliminaries

In this section, we shall state a few definitions and facts about transformation groups and Gelfand's method for compactifications. We refer the reader to [1,5] for more details.

Definition 2.1. A subspace *A* of a *G*-space *X* is called invariant, if

 $\theta(G \times A) = A.$

Definition 2.2. If *X* is a *G*–space and $x \in X$, the subspace

 $G(x) = \{\theta(g, x) = gx : g \in G\}$

is called the orbit of *x*. Let *X*/*G* denote the set of all orbits *G*(*x*) of a *G*-space *X* and $\pi : X \to X/G$ denote the orbit map taking *x* to *G*(*x*). Then *X*/*G* endowed with the quotient topology relative to π is called the orbit space of *X*. The orbit map is open and continuous.

Definition 2.3. An action θ of a group *G* on a space *X* is called trivial, if $G(x) = \{x\}$ for all $x \in X$.

It is easy to see that the induced action of *G* on X/G is trivial. Now, we state some basic definitions and theorems about Gelfand's method for compactifications. We will denote continuous and bounded real-valued function rings by $C^*(X)$.

Definition 2.4. Let *X* be a topological space. A subcollection \mathcal{B} of subsets of *X* is called a closed base for *X*, if each closed subset of *X* can be written as an intersection of sets belonging to \mathcal{B} .

Definition 2.5. Let Ω be a subring of $C^*(X)$ which contains all constant functions and $M_\Omega X$ denotes the set of all maximal ideals of Ω . For each $f \in \Omega$, define $S(f) = \{M \in M_\Omega X : f \in M\}$. It is easy to see that the family $\{S(f) : f \in \Omega\}$ is closed base for a topology on $M_\Omega X$ which is called the Stone topology.

Theorem 2.6. $M_{\Omega}X$ with the Stone topology is a compact and Haussdorff space.

Proof. See [5, Theorem 4.5.j]. □

Definition 2.7. A complete subring Ω of $C^*(X)$ with respect to the sup-norm metric is called regular, if contains all constant functions and $Z(\Omega) = \{Z(f) : f \in \Omega\}$ is a closed base for X where Z(f) is the zero-set of f.

If $x \in X$ and Ω is a regular subring of $C^*(X)$, then $M_x = \{f \in \Omega : f(x) = 0\} \in M_\Omega X$ (see[5]) Thus, we can define a continuous function $\lambda : X \to M_\Omega X$ by $\lambda(x) = M_x$.

The proof of the following theorem is given in [5].

Theorem 2.8. (Gelfand, [2]) If Ω be a regular subring of $C^*(X)$ for a space X, then $\lambda : X \to M_{\Omega}X$ is a dense embedding.

Definition 2.9. A compactification γX of a Tychonoff space X is called a Gelfand compactification, if for some regular subring Ω of $C^*(X)$, γX and $M_\Omega X$ are equivalent compactifications of X which is denoted by $\gamma X \equiv_X M_\Omega X$.

Theorem 2.10. Let X be a Tychonoff space and γX be a compactification of X. Then $\gamma X \equiv_X M_{\Omega} X$ for some regular subring Ω of $C^*(X)$.

Proof. See [5, Theorem 4.5.0]. □

Thus, a compactification of a Tychonoff space is a Gelfand compactification. For example for Stone-Cech compactification, βX , of X, we have $\beta X \equiv_X M_{\Omega} X$ where $\Omega = C^*(X)$.

3. Main Result

From now on *X* will be a Tychonoff *G*–space where *G* is a finite discrete group and *A* will be a dense and *G*–invariant subspace of *X*.

We shall prove the following lemma.

Lemma 3.1. If $\mathcal{A} = \{f|_A : f \in C^*(X)\}$, then \mathcal{A} is a regular subring of $C^*(A)$. Hence $M_{\mathcal{A}}A$ is a compactification of A.

Proof. Since $Z(f) \cap A = Z(f|_A)$ for all $f \in C^*(X)$, it is easy to see that $Z(\mathcal{A})$ is a closed base for A. Thus it suffices to show that the subring \mathcal{A} is complete with respect to the sup-norm metric. Let $(f_n|_A)_{n \in \mathbb{N}}$ be a Cauchy sequence in \mathcal{A} and $\epsilon > 0$. There is an $N \in \mathbb{N}$ such that

$$\sup\{|f_n(x) - f_m(x)| : x \in A\} < \epsilon$$

for $N \le n \le m$. Let $x \in X$. Since *A* is dense subset of *X*, there is a net (x_{λ}) in *A* such that $\lim x_{\lambda} = x$. It can be easily seen that

$$|f_n(x) - f_m(x)| = \lim |(f_n - f_m)(x_\lambda)| \le \sup\{|f_n(x) - f_m(x)| : x \in A\} < \epsilon$$

for $N \le n \le m$.

Thus $(f_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in $C^*(X)$. Since $C^*(X)$ is complete, there exist $f \in C^*(X)$ such that $\lim f_n = f$ and also $\lim (f_n|_A) = f|_A$. So this implies that \mathcal{A} is a regular subring of $C^*(A)$.

Proposition 3.2. The rings \mathcal{A} and $C^*(X)$ are naturally isomorphic and hence the compactification $M_{\mathcal{H}}A$ can be identified with βX .

Proof. Clearly, the map $C^*(X) \to \mathcal{A}$ given by $f \to f|_A$ preserves the ring operations and surjective by the definitions of \mathcal{A} . On the other hand if $f|_A = g|_A$, then the closed set $B = \{x \in X : f(x) = g(x)\}$ contains A and hence B = X, that is, f = g. This proves that the ring \mathcal{A} is isomorphic to $C^*(X)$.

The isomorphism of the rings $\mathcal{A} \to C^*(X)$ induces the homeomorphism $\mu : M_{\mathcal{A}}A \to M_{C^*(X)}X = \beta X$ Since the composition $A \xrightarrow{\lambda} M_{\mathcal{A}}A \xrightarrow{\mu} M_{C^*(X)}X$ coincides with the composition $A \hookrightarrow X \xrightarrow{\lambda} M_{C^*(X)}X$, we conclude that the compactification $A \xrightarrow{\lambda} M_{\mathcal{A}}A$ is equivalent to the compactification of A represented by $A \hookrightarrow X \hookrightarrow \beta X$. In other words, the compactification $M_{\mathcal{A}}A$ can be identified with βX . \Box

It follows from the above proposition 3.2 that the proof of the following proposition can be regarded as another proof of the known result that βX is a *G*-compactification, if *G* is finite ([6]).

Proposition 3.3. $M_{\mathcal{A}}A$ is a *G*-compactification of *A*.

Proof. Let *P* be a maximal ideal of \mathcal{A} and for $g \in G$, define the set $gP = \{f|_A \circ \theta_{g^{-1}} : f|_A \in P\}$ where $\theta_{g^{-1}} : A \to A$ is defined by $\theta_{g^{-1}}(x) = g^{-1}x$.

First we show that gP is a maximal ideal of \mathcal{A} . If $f|_A \circ \theta_{q^{-1}}$, $h|_A \circ \theta_{q^{-1}} \in gP$, then

 $f|_A \circ \theta_{q^{-1}} - h|_A \circ \theta_{q^{-1}} = (f - h)|_A \circ \theta_{q^{-1}} \in gP$

On the other hand, let $f|_A \circ \theta_{q^{-1}} \in gP$ and $h|_A \in \mathcal{A}$. Define $h' = h \circ \theta_q$. Then it is easy to see that

 $(h|_A)(f|_A \circ \theta_{q^{-1}}) = (h'|_A f|_A) \circ \theta_{q^{-1}} \in gP$

Now, let *I* be an ideal of \mathcal{A} such that $gP \subseteq I \subseteq \mathcal{A}$. Then the ideal

 $g^{-1}I = \{f|_A \circ \theta_q : f|_A \in I\}$

of $\mathcal A$ satisfies the relation

 $P \subseteq g^{-1}I \subseteq \mathcal{A}$

Since *P* is a maximal ideal of \mathcal{A} ,

$$g^{-1}I = P \text{ or } g^{-1}I = \mathcal{A}$$

This implies that

$$I = qP$$
 or $I = \mathcal{A}$

Hence qP is a maximal ideal of \mathcal{A} .

An action ψ of G on $M_{\mathcal{A}}A$ is defined by $\psi(g, P) = gP$. Clearly eP = P and g(hP) = (gh)P where e is the identity in G and $g, h \in G$.

Since

$$\psi^{-1}(S(f)) = \{(g, P) : gP \in S(f)\} = \bigcup_{g \in G} \{g\} \times S(gf)$$

which is closed, the action ψ is continuous. On the other hand, it can be checked that the following diagram is commutative

This implies that $M_{\mathcal{R}}A$ is a *G*-compactification of *A*. \Box

Remark 3.4. $M_{\mathcal{A}}A$ may be different from βA . For example, take $X = \mathbb{R}$ and $A = \mathbb{Q}$. Then $\mathcal{A} \neq C^*(\mathbb{Q})$ and $M_{\mathcal{A}}\mathbb{Q} \neq \beta \mathbb{Q}$.

Note that, in view of the proposition 3.2, $M_{\mathcal{A}}Q = \beta \mathbb{R}$. Thus $M_{\mathcal{A}}Q \neq \beta Q$ corresponds to $\beta \mathbb{R} \neq \beta Q$.

Lemma 3.5. Let $\mathcal{A}' = \{f \in \mathcal{A} : f \text{ takes a constant value for each orbit}\}$. Then \mathcal{A}' is a complete subring of $C^*(A)$.

Proof. Let $(f_n|_A)_{n\in\mathbb{N}}$ be a Cauchy sequence in \mathcal{A}' . It follows, by Lemma 3.1, that $(f_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in $C^*(X)$ and from the completeness of \mathcal{A} there exists $f \in \mathcal{A}$ such that $\lim f_n|_A = f$. Since each $f_n|_A$ has constant value on orbits, $f_n(gx) = f_n(hx)$ for each $x \in A$ and $g, h \in G$. Therefore

 $f(gx) = \lim f_n(gx) = \lim f_n(hx) = f(hx)$

which implies completeness of \mathcal{R}' . \Box

Remark 3.6. Observe that $Z(\mathcal{A}')$ can be a closed base for A only in the case of trivial action of G.

Indeed, every set of $Z(\mathcal{A}')$ is a *G*-invariant subspace of *A* and hence, if $Z(\mathcal{A}')$ is a closed base for *A*, every closed subset of invariant, in particular, every one point set is invariant, that is the action of *G* is trivial.

Since the orbit space A/G is dense subspace of the orbit space X/G, by the Lemma 3.1, the space $M_{\mathcal{B}}(A/G)$ with the Stone topology is a compactification of the orbit space A/G where

 $\mathcal{B} = \{ f \mid_{A/G} : f \in C^*(X/G) \}$

Lemma 3.7. The rings \mathcal{B} and \mathcal{A}' are naturally isomorphic.

Proof. Since $f|_{G(x)}$ is constant for each $f \in \mathcal{A}'$ and for each $x \in A$, there exists a unique $h_f \in C^*(A/G)$ such that $f = h_f \circ \pi$ where π is the orbit map (i.e. $h_f(G(x)) = f(x)$ for each $x \in A$). Since A is dense subspace of X, for each $x \in X$ there exists a net (x_λ) in A such that $\lim x_\lambda = x$. Furthermore the nets $(f(gx_\lambda))$ and $(f(hx_\lambda))$ are equal for each $g, h \in G$. So if we have $f = \widetilde{f}|_A$ for some $\widetilde{f} \in C^*(X)$, then

$$\overline{f}(gx) = \lim f(gx_{\lambda}) = \lim f(hx_{\lambda}) = \overline{f}(hx)$$

which implies that f takes a constant value on each orbit as well as f; consequently, f induces a unique map $f' \in C^*(X/G)$ and $h_f = f'|_{A/G}$. This implies that the map $\varphi : \mathcal{A}' \to \mathcal{B}$ given by $f \to h_f$ is well defined and also obviously preserves the ring operations. It is easy to see that φ is isomorphism because it has inverse $\psi : \mathcal{B} \to \mathcal{A}'$ is given by $f \to f \circ \pi$ \Box

After these preparations, we are going to prove the following main theorem.

Theorem 3.8. $M_{\mathcal{B}}(A/G)$ is homeomorphic to $M_{\mathcal{R}'}A$.

Proof. The above ring isomorphism $\varphi : \mathcal{A}' \to \mathcal{B}$ induces, $\overline{\varphi} : M_{\mathcal{A}'}A \to M_{\mathcal{B}}(A/G)$, defined by $\overline{\varphi}(P) = \varphi(P) = \{h_f : f \in P\}$. Since

$$\overline{\varphi}^{-1}(S(f)) = \{P: \varphi(P) \in S(f)\} = \{P: f \in \varphi(P)\} = \{P: f \circ \pi \in P\} = S(f \circ \pi),$$

We conclude that $\overline{\varphi}$ is continuous.

Similarly, the inverse isomorphism $\psi: \mathcal{B} \to \mathcal{A}'$ induces $\overline{\psi}: M_{\mathcal{B}}(A/G) \to M_{\mathcal{A}'}A$ defined by

 $\overline{\psi}(P) = \psi(P) = \{ f \circ \pi : f \in P \}$

Moreover for each $f \in \mathcal{H}'$

$$\overline{\psi}^{-1}(S(f)) = \{P \in M_{\mathcal{B}}(A/G) : \psi(P) \in S(f)\} = \{P \in M_{\mathcal{B}}(A/G) : h_f \in P\} = S(h_f)$$

which implies the continuity of $\overline{\psi}$ and it is easily checked that

 $\overline{\varphi}(\overline{\psi}(P)) = P$ for each $P \in M_{\mathcal{B}}(A/G)$ and $\overline{\psi}(\overline{\varphi}(P)) = P$ for each $P \in M_{\mathcal{H}}A$.

Corollary 3.9. If we take A = X, we have $\beta(X/G) = M_{X'}X$ where

 $X' = \{f \in C^*(X) : f \text{ takes a constant value for each orbit}\}$

The next application of Theorem 3.8 shows the set of maximal ideals of even function ring with Stone topology is a compactification of non-negative rationals.

Example 3.10. The antipodal map on \mathbb{R} viewed as an action of the group $G = \mathbb{Z}_2$ on \mathbb{R} . If $A = \mathbb{Q}$ (rationals), then

$$\mathcal{A}' = \{ f \mid_{\mathbb{Q}} : f \in C^*(\mathbb{R}) \text{ and } f \text{ is even function} \}$$

Thus

 $M_{\mathcal{H}'}\mathbb{Q} = \{P : P \text{ is maximal ideal of } \mathcal{H}'\}$

is a compactification of the orbit space $A/G = \mathbb{Q}/\mathbb{Z}_2 = \mathbb{Q}^+$ (non-negative rationals.)

Acknowledgement

The author wish to thank the referee for careful reading and useful comments and suggestions.

References

- [1] G.E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
- [2] I.M. Gelfand, A.N. Kolmogorov, On rings of continuous functions on topological spaces, Doklady Akad. Nauk USSR 22 (1939) 11–15.
- [3] M.G. Megrelishvili, A Tychonoff G-space not admitting a compact Hausdorff G-extension or G-linearization, Russian Math. Surveys 43 (1988) 177–178.
- [4] R. Palais, The Classification of G-spaces, Mem. Amer. Math. Soc. 36:2 (1960) 1-72.
- [5] J.R. Porter, R.G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1988.
- [6] K. Srivastava, On the Stone-Čech Compactification of an orbit space, Bull. Austral. Math. Soc. 36 (1987) 435–439.
 [7] J. de Vries, On the existence of *G*-compactification, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978) 275–280.