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Abstract.
We introduce in the setting of ordered metric spaces a new contractive condition called ordered µ-

contraction. We use such a condition in order to provide new and more general results of existence
and uniqueness of fixed point. We remark that from our main result one can easily deduce the Banach
contraction principle, the Boyd-Wong result and other known results of fixed point in the existing literature.

1. Introduction

In [10] Ran and Reurings established a result similar to Banach contraction principle in the setting of
metric sets endowed with a partial order. Motivated by this, several authors recently studied fixed point
problems that involve monotone mappings defined on partially ordered metric spaces. Moreover, we
remark that Nieto and Rodrı́guez-López extended the main fixed point theorem of [10] to ordered metric
spaces (see [9]). Further, they used such a result in order to solve problems of integro-differential type.

The aim of this paper is to provide new and more general results of existence and uniqueness of fixed
point in the setting of ordered metric spaces. In order to do this, following Jleli et al. (see [8]), we introduce
a new contractive notion which involves two suitable families of functions. We stress that applying our
main theorem we can easily deduce some of the most known results of fixed point in the existing literature
as the Banach contraction principle (see [2]) and the Boyd-Wong result (see [3]).

The paper is organized as follows. Section 2 is dedicated to the mathematical background. Precisely, we
recall the notion of w0-distance and its properties. Furthermore, we collect some notions related to ordered
metric spaces that we use throughout the paper. In Section 3, we introduce a new type of contraction which
we call ordered µ-contraction and we establish our main result (see Theorem 3.3). Section 4 is aimed to
point out that the notion of ordered µ-contraction includes different contractive conditions in the existing
literature (see Corollaries 4.1, 4.2, 4.3 and 4.4). In Sections 5 and 6 we use our main theorem in order to
establish fixed point results for cyclic mappings and mappings that verify a contractive condition of integral
type on ordered metric spaces (see Theorem 5.3 and Theorems 6.1, 6.2, respectively). Finally, in Section 7
we give a result of existence and uniqueness for the solution of a first-order periodic differential problem
(see Theorem 7.1).
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2. Preliminaries

We work in the setting of ordered metric spaces endowed with a w0-distance. The notion of w0-distance
was recently introduced, therefore for convenience of the reader we recall it and its properties. Further, we
collect the notions related to ordered metric spaces that we use in the following.

Kostić et al. in [7] revised the definition of w-distance introduced in the setting of metric spaces by Kada
et al. in [4]. They supposed in addition the lower semicontinuity with respect to both variables and gave
the following definition.

Definition 2.1. Let (X, d) be a metric space. A function σ : X × X → [0,+∞[ is called a w0-distance on X if the
following three conditions are verified:

(σ1) σ(a, c) ≤ σ(a, b) + σ(b, c) for all a, b, c ∈ X;

(σ2) the functions σ(b, ·), σ(·, b) : X→ [0,+∞[ are lower semicontinuous for any b ∈ X;

(σ3) for any ε > 0 there exists δ > 0 such that σ(a, b) ≤ δ and σ(a, c) ≤ δ imply d(b, c) ≤ ε.

The main properties of a w-distance (and so of a w0-distance) are provided by the following lemma.

Lemma 2.2 (see [4]). Let (X, d) be a metric space and let σ be a w-distance on X. Let {am} and {bm} be sequences in
X, let {αm} and {βm} be sequences in [0,+∞[ converging to 0 and let a, b, c ∈ X. Then the following hold:

(i) If σ(am, b) ≤ αm and σ(am, c) ≤ βm for any m ∈N, then b = c. In particular, if σ(a, b) = 0 and σ(a, c) = 0, then
b = c.

(ii) If σ(am, bm) ≤ αm and σ(am, c) ≤ βm for any m ∈N, then bm converges to c.

(iii) If σ(ak, am) ≤ αm, for any k,m ∈N with k > m, then {am} is a Cauchy sequence.

(iv) If σ(b, am) ≤ αm, for any m ∈N, then {am} is a Cauchy sequence.

Let (X, d) be a metric space and σ be a w0-distance on X. Let us denote by µ : X×X→ [0,+∞[ the function
defined by

µ(b, c) = max{σ(b, c), σ(c, b)} for any b, c ∈ X.

We stress that by Definition 2.1 and Lemma 2.2 we can easily deduce the following properties of µ:

(µ1) µ(b, c) = 0⇒ b = c for any b, c ∈ X;

(µ2) µ is symmetric, that is, µ(b, c) = µ(c, b) for any b, c ∈ X;

(µ3) µ satisfies the triangle inequality, that is, µ(a, c) ≤ µ(a, b) + µ(b, c) for any a, b, c ∈ X;

(µ4) µ(a, c) ≤ lim infm→+∞ µ(a, am) whenever am → c as m → +∞, that is, µ is lower semicontinuous with
respect to the second variable;

(µ5) µ(c, a) ≤ lim infm→+∞ µ(am, a) whenever am → c as m → +∞, that is, µ is lower semicontinuous with
respect to the first variable.

We also remark that, following [8] and [15], we use a contractive notion which involves two suitable
families of functions. We denote such families with H and S. In particular, H is the family of functions
H : [0,+∞[3

→ [0,+∞[ satisfying the following conditions (see [8]):

(H1) max{α, β} ≤ H(α, β, γ), for all α, β, γ ∈ [0,+∞[;

(H2) H(0, 0, 0) = 0;
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(H3) H is continuous.

Instead, S is the family of functions S : [0,+∞[2
→ R satisfying the following conditions (see [1, 5]):

(S1) S(α, β) < β − α for all α, β > 0;

(S2) if {αm}, {βm} are sequences in ]0,+∞[ such that limm→+∞ αm = limm→+∞ βm = ` ∈]0,+∞[ then

lim sup
m→+∞

S(αm, βm) < 0.

Below, we give some examples of functions H : [0,+∞[3
→ [0,+∞[ and S : [0,+∞[2

→ R belonging to the
familiesH and S, respectively.

(i) H(α, β, γ) = α + β + γ, for all α, β, γ ∈ [0,+∞[, belongs toH ;

(ii) H(α, β, γ) = max{α, β} + γ, for all α, β, γ ∈ [0,+∞[, belongs toH ;

(iii) S(α, β) = h β − α, for all α, β ∈ [0,+∞[ where h ∈ [0, 1[, belongs to S;

(iv) S(α, β) = β − ν(β) − α, for all α, β ∈ [0,+∞[ where ν : [0,+∞[→ [0,+∞[ is a lower semicontinuous
function such that ν(β) = 0 if and only if β = 0, belongs to S;

(v) S(α, β) = β ν(β) − α, for all α, β ∈ [0,+∞[ where ν : [0,+∞[→ [0, 1[ is such that
limβ→r+ ν(β) < 1 for all r > 0, belongs to S.

We conclude this section with some remarks on ordered metric spaces. Let (X, d) be a metric space and
(X,�) be a partially ordered set. Here, we call (X, d,�) an ordered metric space. We recall that two elements
b, c ∈ X are comparable if b � c or c � b. A mapping f : (X,�)→ (X,�) is nondecreasing if f b � f c whenever
b � c. Further, a sequence {am} is nondecreasing if am−1 � am for all m ∈ N. In addition, we recall that an
ordered metric space (X, d,�) is regular if for every nondecreasing sequence {am} ⊂ X such that am → c ∈ X,
we have am−1 � c for all m ∈ N. Moreover, X has the property (A) if for each pair of non comparable
elements b, c ∈ X there exists u ∈ X such that b � u and c � u.

Finally, given a function f : X→ X and a point a0 ∈ X, we call the sequence {am} defined by am = f am−1,
for all m ∈N, a sequence of Picard starting at a0.

3. Ordered µ-contractions

In this section, we start introducing a new type of contraction which we call ordered µ-contraction.
Next, we give an auxiliar result and, finally, we state and prove our main result.

Definition 3.1. Let (X, d,�) be an ordered metric space and σ : X×X→ [0,+∞[ be a w0-distance on X. A mapping
f : X→ X is an ordered µ-contraction if there exist three functions S ∈ S, H ∈ H and η : X→ [0,+∞[, such that

S(H(µ( f b, f c), η( f b), η( f c)),H(µ(b, c), η(b), η(c))) ≥ 0 for all b, c ∈ X, b � c. (1)

The following technical lemma is useful in order to establish our main result.

Lemma 3.2. Let (X, d,�) be an ordered metric space and σ : X × X → [0,+∞[ be a w0-distance on X. Further,
let f : X → X be a nondecreasing ordered µ-contraction with respect to the functions S ∈ S, H ∈ H and
η : X → [0,+∞[. Then any sequence {am} of Picard starting at a point a0 ∈ X such that a0 � f a0 is a Cauchy
sequence whenever am−1 , am for all m ∈N.
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Proof. We consider a sequence {am} of Picard starting at a point a0 ∈ X such that a0 � f a0. Further, we
assume that the sequence {am} is such that am−1 , am for all m ∈N. This assures µ(am−1, am) > 0 for all m ∈N
(we recall that µ(b, c) = 0 implies b = c). Hence, thanks to property (H1), we have also

H(µ(am−1, am), η(am−1), η(am)) ≥ µ(am−1, am) > 0 for all m ∈N.

Now, we show that

lim
m→+∞

µ(am−1, am) = 0 and lim
m→+∞

η(am) = 0. (2)

We recall that f is nondecreasing and this implies am−1 � am for all m ∈ N. Therefore, using (1) with
b = am−1 and c = am and the property (S1), we get

0 ≤ S(H(µ(am, am+1), η(am), η(am+1)),H(µ(am−1, am), η(am−1), η(am)))
< H(µ(am−1, am), η(am−1), η(am)) −H(µ(am, am+1), η(am), η(am+1))

for all m ∈N. From the previous inequality we deduce that

H(µ(am, am+1), η(am), η(am+1)) < H(µ(am−1, am), η(am−1), η(am)) for all m ∈N

and hence, we can affirm that {H(µ(am−1, am), η(am−1), η(am))} is a decreasing sequence of positive real num-
bers. Then, there exists some ` ≥ 0 such that

lim
m→+∞

H(µ(am−1, am), η(am−1), η(am)) = `.

Further, we can affirm that ` = 0. In fact, if we assume ` > 0, choosing

αm = H(µ(am, am+1), η(am), η(am+1)) and βm = H(µ(am−1, am), η(am−1), η(am)),

by (S2) we get

0 ≤ lim sup
m→+∞

S
(
H(µ(am, am+1), η(am), η(am+1)),H(µ(am−1, am), η(am−1), η(am))

)
< 0

and thus we conclude that ` = 0. Finally, thanks to the property (H1), we have

max{µ(am−1, am), η(am−1)} ≤ H(µ(am−1, am), η(am−1), η(am)) for all m ∈N

and hence

lim
m→+∞

µ(am−1, am) = 0 and lim
m→+∞

η(am−1) = 0.

Now, we prove that {am} is a Cauchy sequence. We observe that, thanks to Lemma 2.2 (iii), it is sufficient to
prove that for any ε > 0 there exists n(ε) ∈N such that

µ(an, am) < ε for all m > n ≥ n(ε). (3)

So, we suppose for way of contradiction that (3) does not hold, that is, we suppose that there exist a positive
real number ε0 and two sequences {mk} and {nk} such that mk > nk ≥ k and µ(ank , amk ) ≥ ε0 > µ(ank , amk−1) for
all k ∈N. Hence, by using the first limit of (2), we infer that

lim
k→+∞

µ(ank , amk ) = lim
k→+∞

µ(ank−1, amk−1) = ε0.

Taking into account that µ(ank , amk ) > 0 and that we can assume µ(ank−1, amk−1) > 0 for all k ∈N, we have

H(µ(ank , amk ), η(ank ), η(amk )) > 0
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and

H(µ(ank−1, amk−1), η(ank−1), η(amk−1)) > 0

for all k ∈N. We notice that, since H is a continuous function, we have also

lim
k→+∞

H(µ(ank−1, amk−1), η(ank−1), η(amk−1)) = lim
k→+∞

H(µ(ank , amk ), η(ank ), η(amk ))

= H(ε0, 0, 0) ≥ ε0 > 0.

Now, taking into account that f is nondecreasing and nk < mk for all k, we get ank−1 � amk−1 for all k ∈ N.
Then we can use (1) with b = ank−1 and c = amk−1 and the property (S2) with

αk = H(µ(ank , amk ), η(ank ), η(amk )) and βk = H(µ(ank−1, amk−1), η(ank−1), η(amk−1))

in order to obtain that

0 ≤ lim sup
k→+∞

S
(
H(µ(ank , amk ), η(ank ), η(amk ),H(µ(ank−1, amk−1), η(ank−1), η(amk−1))

)
< 0.

Clearly, this is a contradiction and thus, we conclude that for any ε > 0 there exists n(ε) ∈ N such that
(3) holds, that is, the sequence {am} is Cauchy.

Now, we can state and prove our main result.

Theorem 3.3. Let (X, d,�) be an ordered complete metric space and σ : X × X → [0,+∞[ be a w0-distance on X.
Further, we assume that f : X → X is a nondecreasing ordered µ-contraction with respect to the functions S ∈ S,
H ∈ H and the lower semicontinuous function η : X→ [0,+∞[. If there exists a point a0 ∈ X such that a0 � f a0, X
has the property (A) and is regular, then f has a unique fixed point a such that η(a) = 0.

Proof. We start by proving the existence of a fixed point for f . Let a0 be a point of X such that a0 � f a0. We
consider a sequence of Picard {am} starting at a0. We observe that if ak = ak+1 for some k ∈ N then ak is a
fixed point of f , that is, ak = f ak. Further, we notice that η(ak) = 0. In fact, by η(ak) > 0 it follows that

0 < η(ak) ≤ H(µ(ak, ak), η(ak), η(ak)).

We stress that ak = ak+1 implies am = ak for all m ≥ k, m ∈N. So, since ak � ak we can use (1) with b = ak and
c = ak and the property (S1), in order to infer that

0 ≤ S(H(µ(ak, ak), η(ak), η(ak)),H(µ(ak, ak), η(ak), η(ak)))
< H(µ(ak, ak), η(ak), η(ak)) −H(µ(ak, ak), η(ak), η(ak)) = 0.

Obviously, this is a contradiction and hence we conclude that η(ak) = 0.
Then, we can assume that am , am+1 for every m ∈ N. We recall that Lemma 3.2 assures that {am} is

Cauchy. Further, since (X, d,�) is complete, there exists some a ∈ X such that

lim
m→+∞

am = a.

Firstly, we show that η(a) = 0. We stress that by the proof of Lemma 3.2 we deduce that for every k ∈ N
there exists m(k) ∈N such that

µ(am(k), am) <
1
k

for all m > m(k). (4)

Now, taking into account that µ is semicontinuous with respect to the second variable (see property (µ4)),
from (4), we get

µ(am(k), a) ≤ lim inf
m→+∞

µ(am(k), am) ≤
1
k
.
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Hence, we infer that there exists a subsequence {am(k)} of {am} such that

lim
k→+∞

µ(am(k), a) = 0. (5)

Finally, taking into account that η is a lower semicontinuous function, thanks to (2), we conclude that

0 ≤ η(a) ≤ lim inf
m→+∞

η(am) = 0,

that is, η(a) = 0.
Secondarily, we prove that a is a fixed point of f . We notice that a is a fixed point of f if there exists

a subsequence am j of am such that am j = a or f am j = f a, for all j ∈ N. If a such subsequence there is not,
we can assume that am , a and f am , f a for all m ∈ N. Hence, it follows that H(µ( f am, f a), η( f am), η( f a)) ≥
µ( f am, f a) > 0 and H(µ(am, a), η(am), η(a)) ≥ µ(am, a) > 0. Now, taking into account that X is regular and so
am � a for all m ∈N, we can use (1) with b = am and c = a and the property (S1), in order to get that

0 ≤ S(H(µ( f am, f a), η( f am), η( f a)),H(µ(am, a), η(am), η(a)))
< H(µ(am, a), η(am), η(a)) −H(µ( f am, f a), η( f am), η( f a))

and so

H(µ( f am, f a), η( f am), η( f a)) < H(µ(am, a), η(am), η(a)) for all n ∈N.

Taking into account that µ is semicontinuous with respect to the first variable (see property (µ5)) and H
is continuous, by using (5), we get

µ(a, f a) ≤ lim inf
k→+∞

µ(am(k)+1, f a) = lim inf
k→+∞

µ( f am(k), f a)

≤ lim inf
k→+∞

H(µ( f am(k), f a), η( f am(k)), η( f a))

≤ lim inf
k→+∞

H(µ(am(k), a), η(am(k)), η(a))

= H(0, 0, 0) = 0.

Hence, we conclude that µ(a, f a) = 0. This assures that a = f a, that is, a is a fixed point of f .
Now, we prove the uniqueness of the fixed point. We suppose by way of contradiction that f has two

fixed points a, b ∈ X with a , b. Taking into account that a , b, we can affirm that a and b are not comparable.
Hence, by property (A), there exists u ∈ X such that a � u and b � u. Let {um} be the sequence of Picard
starting at the point u0 = u. We notice that, since f is nondecreasing, a � u0 and b � u0 imply a � um−1 and
b � um−1 for all m ∈N. Further, since a and b are not comparable, we have that a , um−1 and b , um−1 for all
m ∈N. Now, a � um−1 permits to use (1) in order to get

0 ≤ S(H(µ( f a, f um−1), η( f a), η( f um−1)),H(µ(a,um−1), η(a), η(um−1)))
< H(µ(a,um−1), η(a), η(um−1)) −H(µ(a,um), η(a), η(um)).

From the previous inequality, we easily infer that the sequence {H(µ(a,um−1), η(a), η(um−1))} ⊂ [0,+∞[ is
decreasing and so there exists ` ∈ [0,+∞[ such that

lim
m→+∞

H(µ(a,um−1), η(a), η(um−1)) = `.

Now, if we assume ` > 0, using (1) and (S2), we get that

0 ≤ lim sup
m→+∞

S(H(µ( f a, f um−1), η( f a), η( f um−1)),H(µ(a,um−1), η(a), η(um−1))) < 0,

and hence we deduce that ` = 0. Taking into account this, by property (H1), we infer

lim
m→+∞

µ(a,um−1) = 0.
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In a similar way, we can also deduce that

lim
m→+∞

µ(b,um−1) = 0.

Hence, taking into account that

µ(a, b) ≤ µ(a,um−1) + µ(um−1, b),

letting m→ +∞, we get µ(a, b) = 0. This implies that a = b and so f has an unique fixed point.

We remark that the contractive condition (1) does not ensure that the mapping f is continuous. Therefore,
in the previous theorem we use the regularity of the ordered metric space (X, d,�) in order to conclude that
the limit of a convergent Picard sequence is a fixed point of f . We also notice that if f is continuous we
can immediately conclude that the limit of a convergent Picard sequence is a fixed point of f . Taking into
account this, following the proof of Theorem 3.3, we in addition obtain the following result.

Theorem 3.4. Let (X, d,�) be an ordered complete metric space and σ : X × X → [0,+∞[ be a w0-distance on X.
Further, we assume that f : X → X is a nondecreasing ordered µ-contraction with respect to the functions S ∈ S,
H ∈ H and the lower semicontinuous function η : X→ [0,+∞[. If there exists a point a0 ∈ X such that a0 � f a0, f
is continuous and X has the property (A), then f has a unique fixed point a such that η(a) = 0.

Finally, we stress that the uniqueness of the fixed point of f in Theorems 3.3 and 3.4 follows because we
assume that X has the property (A). Hence, if we do not ask that X has the property (A), from the proof of
Theorems 3.3, we get the following result.

Theorem 3.5. Let (X, d,�) be an ordered complete metric space and σ : X × X → [0,+∞[ be a w0-distance on X.
Further, we assume that f : X → X is a nondecreasing ordered µ-contraction with respect to the functions S ∈ S,
H ∈ H and the lower semicontinuous function η : X → [0,+∞[. In addition, we assume that there exists a point
a0 ∈ X such that a0 � f a0. If f is continuous or X is regular, then f has a fixed point a such that η(a) = 0.

Example 3.6. Let X = [0, 2] endowed with the usual metric d(b, c) = |b − c| for all b, c ∈ X. Further, we endow X
with the w0-distance σ : X × X → [0,+∞[ defined by σ(b, c) = d(b, c) for all b, c ∈ X. In addition, we consider on X
the partial order � given by

b, c ∈ X, b � c if b = c or (b ≤ c, b, c ∈ [0, 1]).

We notice that (X, d,�) is a regular ordered complete metric space andµ : X×X→ [0,+∞[ is given byµ(b, c) = d(b, c)
for all b, c ∈ X. Let f : X→ X be the function defined by

f b =

{
0 if b ∈ [0, 2[,
2 if b = 2.

Clearly, f satisfies the contractive condition of Theorem 3.3 with respect to the functions S ∈ S, H ∈ H and the
lower semicontinuous function η : X → [0,+∞[ defined by S(α, β) = kβ − α for all α, β ∈ [0,+∞[ with k ∈ [0, 1[,
H(α, β, γ) = α + β + γ for all α, β, γ ∈ [0,+∞[ and η(b) = 0 for all b ∈ X, respectively. Let b, c ∈ X with b � c, then
we have

H(µ( f b, f c), η( f b), η( f c)) = 0 and H(µ(b, c), η(b), η(c)) = c − b

and hence

S(H(µ( f b, f c), η( f b), η( f c)),H(µ(b, c), η(b), η(c))) = k(c − b) ≥ 0.

Taking into account that all the conditions of Theorem 3.5 are satisfied (we recall that X is regular and f is
nondecreasing), we can affirm that f has a fixed point in X. In addition, we notice that a = 0 and a = 2 are two fixed
points of f sucht that η(a) = 0.
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4. Consequences

In this section, we formulate and easily prove some corollaries, thanks to Theorem 3.3. Such corollaries
are aimed to show that the notion of ordered µ-contraction includes different contractive conditions in the
existing literature (see, for example, [3, 8, 11, 12]).

Corollary 4.1 (see [11]). Let (X, d,�) be a complete ordered metric space, σ : X ×X→ [0,+∞[ be a w0-distance on
X and let f : X→ X be a nondecreasing mapping. Further, we assume that there exist a function H ∈ H , a function
ν : [0,+∞[→ [0, 1[ with lim supt→r+ ν(t) < 1 for all r > 0 and a lower semicontinuous function η : X → [0,+∞[
such that

H(µ( f b, f c), η( f b), η( f c)) ≤ ν(H(µ(b, c), η(b), η(c))) H(µ(b, c), η(b), η(c)) for all b, c ∈ X, b � c.

If there exists a point a0 ∈ X such that a0 � f a0, X has the property (A) and is regular, then f has a unique fixed point
a such that η(a) = 0.

Proof. The claim follows by Theorem 3.3 taking S ∈ S given by S(α, β) = β ν(β) − α, for all α, β ≥ 0.

Next, we give a result of Rhoades type (see [12]) and a result of Jleli et al. type (see [8], Theorem 2.1).

Corollary 4.2. Let (X, d,�) be a complete ordered metric space, σ : X × X → [0,+∞[ be a w0-distance on X and
let f : X → X be a nodecreasing mapping. Further, we suppose that there exist a function H ∈ H and two lower
semicontinuous functions ν : [0,+∞[→ [0,+∞[ with ν−1(0) = {0} and η : X→ [0,+∞[ such that

H(µ( f b, f c), η( f b), η( f c)) ≤ H(µ(b, c), η(b), η(c)) − ν(H(µ(b, c), η(b), η(c))) for all b, c ∈ X, b � c.

If there exists a point a0 ∈ X such that a0 � f a0, X has the property (A) and is regular, then f has a unique fixed point
a such that η(a) = 0.

Proof. We obtain the claim by Theorem 3.3 if we take S ∈ S given by S(α, β) = β−ν(β)−α, for all α, β ≥ 0.

Corollary 4.3. Let (X, d,�) be a complete ordered metric space, σ : X × X→ [0,+∞[ be a w0-distance on X and let
f : X → X be a nondecreasing mapping. Further, we assume that there exist h ∈ [0, 1[, a function H ∈ H and a
lower semicontinuous function η : X→ [0,+∞[ such that

H(µ( f b, f c), η( f b), η( f c)) ≤ h H(µ(b, c), η(b), η(c)) for all b, c ∈ X, b � c.

If there exists a point a0 ∈ X such that a0 � f a0, X has the property (A) and is regular, then f has a unique fixed point
a such that η(a) = 0.

Proof. We get the claim thanks to Theorem 3.3 if we choose S ∈ S given by S(α, β) = h β−α for all α, β ≥ 0.

Finally, we give a result of Boyd-Wong type (see [3]).

Corollary 4.4. Let (X, d,�) be a complete metric space, σ : X × X → [0,+∞[ be a w0-distance on X and let
f : X → X be a nondecreasing mapping. Suppose that there exist a function H ∈ H , an upper semicontinuous
function τ : [0,+∞[→ [0,+∞[ with τ(t) < t for all t > 0 and τ(0) = 0 and a lower semicontinuous function
η : X→ [0,+∞[ such that

H(µ( f b, f c), η( f b), η( f c)) ≤ τ(H(µ(b, c), η(b), η(c))) for all b, c ∈ X, b � c.

If there exists a point a0 ∈ X such that a0 � f a0, X has the property (A) and is regular, then f has a unique fixed point
a such that η(a) = 0.

Proof. By appling Theorem 3.3 and by choosing S ∈ S given by S(α, β) = τ(β) − α, for all α, β ≥ 0, we have
the claim.

Remark 4.5. If we take σ = d, H(α, β, γ) = α + β + γ for all α, β, γ ∈ [0,+∞[ and η(b) = 0 for all b ∈ X, then
Corollary 4.3 provides the Banach contraction principle and Corollary 4.4 provides the Boyd-Wong result in the
setting of ordered metric spaces.

Remark 4.6. We notice that if we replace the hypothesis ”X is regular” with the hypothesis ” f is continuous” then
the Corollaries 4.1-4.4 are yet valid.
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5. Ordered cyclic µ-contractions

In this section, we remind the notion of cyclic representation introduced in the setting of metric spaces
by Kirk et al. in [6] (see also [14]). Following [16], we combine such notion with one of ordered µ-contraction
and so we establish a new fixed point result for cyclic mappings on ordered metric spaces.

Definition 5.1 (see [6, 14]). Let (X, d) be a metric space, r be a positive integer and f : X → X be a mapping. We
say that X = ∪r

i=1Bi is a cyclic representation of X with respect to f if

(i) Bi is a nonempty closed set for each i = 1, 2, . . . , r;

(ii) f (Bi) ⊂ Bi+1 for each i = 1, 2, . . . , r, where Br+1 = B1.

Starting by the previous definition, we introduce the notion of ordered cyclic µ-contraction as follows.

Definition 5.2. Let (X, d,�) be an ordered metric space and σ : X×X→ [0,+∞[ be a w0-distance on X. Further, let
r be a positive integer, B1, . . . ,Br be nonempty closed subsets of X and Y = ∪r

i=1Bi. We say that a mapping f : Y→ Y
is an ordered cyclic µ-contraction if

(i) Y =
⋃r

i=1 Bi is a cyclic representation of Y with respect to f ;

(ii) there exist three functions S ∈ S, H ∈ H and η : Y→ [0,+∞[ such that

S
(
H(µ( f b, f c), η( f b), η( f c)),H(µ(b, c), η(b), η(c))

)
≥ 0

for every b ∈ Bi, c ∈ Bi+1, i = 1, 2, . . . , r and b � c.

Now, we are ready to formulate a new fixed point result for cyclic mappings on ordered metric spaces.
We remark that such a result generalizes the Kirk et al.’s cyclic fixed point theorems (see [6], Theorems 1.3,
2.3 and 2.4). Further, it is an extension to ordered metric spaces of Theorem 4.3 of [16].

Theorem 5.3. Let (X, d,�) be an ordered complete metric space and σ : X × X → [0,+∞[ be a w0-distance on X.
Moreover, let r be a positive integer, B1, . . . ,Br be nonempty closed subsets of X, Y = ∪r

i=1Bi and f : Y → Y be a
nondecreasing ordered cyclic µ-contraction. If there exists a point a1 ∈ B1 such that a1 � f a1, Y has the property
(A) and is regular and, in addition, η is a lower semicontinuous function, then f has a unique fixed point a such that
η(a) = 0.

Proof. We stress that in order to have the claim it is sufficient to show that ∩r
i=1Bi , ∅. In fact, taking into

account that Bi is closed for each i = 1, 2, . . . , r, if ∩r
i=1Bi , ∅ then ∩r

i=1Bi is an ordered complete metric space
with respect to (d,�). Furthermore, since f : Y → Y is a nondecreasing ordered cyclic µ-contraction, we
have that f (∩r

i=1Bi) ⊂ ∩r
i=1Bi. This assures that f : ∩r

i=1Bi → ∩
r
i=1Bi is a nondecreasing ordered µ-contraction

on ∩r
i=1Bi. So, we can apply Theorem 3.3 and conclude that f has a unique fixed point a in ∩r

i=1Bi ⊂ Y such
that η(a) = 0.

Then, we show that ∩r
i=1Bi , ∅. We consider a point a1 ∈ B1 such that a1 � f a1. Let {am} be a sequence of

Picard starting at a1. We notice that amr+i ∈ Bi for all i = 1, . . . , r and m ∈N∪{0}. In fact, Y = ∪r
i=1Bi is a cyclic

representation of Y with respect to f . Hence, we deduce that if ak = ak+1 for some k ∈N then am = ak for all
m ≥ k and so ak ∈ Bi for each i = 1, . . . , r. Clearly, this assures that ∩r

i=1Bi , ∅. So, we suppose that am , am+1
for every m ∈ N. Taking into account that (Y, d,�) is complete and the sequence {am} ⊂ Y is Cauchy (by
Lemma 3.2), we can affirm that there exists a ∈ X such that

lim
m→+∞

am = a.

Further, we can affirm that a ∈ ∩r
i=1Bi. In fact, the set Bi is closed for each i = 1, . . . , r and amr+i → a as

m→ +∞. This assures that ∩r
i=1Bi , ∅ and, hence, we have the claim.
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6. Contractions of integral type

In this section, we introduce a new contractive condition of integral type. In order to do this, we consider
suitable functions of the family S.

Let ν : [0,+∞[→ [0,+∞[ be an upper semicontinuous function such that ν(α) < α for all α > 0 and
ν(0) = 0. We affirm that the function S : [0,+∞[×[0,+∞[→ [0,+∞[ defined by S(α, β) = ν(β) − α belongs
to S. Firstly, we notice that S(α, β) = ν(β) − α < β − α for each α, β > 0 and so S satisfies the property (S1).
Further, if {αm}, {βm} in ]0,+∞[ are two sequences such that limm→+∞ αm = limm→+∞ βm = ` ∈ ]0,+∞[ then,
taking into account that ν is upper semicontinuous, we have

lim sup
m→+∞

S(αm, βm) ≤ lim sup
m→+∞

ν(βm) − ` ≤ ν(`) − ` < ` − ` = 0.

Clearly, this assures that S also satisfies the property (S2).
In a similar way, we deduce that given a lower semicontinuous function ν : [0,+∞[→ [0,+∞[ such that

ν(α) > α for all α > 0 and ν(0) = 0, the function S : [0,+∞[×[0,+∞[→ [0,+∞[ defined by S(α, β) = β − ν(α)
belongs to S.

Next, let τ : [0,+∞[→ [0,+∞[ be a function that is Lebesgue integrable in every interval [0, t] with t > 0.
Thanks to the previous considerations, we can affirm that

• S : [0,+∞[×[0,+∞[→ [0,+∞[ defined by S(α, β) =
∫ β

0 τ(s)ds − α, for all α, β ∈ [0,+∞[, belongs to S if∫ t

0 τ(s) ds < t for all t > 0;

• S : [0,+∞[×[0,+∞[→ [0,+∞[ defined by S(α, β) = β −
∫ α

0 τ(s)ds, for all α, β ∈ [0,+∞[, belongs to S if∫ t

0 τ(s) ds > t for all t > 0.

Finally, we can establish two new results of fixed point that involve a contractive condition of integral
type.

Theorem 6.1. Let (X, d,�) be an ordered complete metric space, σ : X × X → [0,+∞[ be a w0-distance on X
and let f : X → X be a nondecreasing mapping. Further, we assume that there exist a function H ∈ H , a lower
semicontinuous function η : X→ [0,+∞[ and a function τ : [0,+∞[→ [0,+∞[ Lebesgue integrable in every interval
[0, t], t > 0, such that

H(µ( f b, f c), η( f b), η( f c)) ≤
∫ H(µ(b,c),η(b),η(c))

0
τ(s)ds for all b, c ∈ X, b � c.

If there exists a point a0 ∈ X such that a0 � f a0, X has the property (A), X is regular and further
∫ t

0 τ(s)ds < t for all
t > 0, then f has a unique fixed point a such that η(a) = 0.

Proof. We have immediately the claim by Theorem 3.3 if we choose S ∈ S given by S(α, β) =
∫ β

0 τ(s)ds − α,
for all α, β ∈ [0,+∞[.

Theorem 6.2. Let (X, d,�) be an ordered complete metric space, σ : X × X → [0,+∞[ be a w0-distance on X
and let f : X → X be a nondecreasing mapping. Moreover, we suppose that there exist a function H ∈ H , a lower
semicontinuous function η : X→ [0,+∞[ and a function τ : [0,+∞[→ [0,+∞[ Lebesgue integrable in every interval
[0, t], t > 0, such that∫ H(µ( f b, f c),η( f b),η( f c))

0
τ(s)ds ≤ H(µ(b, c), η(b), η(c)) for all b, c ∈ X, b � c.

If there exists a point a0 ∈ X such that a0 � f a0, X has the property (A), X is regular and further
∫ t

0 τ(s)ds > t for all
t > 0, then f has a unique fixed point a such that η(a) = 0.
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Proof. The claim follows by Theorem 3.3 if we choose S ∈ S given by S(α, β) = β −
∫ α

0 τ(s)ds, for all
α, β ∈ [0,+∞[.

Next, we give an example which shows the userfulness of our contractive condition. In addition, such
an example is aimed to remark that the function η has a crucial role in enlarging the class of self mappings
which are µ-contractions.

Example 6.3. Let X = [0, 2]. We endow X with the usual metric d(b, c) = |b − c| for all b, c ∈ X and, in addition, we
consider on X the w0-distance σ : X × X → [0,+∞[ defined by σ(b, c) = c for all b, c ∈ X. Further, we define on X a
partial order � given by

b, c ∈ X, b � c if b = c, (b ≤ c, b, c ∈ [0, 39
22 ]) or (b ∈ [0, 2[ and c = 2).

We notice that (X, d,�) is an ordered complete metric space. Moreover, µ : X × X → [0,+∞[ is given by µ(b, c) =
max{b, c} for all b, c ∈ X. Let f : X→ X be the function defined by

f b =


hb if b ∈ [0, 39

22 ] and 0 ≤ h ≤ 1/3,

3
2 if b ∈ ] 39

22 , 2].

Clearly, f satisfies the contractive condition of Theorem 6.2 with respect to the function H ∈ H defined by H(α, β, γ) =
α + β + γ for all α, β, γ ∈ [0,+∞[, the lower semicontinuous function η : X → [0,+∞[ defined by η(b) = b for all
b ∈ X and the function τ : [0,+∞[→ [0,+∞[ given by

τ(s) = 1 +
1

(s + 1)2 for all s ∈ [0,+∞[.

Let b, c ∈ X with b � c, then we have

H(µ( f b, f c), η( f b), η( f c)) = 2 f c + f b and H(µ(b, c), η(b), η(c)) = 2c + b.

If b � c and b, c ∈ [0, 39
22 ], then 2 f c + f b ≤ 3hc and hence∫ H(µ( f b, f c),η( f b),η( f c))

0
τ(s)ds ≤

∫ 3hc

0
τ(s)ds

=
3hc + 2
3hc + 1

3hc ≤ 2c ≤ 2c + b (if 0 ≤ h ≤ 1
3 )

= H(µ(b, c), η(b), η(c)).

If b ∈ [0, 39
22 ] and c = 2, then 2 f c + f b = 3 + hb and hence∫ H(µ( f b, f c),η( f b),η( f c))

0
τ(s)ds =

∫ 3+hb

0
τ(s)ds =

5 + hb
4 + hb

(3 + hb)

≤ 4 + b = H(µ(b, c), η(b), η(c)).

If b ∈ ] 39
22 , 2] and c = 2, then 2 f c + f b = 9

2 and hence∫ H(µ( f b, f c),η( f b),η( f c))

0
τ(s)ds =

∫ 9
2

0
τ(s)ds =

117
22

≤ 4 +
39
22

< 4 + b

= H(µ(b, c), η(b), η(c)).
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If b = c ∈ ] 39
22 , 2[, then 2 f c + f b = 9

2 and hence∫ H(µ( f b, f c),η( f b),η( f c))

0
τ(s)ds =

∫ 9
2

0
τ(s)ds =

117
22

= 3
39
22

< 3c

= H(µ(b, c), η(b), η(c)).

Now, taking into account that all the conditions of Theorem 6.2 are satisfied, we can affirm that f has a unique
fixed point a = 0 = η(a) in X.

We remark that if we choose the w0-distance σ = d and η(b) = 0 for all b ∈ X then from d( f 0, f 2) = 3/2 and
d(0, 2) = 2 it follows that∫ d( f 0, f 2)

0
τ(s)ds =

21
10
≥ 2 = d(0, 2).

This assures that Theorem 27 of [13] cannot be used in order to affirm that f has a fixed point with respect to the
contractive condition of Theorem 6.2 associated to the function τ.

7. Application to differential equations

In this section, we provide an application of our results to ordinary differential equations. Precisely, we
use Theorem 3.5 in order to prove the existence of a unique solution for a first-order periodic differential
problem. We follow the general approach, that is, we convert such a problem into a integral equation which
describes exactly a fixed point of a mapping.

Here, we work in R2 where we consider the partial order ≤ given by:

(x, y), (z,w) ∈ R2, (x, y) ≤ (z,w) if and only if x ≤ z and y ≤ w.

Let R2
+ = {u ∈ R2 : 0 ≤ u} and let ‖(x, y)‖ = max{|x|, |y|} for all (x, y) ∈ R2. In addition, let τ be a positive

real number and let I = [0, τ]. Let us denote by C(I,R2) the space of continuous functions b : I → R2. We
recall that C(I,R2) is a complete metric space with respect to the metric d : C(I,R2) × C(I,R2) → [0,+∞[
given by

d(b, c) = sup
t∈I
‖b(t) − c(t)‖ for all b, c ∈ C(I,R2).

We endow C(I,R2) with the w0-distance σ : C(I,R2) × C(I,R2) → R+
0 defined by σ(b, c) = d(0, c) for all

b, c ∈ C(I,R2). This implies that µ(b, c) = max{d(0, b), d(0, c)} for all b, c ∈ C(I,R2). Moreover, we define on
C(I,R2) the partial order � given by

b � c if b(t) ≤ c(t) for all t ∈ I.

We notice that the ordered metric space (C(I,R2), d,�) is regular and has the property (A).
Next, we consider the first-order periodic problemb′(t) = 1(t, b(t)), t ∈ I,

b(0) = b(τ).
(6)

where 1 : I ×R2
→ R2 is a continuous function. We know that the problem (6) is equivalent to the integral

equation

b(t) =

∫ τ

0
G(t, s)[1(s, b(s)) + γb(s)]ds,
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where γ is a real number and the Green function G : I × I→ R is defined by

G(t, s) =


eγ(τ+s−t)

eγτ − 1
if 0 ≤ s ≤ t ≤ τ,

eγ(s−t)

eγτ − 1
if 0 ≤ t < s ≤ τ.

By the definition of G, we notice that∫ τ

0
G(t, s) ds =

1
γ

for each t ∈ I.

Therefore, we can associate to the problem (6) the integral operator f : C(I,R2)→ C(I,R2) defined by

( f b)(t) =

∫ τ

0
G(t, s)[1(s, b(s)) + γb(s)]ds for all b ∈ C(I,R2).

Now, we stress that b ∈ C(I,R2) is a solution of the problem (6) if and only if b is a fixed point of f .
If the function 1 is nondecreasing in the second variable and γ > 0, then for all b, c ∈ C(I,R2) with b � c,

we have that

1(s, b(s)) + γb(s) ≤ 1(s, c(s)) + γc(s) for all s ∈ I.

Since G(t, s) ≥ 0 for each t, s ∈ I, we have also

( f b)(t) =

∫ τ

0
G(t, s)[1(s, b(s)) + γb(s)]ds

≤

∫ τ

0
G(t, s)[1(s, c(s)) + γc(s)]ds

=( f c)(t) for all t ∈ I

and hence it follows that f b � f c.
Now, we formulate the following technical assumption (such a assumption is needed in order to use

one among of our results of fixed point):

There exists γ > 0 such that for all c ∈ C(I,R2), we have

‖ f (s, c(s)) + γc(s)‖ ≤ γ
‖c(s)‖

1 + ‖c(s)‖
for all s ∈ I. (7)

Then for all b, c ∈ C(I,R2) such that b � c, we deduce that

µ( f b, f c) = sup
t∈I
‖( f c)(t)‖

≤ sup
t∈I

∫ τ

0
G(t, s)‖1(s, c(s)) + γc(s)‖ ds

≤ sup
t∈I

∫ τ

0
G(t, s)γ

‖c(s)‖
1 + ‖c(s)‖

ds. (8)

Taking into account that the function t→ t
1+t is nondecreasing, we have that

‖c(s)‖
1 + ‖c(s)‖

≤
sups∈I ‖c(s)‖

1 + sups∈I ‖c(s)‖
=

d(0, c)
1 + d(0, c)

. (9)
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So, using (8) and (9), we obtain

µ( f b, f c) ≤ γ
(
sup

t∈I

∫ τ

0
G(t, s) ds

)
d(0, c)

1 + d(0, c)
=

µ(b, c)
1 + µ(b, c)

for all b, c ∈ C(I,R2) with b � c (we recall that d(0, b) ≤ d(0, c) since b � c).
Now, let h ∈ C(I,R2), we say that h is a lower solution of problem (6) if h satisfiesh′(t) ≤ 1(t, h(t)) for all t ∈ I,

h(0) ≤ h(τ).

We can easily see that

h(t) ≤
∫ τ

0
G(t, s)[1(s, h(s)) + γh(s)] ds = ( f h)(t) for all t ∈ I,

that is, h � f h. Then, taking into account that the function S : R+
0 ×R

+
0 → R, given by

S(α, β) =
β

1 + β
− α,

belongs to the familyS, we can use Theorem 3.5 with S as above, H(α, β, γ) = α+β+γ for all α, β, γ ∈ [0,+∞[
and η(b) = 0 for all b ∈ C(I,R2). In this way, we obtain the following result.

Theorem 7.1. For the Problem (6) with 1 : I ×R2
→ R2 continuous and nondecreasing with respect to the second

variable, the existence of a lower solution provides the existence of a unique solution if there exists a positive real
numbers γ such that (7) holds for all c ∈ C(I,R2).
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133–181.

[3] D.W. Boyd, J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.
[4] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math.

Japonica 44 (1996), 381–391.
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