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Abstract. The purpose of this paper is the study of hypergroups associated with hypergraphs. In this
regard, we construct a hypergroupoid by defining a hyperoperation on the set of degrees of vertices of a
hypergraph. We will see that the constructed hypergroupoid is always an Hv-group. We will investigate
some conditions to have a hypergroup.

1. Introduction

The notion of a hypergraph appeared around 1960 and one of the initial concerns was to extend some
classical results of graph theory. Hypergraphs are like simple graphs, except that instead of having edges
that only connect two vertices, their edges are sets of any number of vertices. This happens to mean that
all graphs are just a subset of hypergraphs. Hence some properties must be a generalization of graph
properties. Moreover, hypergraph theory is a useful tool for discrete optimization problems. Hypergraphs
is being widely and deeply investigated since last few decades as a successful tool to represent and model
complex concepts and structures in various areas of computer science and discrete mathematics. A very
good presentation of graph and hypergraph theory is in [1, 2], also see [5, 14, 20]. Hypergraphs have many
other names. In computational geometry, a hypergraph may sometimes be called a range space and then
the hyperedges are called ranges.

Algebraic hyperstructures represent a natural extension of classical algebraic structures and they were
introduced by the French mathematician Marty [19]. Algebraic hyperstructures are a suitable generalization
of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an
element, while in an algebraic hyperstructure, the composition of two elements is a set. Since then, hundreds
of papers and several books have been written on this topic, see [3, 5, 7–9, 24]. In these books one can see the
applications of hyperstructures in fuzzy and rough set theory, cryptography, codes, automata, probability,
geometry, lattices, binary relations, graphs and hypergraphs.

The connections between hyperstructure theory, binary relations and graph theory have been analyzed
by many researchers (see for instance [4, 6, 10–17, 21]). In [4], Corsini present a commutative quasi-
hypergroup HΓ associated to a given hypergraph Γ. Necessary and sufficient conditions for HΓ to be
associative are found. For certain classes of hypergraphs that include finite hypergraphs, a sequence of
hypergraphs is described such that the corresponding quasi-hypergroups form a join space. In [6], Corsini
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et al. considered the hypergroupoid (H; ◦m) associated with a finite path whereby the product x ◦m y is
the set of vertices of the path at the graph distance at most m from x or y. They analyzed the derived
hypergroupoids of (H; ◦m). In [17], Iranmanesh and Iradmusa defined a hyperoperation, they call it PHO
hyperoperation, depending on two non-empty natural numbers. The most important result on the topic is
a necessary and sufficient condition in order that a PHO hyperoperation defines a hypergroup in the sense
of Marty. In [15], Farshi et al. constructed a ρ-hypergroup by means a given hypergraph by defining a
special relation ρ, and then they investigated some related properties. Further, they introduced a special
product of ρ-hypergroups. Also, They bridged between subhypergraphs and subhypergroups. Finally,
the fundamental relation of a ρ-hypergroup is studied. In [15], Farshi et al. constructed a hypergroupoid
by defining a hyperoperation on the set of degrees of vertices of a hypergraph and they call it a degree
hypergroupoid. The constructed hypergroupoid is always an Hv-group. They presented some conditions on
a degree hypergroupoid to have a hypergroup structure. Further, they studied the degree hypergroupoid
associated with cartesian product of hypergraphs. In [21], Maryati and Davvaz investigated a general
framework for the study of the relations between hypergraphs and hypergroups based on approximation
operators.

2. Basic definitions

In this section, we gather all definitions we require of hyperstructures and hypergraphs. Let H be a
nonempty set and ρ∗(H) be the set of all nonempty subsets of H and H × H be the cartesian product of H.
In general, a hyperoperation ◦ on H is a map from H ×H to ρ∗(H). More exactly, for all x, y of H, we have
x ◦ y ⊆ H. x ◦ y is called the hyperproduct of x and y. If A,B are non-empty subsets of H, then by A ◦ B, we
mean

A ◦ B =
⋃
x∈A
y∈B

x ◦ y,

and for x ∈ H, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}. The hyperproduct of elements x1, ..., xn of H is denoted

by
n∏

i=1
xi and is equal to x1 ◦

n∏
i=2

xi. An algebraic system (H, ◦) endowed with a hyperoperation is called a

hypergroupoid. A hypergroupoid (H, ◦) is called a:

• semihypergroup if for every x, y, z ∈ H, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z;

• quasihypergroup if for every x ∈ H, x ◦H = H = H ◦ x (this condition is called the reproduction axiom);

• hypergroup if it is a semihypergroup and a quasihypergroup.

A hypergroup is called commutative if x ◦ y = y ◦ x for all x, y ∈ H. A join space is a commutative
hypergroup (H, ◦) such that the following condition holds for all a, b, c, d in H:

a/b ∩ c/d , ∅ =⇒ a ◦ d ∩ b ◦ c , ∅,

where a/b = {x ∈ H | a ∈ x ◦ b}. Join spaces have been introduced by Prenowitz [22] and used by him and
Jantosciak [23] to rebuild several branches of geometry.

A hypergraph is a pair Γ = (H,E), where H is a finite set of vertices and E = {E1, ...,En} is a set of hyperedges

which are nonempty subsets of H such that
m⋃

i=1
Ei = H.

Let Γ = (H,E) be a hypergraph and x, y ∈ H. A hyperedge sequence (E1, ...,Ek) is called a path of length k
from x to y if the following conditions are satisfied:

(1) x ∈ E1 and y ∈ Ek,
(2) Ei , E j for i , j,
(3) Ei ∩ Ei+1 , ∅ for 1 ≤ i ≤ k − 1.
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In a hypergraph Γ, two vertices x and y are called connected if Γ contains a path from x to y. If two vertices
are connected by a path of length 1, i.e., by a single hyperedge, the vertices are called adjacent. We use the
notation x− y to denote the adjacency of vertices x and y. A hypergraph is said to be connected if every pair
of vertices in the hypergraph is connected. A connected component of a hypergraph is any maximal set of
vertices which are pairwise connected by a path [14].

The length of shortest path between vertices x and y is denoted by dist(x, y) and the diameter of Γ is
defined as follows:

d:= diam(Γ) =

{
max{dist(x, y) | x, y ∈ H} if Γ is connected,
∞ otherwise.

Connections between hypergraphs and hypergroups are studied by many authors, for example, see
[4, 6, 17, 18].

3. Special hyperoperation on hypergraphs

We define a hyperoperation n◦m for all n,m ∈N on H as follows:

∀(x, y) ∈ H2, x n◦m y = En(x) ∪ Em(y),

where E0(x) = x, E(x) =
⋃

x∈Ei

Ei, E(A) =
⋃

x∈A
E(x) for all non-empty subset A of H, and En(x) = En−1(E(x)). It is

clear that for n ≥ m, x n◦m x = En(x) ∪ Em(x) = En(x).
The hypergroupoid HΓ = (H, n◦m) is called a hypergraph hypergroupoid or a h.g. hypergroupoid.
In the following, we consider three cases:
Case 1. n ≥ d or m ≥ d.
Case 2. n = m (n < d and m < d).
Case 3. n , m (n < d and m < d).
For the case 1, we have the following:

Lemma 3.1. Let Γ be a connected hypergraph of diameter d. If n > d, then for every x ∈ H, En(x) = H.

Proof. By induction the result follows. So, we prove the claim for n = d, i.e., we show that Ed(x) = H.
By contradiction, suppose that Ed(x) , H. We know that |Ed(x)| > d. Since Ed(x) , H, it follows that

there exists a vertex in Γ, say xd, which is not in Ed(x). Obviously, there is a vertex xi in Ed(x) such that
dist(xi, xd) > d and this is a contradiction.

Remark 3.2. If n ≥ d or m ≥ d, then

∀(x, y) ∈ H2, x n◦m y = H.

For the case 2, we have (Theorems 3.3, 3.4, Proposition 3.5, Theorem 3.8, Corollary 3.9, Theorem 3.11).
In [4], Corsini defined the hyperoperation 1◦1 as follows:

∀(x, y) ∈ H2, x 1◦1 y = E(x) ∪ E(y).

The hyperoperation 1◦1 is commutative.

Theorem 3.3. For each (x, y) ∈ H2 and n ∈N, the hypergroupoid HΓ = (H, n◦n) satisfies the following conditions:

(1) x n◦n y = x n◦n x ∪ y n◦n y;
(2) x ∈ x n◦n x;
(3) y ∈ x n◦n x⇔ x ∈ y n◦n y.
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Proof. We only prove (3). The proof of other conditions is straightforward.
Let y ∈ x n◦n x = En(x). Then E(y) ∩ En−1(x) , ∅ and so E2(y) ∩ En−2(x) , ∅, ..., En−1(y) ∩ E(x) , ∅. Hence

En(y) ∩ x , ∅. Therefor x ∈ En(y).

Theorem 3.4. If the hypergroupoid HΓ = (H, n◦n) satisfied the conditions (1), (2), (3) of the Theorem 3.3, then also
satisfies the conditions:

(4) x n◦n y ⊃ {x, y},
(5) x n◦n y = y n◦n x,
(6) H n◦n x = x n◦n H = H,
(7) < H; {x n◦n x}x∈H > is a hypergraph,
(8) (x n◦n x) n◦n x =

⋃
x∈zn◦nz

z n◦n z,

(9) (x n◦n x) n◦n (x n◦n x) = x n◦n x n◦n x.

Proof. It is straightforward.

Proposition 3.5. The hypergroupoid HΓ = (H, n◦m) is commutative, if one of the following conditions is satisfied:

(1) n = m,
(2) n ≥ d or m ≥ d.

Proof. (1) It is clear.
(2) It is straightforward, by Lemma 3.1.

f1.png

Figure 1: The hypergraph defineded in Example 3.6.

Example 3.6. Diameter of the hypergraph presented in Figure 1 is 3 (d = 3). Suppose that n = 2 and m = 1. Then,
we have

2◦1 x y z w h
x {x, y, z, h} {x, y, z, h} {x, y, z, h} H H
y {x, y, z, h} {x, y, z, h} {x, y, z, h} H H
z H H H H H
w H H H {w, h, z} {w, h, z}
h H H H H H

It is clear that (H, 2◦1) is not commutative.
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Remark 3.7. By using the conditions (5) and (6) of Theorem 3.4, it is clear that HΓ = (H, n◦n) is a commutative
quasihypergroup.

Theorem 3.8. The hypergroupoid (H, n◦n) satisfying the conditions (1), (2) and (3) of Theorem 3.3 is a hypergroup
if and only if the following condition is valid:

∀(a, c) ∈ H2 and n < d
d
2
e, c n◦n c n◦n c − c n◦n c ⊂ a n◦n a n◦n a.

Proof. By [4], the proof is clear.

Corollary 3.9. If the hypergroupoid satisfies the conditions (1), (2) and (3) of Theorem 3.3 and the condition:

n < d
d
2
e, E2n(x) = En(x), for all x ∈ H,

then it is a hypergroup.

f22.png

Figure 2: The hypergraph defineded in Example 3.10.

Example 3.10. Suppose that H = {v1, v2, v3, v4, v5, v6, v7, v8}, E = {E1,E2,E3,E4,E5,E6,E7} and d = 5, where
E1 = {v1, v2, v3}, E2 = {v3, v4}, E3 = {v2, v5}, E4 = {v4, v6}, E5 = {v5, v6}, E6 = {v6, v7} and E7 = {v7, v8}, see Figure
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2. Then, we have

2◦2 v1 v2 v3 v4 v5 v6 v7 v8

v1 {v1, ..., v5} {v1, ..., v6} {v1, ..., v6} {v1, ..., v7} {v1, ..., v7} H H H
v2 {v1, ..., v6} {v1, ..., v6} {v1, ..., v6} {v1, ..., v7} {v1, ..., v7} H H H
v3 {v1, ..., v6} {v1, ..., v6} {v1, ..., v6} {v1, ..., v7} {v1, ..., v7} H H H
v4 {v1, ..., v7} {v1, ..., v7} {v1, ..., v7} {v1, ..., v7} {v1, ..., v7} H H H
v5 {v1, ..., v7} {v1, ..., v7} {v1, ..., v7} {v1, ..., v7} {v1, ..., v7} H H H
v6 H H H H H {v2, ..., v8} {v2, ..., v8} {v2, ..., v8}

v7 H H H H H {v2, ..., v8} {v4, ..., v8} {v4, ..., v8}

v8 H H H H H {v2, ..., v8} {v4, ..., v8} {v6, v7, v8}

It is clear that (H, 2◦2) is a commutative hypergroup.

Theorem 3.11. If the hypergroup HΓ = (H, n◦n) satisfies the conditions (1), (2) and (3) of Theorem 3.3, then it is a
join space.

Proof. It is sufficient to prove that the following implication:

x/y ∩ z/w , ∅ ⇒ x n◦n w ∩ y n◦n z , ∅,

where x/y = {z | x ∈ z n◦n y}. We have:

u ∈ x/y ∩ z/w⇐⇒ [x ∈ u n◦n y and z ∈ u n◦n w].

Moreover, x ∈ u n◦n y ⇐⇒ x ∈ u n◦n u ∪ y n◦n y and z ∈ u n◦n w ⇐⇒ z ∈ u n◦n u ∪ w n◦n w. The following
four cases are possible:

(1) If x ∈ u n◦n u, z ∈ u n◦n u, then u ∈ x n◦n x ∩ z n◦n z and so u ∈ x n◦n w ∩ y n◦n z.
(2) If x ∈ u n◦n u, z ∈ w n◦n w, then w ∈ z n◦n z. Hence, w ∈ x n◦n w ∩ y n◦n z.
(3) If x ∈ y n◦n y, z ∈ u n◦n u, then y ∈ x n◦n x. This implies that y ∈ x n◦n w ∩ y n◦n z.
(4) If x ∈ y n◦n y, z ∈ w n◦n w, then w ∈ z n◦n z. This implies that w ∈ x n◦n w ∩ y n◦n z.

Remark 3.12. If n = m (n < d and m < d), then

∀(x, y) ∈ H2, x n◦m y = En(x) ∪ En(y).

For the case 3, we have (Theorems 3.13, 3.14, Lemma 3.17, Theorems 3.18):

Theorem 3.13. For each (x, y) ∈ H2, n,m ∈ N (n , m,n < d and m < d), the hypergroupoid HΓ satisfies the
following conditions:

(1) x n◦m y ⊂ x n◦m x ∪ y n◦m y. In the other words:

x n◦m y =

{
x n◦m x ∪ Em(y) if n > m,
En(x) ∪ y n◦m y if n < m.

(2) x ∈ x n◦m x;
(3) y ∈ x n◦m x⇔ x ∈ y n◦m y.

Proof. We only prove (3). The proof of other items is straightforward. Let n > m and y ∈ x n◦m x = En(x).
Then E(y) ∩ En−1(x) , ∅ and so E2(y) ∩ En−2(x) , ∅, ..., En−1(y) ∩ E(x) , ∅. Hence En(y) ∩ x , ∅. Therefor
x ∈ En(y).

Theorem 3.14. If a hypergroupoid HΓ satisfied the conditions (1), (2), (3) of Theorem 3.13, then also satisfies the
following conditions:
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(4) x n◦m y ⊃ {x, y},
(5) x n◦m y ∩ y n◦m x , ∅,
(6) H n◦m x = x n◦m H = H,
(7) < H; {x n◦m x}x∈H > is a hypergraph,
(8) (x n◦m x) n◦m x ⊂

⋃
x∈zn◦mz

z n◦m z.

Proof. It is enough to prove (8). We have (x n◦m x) n◦m x =
⋃

z∈xn◦mx
z n◦m x. By (1), we obtain

x n◦m x n◦m x ⊂
⋃

z∈xn◦mx
z n◦m z ∪ x n◦m x.

Now, from (2) we have
x n◦m x n◦m x ⊂

⋃
z∈xn◦mx

z n◦m z,

and finally from (3) we obtain (8).

Remark 3.15. From the condition (5) of Theorem 3.14, it is clear that hyperoperation n◦m is weak commutative and
weak associative. In the other words:

∀ x, y, z ∈ H, x n◦m (y n◦m z) ∩ (x n◦m y) n◦m z , ∅.

The Hv-structures are generalized algebraic hyperstructures where in the axioms of the classical hyper-
structures the equality is replaced by the non-empty intersection. They were introduced by Vougiouklis
[26], also see [24, 25]. A hypergroupoid (H, ◦) is called an Hv-group if it is a quasihypergroup and for every
x, y, z ∈ H, we have x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z , ∅.

Corollary 3.16. From the condition (6) of Theorem 3.14 and Remark 3.15, it is clear that an h.g. hypergroupoid is
an Hv-group.

Lemma 3.17. Let (H, n◦m) be a hypergroupoid. Then:

∀ x, y ∈ H, En(Em(x) ∪ Ep(y)) = En+m(x) ∪ En+p(y).

Proof. Let a ∈ En(Em(x)∪Ep(y)). Then a ∈ Em(x) or a ∈ Ep(y) or a ∈ En+m(x) or a ∈ En+p(y). But Em(x) ⊆ En+m(x)
and Ep(y) ⊆ En+p(y). So a ∈ En+m(x) or a ∈ En+p(y). Hence En(Em(x) ∪ Ep(y)) ⊆ En+m(x) ∪ En+p(y).

The converse is straightforward.

Theorem 3.18. The hypergroupoid (H, n◦m) is a hypergroup if and only if for every a, b, c ∈ H, n < d
d
2
e and m < d

d
2
e

one of the following conditions is valid:

(1) If E2n(a) ∪ Em(c) ⊂ En(a) ∪ E2m(c), then (En(a) ∪ E2m(c)) − (E2n(a) ∪ Em(c)) ⊂ En+m(b);
(2) If En(a) ∪ E2m(c) ⊂ E2n(a) ∪ Em(c), then (E2n(a) ∪ Em(c)) − (En(a) ∪ E2m(c)) ⊂ En+m(b);
(3) If E2n(a) ∪ Em(c) * En(a) ∪ E2m(c) and En(a) ∪ E2m(c) * E2n(a) ∪ Em(c), then ((En(a) ∪ E2m(c)) − (E2n(a) ∪

Em(c))) ∪ ((E2n(a) ∪ Em(c)) − (En(a) ∪ E2m(c))) ⊂ En+m(b).

Proof. (1) Let (H, n◦m) is a hypergroup and suppose a, b, c ∈ H. Then a n◦m (b n◦m c) = (a n◦m b) n◦m c. So
En(a)∪ En+m(b)∪ E2m(c) = E2n(a)∪ En+m(b)∪ Em(c) by Lemma 3.17. Since E2n(a)∪ Em(c) ⊂ En(a)∪ E2m(c), thus
(En(a) ∪ E2m(c)) − (E2n(a) ∪ Em(c)) ⊂ En+m(b).

The converse is a routine verification.
(2) Follows directly from (1).
(3) Let (H, n◦m) is a hypergroup and suppose a, b, c ∈ H. Then a n◦m (b n◦m c) = (a n◦m b) n◦m c. So

En(a) ∪ En+m(b) ∪ E2m(c) = E2n(a) ∪ En+m(b) ∪ Em(c) by Lemma 3.17. Since E2n(a) ∪ Em(c) * En(a) ∪ E2m(c) and
En(a)∪E2m(c) * E2n(a)∪Em(c), thus ((En(a)∪E2m(c)) − (E2n(a)∪Em(c)))∪ ((E2n(a)∪Em(c)) − (En(a)∪E2m(c))) ⊂
En+m(b).

The converse is a routine verification.
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Corollary 3.19. If the hypergroupoid (H, n◦m) satisfies the conditions:

∀a,


E2n(a) = En(a) if n < d

d
2
e

E2m(a) = Em(a) if m < d
d
2
e

then it is a hypergroup.

Remark 3.20. If n , m (n < d and m < d), then

∀(x, y) ∈ H2, x n◦m y = En(x) ∪ Em(y).
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