Split Equality Common Null Point Problem for Bregman Quasi-Nonexpansive Mappings

Ali Abkar ${ }^{\text {a }}$, Elahe Shahrosvand ${ }^{\text {a }}$
${ }^{a}$ Department of Pure Mathemathics, Faculty of Science, Imam Khomeini International University, Qazvin 34149, Iran

Abstract

In this paper, we introduce a new algorithm for solving the split equality common null point problem and the equality fixed point problem for an infinite family of Bregman quasi-nonexpansive mappings in reflexive Banach spaces. We then apply this algorithm to the equality equilibrium problem and the split equality optimization problem. In this way, we improve and generalize the results of Takahashi and Yao [22], Byrne et al [9], Dong et al [11], and Sitthithakerngkiet et al [21].

1. Introduction

Let H_{1}, H_{2} and H_{3} be real Hilbert spaces, $C \subseteq H_{1}$ and $Q \subseteq H_{2}$ be nonempty closed convex subsets, and $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ be bounded linear operators. The split equality problem (SEP) which was first introduced by Moudafi [13] is to find

$$
\begin{equation*}
x \in C, \quad y \in Q \quad \text { such that } \quad A x=B y . \tag{1}
\end{equation*}
$$

The SEP (1) is actually an optimization problem with weak coupling in the constraint. The problem has numerous applications in the decomposition of domains for PDEs, game theory, and intensity-modulated radiation therapy. To see more applications of the SEP in optimal control theory, surface energy and potential games whose variational form can be seen as a SEP, we refer the reader to Attouch [2]. For solving the SEP (1), Moudafi [13] introduced the following alternating CQ algorithm:

$$
\begin{aligned}
x_{n+1} & =P_{C}\left(x_{n}-\gamma_{n} A^{*}\left(A x_{n}-B y_{n}\right)\right), \\
y_{n+1} & =P_{C}\left(x_{n}-\beta_{n} B^{*}\left(A x_{n}-B y_{n}\right)\right),
\end{aligned}
$$

where $\gamma_{n}, \beta_{n} \in\left(\varepsilon, \min \left(\frac{1}{\lambda_{A}}, \frac{1}{\lambda_{B}}\right)-\varepsilon\right), \lambda_{A}$ and λ_{B} are the spectral radii of $A^{*} A$ and $B^{*} B$, respectively. If $B=I$ (the identity mapping) and $\mathrm{H}_{2}=H_{3}$, the problem (1) is equivalent to the well-known split feasibility problem (SFP).

In [8], Byrne et al considered the following problem: Let $A_{i}: H_{1} \rightarrow 2^{H_{1}}, 1 \leq i \leq m$, and $B_{j}: H_{2} \rightarrow 2^{H_{2}}$, $1 \leq j \leq n$, be set-valued mappings, and $T_{j}: H_{1} \rightarrow H_{2}, 1 \leq j \leq n$, be bounded linear operators. The split common null point problem is to find a point $z \in H_{1}$ such that

$$
\begin{equation*}
z \in\left(\cap_{i=1}^{m} A_{i}^{-1} 0\right) \cap\left(\cap_{j=1}^{n} T_{j}^{-1}\left(B_{j}^{-1} 0\right)\right) \tag{2}
\end{equation*}
$$

[^0]where $A_{i}^{-1} 0$ and $B_{j}^{-1} 0$ are the null point sets of A_{i} and B_{j}, respectively.
Let $A: H \longrightarrow 2^{H}$ be a multivalued mapping with graph $G(A)=\{(x, y): y \in A x\}$, domain $D(A)=\{x \in H$: $T x \neq \emptyset\}$ and range $R(A)=\cup\{A x: x \in D(A)\}$. The mapping A is said to be monotone if $\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0$ for all $\left(x, x^{*}\right),\left(y, y^{*}\right) \in G(A)$. A monotone operator $A \subset H \times H$ is said to be maximal if its graph is not properly contained in the graph of any other monotone operator. One of the most important methods for solving (2) in a Hilbert space setting is to replace (2) with the fixed point problem for the operator $R_{A}: H \rightarrow 2^{H}$ defined by $R_{A}:=(I+A)^{-1}$.

To tackle the problem in the Banach space setting, Teboulle [23] introduced a new type of resolvent. Let $f: E \rightarrow(-\infty,+\infty]$ be a proper, convex, lower semicontinuous and Gâteaux differentiable function on int $\operatorname{dom} f$, and let A be a maximal monotone operator such that $\operatorname{int} \operatorname{domf} \cap \operatorname{dom} A \neq \emptyset$. Then the operator $\operatorname{Res}_{A}^{f}: E \rightarrow 2^{E^{*}}$ where E^{*} is the dual of E, is defined by

$$
\operatorname{Res}_{A}^{f}:=(\nabla f+A)^{-1} o \nabla f .
$$

Note that the fixed points of $\operatorname{Res}_{A}^{f}$ are solutions of (2).
In 2015, Takahashi and Yao proposed the following iterative method to solve the problem (2): Let $x \in H$ and $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=J_{\lambda_{n}}\left(x_{n}-\lambda_{n} T^{*} J_{F}\left(T x_{n}-Q_{\mu_{n}} T x_{n}\right)\right), \tag{3}\\
\left.y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n}\right), \\
C_{n}=\left\{z \in H:\left\|y_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
D_{n}=\left\{z \in H:\left\langle x_{n}-z, x_{1}-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap D_{n}} x_{1} .
\end{array}\right.
$$

Observe that in the above algorithm, the determination of the step-size λ_{n} depends on the operator (matrix) norm $\|T\|$. This means that in order to implement the algorithm, first one has to compute the operator norm of T, which in general is not an easy task.

Here we consider the following split equality common null point problem:

$$
\begin{equation*}
\text { find } \quad x \in \cap_{i=1}^{m} h_{i}^{-1} 0, \quad y \in \cap_{j=1}^{n} g_{j}^{-1} 0 \quad \text { such that } A x=B y \tag{4}
\end{equation*}
$$

where H_{1}, H_{2}, H_{3} are real Hilbert spaces, $h_{i}: H_{1} \rightarrow 2^{H_{1}}$ and $g_{j}: H_{2} \rightarrow 2^{H_{2}}$ are set-valued maximal monotone mappings, and $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ are bounded linear operators.

We propose a new algorithm for solving the split equality common null point problem and the equality fixed point problem for an infinite family of Bregman quasi-nonexpansive mappings in reflexive Banach spaces. In this way, we extend the result of Takahashi and Yao [22]. At the same time, we present a useful method for estimating the step-size sequence $\left(\gamma_{n}\right)$ which does not require any prior knowledge of the operator norms $\|A\|$ and $\|B\|$. As application, we consider the algorithm for the equality equilibrium problem and the split equality optimization problem. In this way, we improve and generalize the results of Takahashi and Yao [22], Byrne et al [9], Dong et al [11], and Sitthithakerngkiet et al [21].

2. Preliminaries

Let E be a real Banach space with the norm $\|$.$\| and the dual space E^{*}$, and let $f: E \rightarrow(-\infty,+\infty]$ be a proper convex and lower semicontinuous function. We denoted by domf, the domain of f, that is the set $\{x \in E: f(x)<+\infty\}$. Let $x \in \operatorname{int} \operatorname{dom} f$, the subdifferential of f at x is the convex set defined by

$$
\partial f(x)=\left\{x^{*} \in E^{*}: f(x)+\left\langle y-x, x^{*}\right\rangle \leq f(y), \quad \forall y \in E\right\} .
$$

The Fénchel conjugate of f is the convex function $f^{*}: E^{*} \rightarrow(-\infty,+\infty$] defined by

$$
f^{*}\left(x^{*}\right)=\sup \left\{\left\langle x^{*}, x\right\rangle-f(x): x \in E\right\}
$$

It is known that f satisfies the Young-Fénchel inequality

$$
\left\langle x^{*}, x\right\rangle \leq f(x)+f^{*}\left(x^{*}\right) \quad x \in E, x^{*} \in E^{*},
$$

moreover, the equality holds if $x^{*} \in \partial f(x)$.
Given $x \in \operatorname{int} \operatorname{dom} f$ and $y \in E$, the right-hand derivative of f at x in the direction of y is defined by

$$
\begin{equation*}
f^{0}(x, y):=\lim _{t \rightarrow 0^{+}} \frac{f(x+t y)-f(x)}{t} \tag{5}
\end{equation*}
$$

The function f is said to be Gâteaux differentiable at x if $\lim _{t \rightarrow 0} \frac{f(x+t y)-f(x)}{t}$ exists for any y. In this case, the gradient of f at x is the linear function $\nabla f(x)$ defined by $\langle y, \nabla f(x)\rangle:=f^{0}(x, y)$ for all $y \in E$. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable at each $x \in$ int domf. When the limit as $t \rightarrow 0$ in (5) is attained uniformly for any $y \in E$ with $\|y\|=1$, we say that f is Fréchet differentiable at x. The function $f: E \rightarrow(-\infty,+\infty]$ is called Legendre if it satisfies the following two conditions:
$\left(L_{1}\right) f$ is Gâteaux differentiable, int $\operatorname{domf} \neq \emptyset$ and $\operatorname{dom} \nabla f=\operatorname{int} \operatorname{domf}$,
$\left(L_{2}\right) f^{*}$ is Gâteaux differentiable, $\operatorname{int} \operatorname{dom} f^{*} \neq \emptyset$ and $\operatorname{dom} \nabla f^{*}=\operatorname{int} \operatorname{dom} f^{*}$.
Remark 2.1. If E is a real reflexive Banach space, and f is a Legendre function, then we have
(i) f is a Legendre function if and only if f^{*} is a Legendre function,
(ii) $(\partial f)^{-1}=\partial f^{*}$,
(iii) $\nabla f=\left(\nabla f^{*}\right)^{-1}, \operatorname{ran} \nabla f=\operatorname{dom} \nabla f^{*}=\operatorname{int}\left(\operatorname{dom} f^{*}\right), \operatorname{ran} \nabla f^{*}=\operatorname{dom} \nabla f=\operatorname{int}(\operatorname{dom} f)$,
(iv) f and f^{*} are strictly convex on the interior of their respective domains.

Remark 2.2. If $f: E \rightarrow \mathbb{R}$ is Gâteaux differentiable and convex, then

$$
\begin{aligned}
\langle y, \nabla f(x)\rangle & =f^{0}(x, y)=\lim _{t \rightarrow 0} \frac{f(x+t y)-f(x)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f((1-t) x+t(x+y))-f(x)}{t} \leq \lim _{t \rightarrow 0} \frac{(1-t) f(x)+t f(x+y)-f(x)}{t}=f(x+y)-f(x)
\end{aligned}
$$

The Bregman distance with respect to f, (see [4]), is the bifunction $D_{f}: \operatorname{dom} f \times \operatorname{int} \operatorname{domf} \rightarrow[0,+\infty$) defined by

$$
D_{f}(x, y)=f(x)-f(y)-\langle x-y, \nabla f(y)\rangle
$$

We mention in passing that D_{f} is not a distance in the usual sense; but it enjoys the following properties:
(i) $D_{f}(x, x)=0$, but $D_{f}(x, y)=0$ may not imply $x=y$,
(ii) D_{f} is not symmetric and does not satisfy the triangle inequality,
(iii) for $x \in \operatorname{domf}$ and $y, z \in \operatorname{int} \operatorname{dom} f$, we have

$$
D_{f}(x, y)+D_{f}(y, z)-D_{f}(x, z) \leq\langle\nabla f(z)-\nabla f(y), x-y\rangle
$$

(iv) for each $z \in E$, we have $D_{f}\left(z, \nabla f^{*}\left(\sum_{i=1}^{N} t_{i} \nabla f\left(x_{i}\right) \leq \sum_{i=1}^{N} t_{i} D_{f}\left(z, x_{i}\right)\right.\right.$, where $\left\{x_{i}\right\}_{i=1}^{N} \subseteq E$ and $\left\{t_{i}\right\}_{i=1}^{N} \subseteq(0,1)$ satisfies $\sum_{i=1}^{N} t_{i}=1$.

Bregman distances have been studied by many researchers (see for instance $[3,5,10]$). We shall make use of the function $V_{f}: E \times E^{*} \rightarrow[0,+\infty]$ associated with f, which is defined by (see [7]):

$$
V_{f}\left(x, x^{*}\right)=f(x)-\left\langle x, x^{*}\right\rangle+f^{*}\left(x^{*}\right), \quad \forall x \in E, x^{*} \in E^{*} .
$$

Then $V_{f}\left(x, x^{*}\right)=D_{f}\left(x, \nabla f^{*}\left(x^{*}\right)\right)$ for all $x \in E$ and $x^{*} \in E^{*}$. Moreover, by the subdifferential inequality, we have

$$
V_{f}\left(x, x^{*}\right)+\left\langle\nabla f^{*}\left(x^{*}\right)-x, y^{*}\right\rangle \leq V_{f}\left(x, x^{*}+y^{*}\right),
$$

for all $x \in E$ and $x^{*}, y^{*} \in E^{*}($ see [14]).
The modulus of total convexity at x is the bifunction v_{f} : int $\operatorname{dom} f \times[0,+\infty) \rightarrow[0,+\infty)$, defined by

$$
v_{f}(x, t):=\inf \left\{D_{f}(y, x): y \in \operatorname{dom} f,\|y-x\|=t\right\}
$$

The function f is called totally convex at $x \in \operatorname{int} \operatorname{dom} f$ if $v_{f}(x, t)$ is positive for any $t>0$. This notion was first introduced by Butnariu and Iusem in [7]. Let C be a nonempty subset of E. The modulus of total convexity of f on C is the bifunction $v_{f}:$ int $\operatorname{dom} f \times[0,+\infty) \rightarrow[0,+\infty)$, defined by

$$
v_{f}(C, t):=\left\{v_{f}(x, t): x \in C \cap \operatorname{int} \operatorname{dom} f\right\}
$$

The function f is called totally convex on bounded subsets if $v_{f}(C, t)$ is positive for any nonempty and bounded subset C and any $t>0$.

Proposition 2.3. [19] If $x \in \operatorname{int}$ domf, then the following statements are equivalent:
(i) the function f is totally convex at x,
(ii) for any sequence $\left\{y_{n}\right\} \subset \operatorname{dom} f$,

$$
\lim _{n \rightarrow \infty} D_{f}\left(y_{n}, x\right)=0 \Rightarrow \lim _{n \rightarrow \infty}\left\|y_{n}-x\right\|=0
$$

Recall that the function f is called sequentially consistent (see [6]) if for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in E such that the first one is bounded,

$$
\lim _{n \rightarrow \infty} D_{f}\left(y_{n}, x_{n}\right)=0 \Rightarrow \lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0
$$

Proposition 2.4. [7] If domf contains at least two points, then the function f is totally convex on bounded sets if and only if the function f is sequentially consistent.

Proposition 2.5. [17] Let $f: E \rightarrow \mathbb{R}$ be a Gâteaux differentiable and totally convex function. If $x_{0} \in E$ and the sequence $\left\{D_{f}\left(x_{n}, x_{0}\right)\right\}$ is bounded, then the sequence $\left\{x_{n}\right\}$ is also bounded.

Definition 2.6. Let C be a nonempty subset of int domf. An operator $T: C \rightarrow$ int domf is said to be:
(i) Bregman firmly nonexpansive (BFNE) if

$$
\langle T x-T y, \nabla f(T x)-\nabla f(T y)\rangle \leq\langle T x-T y, \nabla f(x)-\nabla f(y)\rangle
$$

for any $x, y \in C$, or equivalently,

$$
D_{f}(T x, T y)+D_{f}(T y, T x)+D_{f}(T x, x)+D_{f}(T y, y) \leq D_{f}(T x, y)+D_{f}(T y, x)
$$

(ii) Bregman quasi firmly nonexpansive (BQFNE) if $F(T) \neq \emptyset$, and

$$
\langle T x-p, \nabla f(x)-\nabla f(T x)\rangle \geq 0, \quad \forall x \in C, p \in F(T)
$$

or equivalently,

$$
D_{f}(p, T x)+D_{f}(T x, x) \leq D_{f}(p, x)
$$

(iii) Bregman quasi-nonexpansive (BQNE) if $F(T) \neq \emptyset$, and

$$
D_{f}(p, T x) \leq D_{f}(p, x), \quad \forall x \in C, p \in F(T)
$$

Definition 2.7. A point $u \in C$ is said to be an asymptotic fixed point of $T: C \rightarrow C$ if there exists a sequence $\left\{x_{n}\right\}$ in C such that $x_{n} \rightharpoonup u$ and $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$. We denote the asymptotic fixed point set of T by $\hat{F}(T)$.

The concept of an asymptotic fixed point was introduced by Reich in [15].
Proposition 2.8. [16] Let $f: E \rightarrow \mathbb{R}$ be a Legendre function, and let C be a nonempty closed and convex subset of E. If $T: C \rightarrow E$ is a BQNE operator, then $F(T)$ is closed and convex.

The gauge of uniform convexity of a function $f: E \rightarrow \mathbb{R}$ is defined by

$$
\rho_{r}(t)=\inf \left\{\frac{(1-\lambda) f(x)+\lambda f(y)-f((1-\lambda) x+\lambda y)}{\lambda(1-\lambda)}:\|x\|,\|y\| \leq r, \lambda \in(0,1),\|x-y\|=t\right\}
$$

A function f is said to be uniformly convex on bounded subsets if $\rho_{r}(t)>0$ for all $r, t>0$.
The gauge of uniform smoothness of f is defined by

$$
\sigma_{r}(t)=\sup \left\{\frac{(1-\lambda) f(x)+\lambda f(y)-f((1-\lambda) x+\lambda y)}{\lambda(1-\lambda)}:\|x\|,\|y\| \leq r, \lambda \in(0,1),\|x-y\|=t\right\}
$$

Then the function f is said to be uniformly smooth on bounded subsets if $\lim _{t \rightarrow 0} \frac{\sigma_{r}(t)}{t}=0$ for all $r>0$.
Definition 2.9. A function $f: E \rightarrow \mathbb{R}$ is said to be super coercive if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{\|x\|}=+\infty
$$

Definition 2.10. Let C be a nonempty subset of a real Banach space E, and let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be a sequence of mappings from C into E such that $\cap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset$. Then $\left\{T_{n}\right\}_{n=1}^{\infty}$ is said to satisfy the AKTT-condition (see [1]) if for each bounded subset K of C,

$$
\sum_{n=1}^{\infty} \sup \left\{\left\|T_{n+1} z-T_{n} z\right\|: z \in K\right\}<\infty
$$

Lemma 2.11. [1] Let C be a nonempty subset of a real Banach space E, and let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be a sequence of mappings from C into E which satisfies the AKTT-condition. Then, for each $x \in C,\left\{T_{n} x\right\}_{n=1}^{\infty}$ is convergent. Furthermore, if we define a mapping $T: C \rightarrow E$ by

$$
T x:=\lim _{n \rightarrow \infty} T_{n} x, \quad \forall x \in C,
$$

then, for each bounded subset K of C,

$$
\lim _{n \rightarrow \infty} \sup \left\{\left\|T_{n} z-T z\right\|: z \in K\right\}=0
$$

In the sequel, we write $\left(\left\{T_{n}\right\}_{n=1}^{\infty}, T\right)$ satisfies the AKTT-condition if $\left\{T_{n}\right\}_{n=1}^{\infty}$ satisfies the AKTT-condition and $F(T)=\cap_{n=1}^{\infty} F\left(T_{n}\right)$.

Proposition 2.12. [18] If $f: E \rightarrow \mathbb{R}$ is uniformly Fréchet differentiable and bounded on bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E.

Theorem 2.13. [25] Let $f: E \rightarrow \mathbb{R}$ be a continuous convex function which is super coercive. Then the following are equivalent:
(i) f is bounded and uniformly smooth on bounded subsets of E,
(ii) f is Fréchet differentiable and ∇f is uniformly norm-to-norm continuous on bounded subsets of E,
(iii) domf $f^{*}=E^{*}, f^{*}$ is super coercive and uniformly convex on bounded subsets of E^{*}.

Theorem 2.14. [25] Let $f: E \rightarrow \mathbb{R}$ be a continuous convex function which is bounded on bounded subsets of E. Then the following are equivalent:
(i) f is super coercive and uniformly convex on bounded subsets of E,
(ii) $\operatorname{dom} f^{*}=E^{*}, f^{*}$ is bounded and uniformly smooth on bounded subsets of E^{*},
(iii) dom $f^{*}=E^{*}, f^{*}$ is Fréchet differentiable and ∇f^{*} is uniformly norm-to-norm continuous on bounded subsets of E^{*}.

Theorem 2.15. [10] Suppose that $f: E \rightarrow(-\infty,+\infty]$ is a Legendre function. The function f is totally convex on bounded subsets if and only if f is uniformly convex on bounded subsets.

Lemma 2.16. [24] Let $\left\{\gamma_{n}\right\}$ be a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ be a sequence in \mathbb{R} satisfying
(i) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$,
(ii) (2) $\lim \sup _{n \rightarrow \infty} \gamma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\gamma_{n} \delta_{n}\right|<\infty$.

If $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\gamma_{n} \delta_{n}
$$

for each $n \geq 0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.17. [12] Let $\left\{s_{n}\right\}$ be a sequence of real numbers that does not decrease at infinity, in the sense that there exists a subsequence $\left\{s_{n_{i}}\right\}$ of $\left\{s_{n}\right\}$ such that $s_{n_{i}} \leq s_{n_{i}+1}$ for all $i \geq 0$. For every $n \geq n_{0}$, define an integer sequence $\{\tau(n)\}$ as

$$
\tau(n)=\max \left\{k \leq n: s_{k}<s_{k+1}\right\}
$$

Then $\tau(n) \rightarrow \infty$ and $\max \left\{s_{\tau(n)}, s_{n}\right\} \leq s_{\tau(n)+1}$.

3. The Main Result

We start this section by proving a strong convergence theorem for an infinite family of Bregman quasinonexpansive mappings.

Theorem 3.1. Let E_{1}, E_{2} and E_{3} be reflexive Banach spaces, let $C \subseteq E_{1}$ and $Q \subseteq E_{2}$ be two nonempty closed convex sets, let $A: E_{1} \longrightarrow E_{3}$ and $B: E_{2} \longrightarrow E_{3}$ be two bounded linear operators and let $f_{1}: E_{1} \longrightarrow \mathbb{R}$ and $f_{2}: E_{2} \longrightarrow \mathbb{R}$ be super coercive Legendre functions which are bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E_{1} and E_{2}, respectively, and $f_{3}: E_{3} \longrightarrow \mathbb{R}$ be convex, continuous and one-to-one on E_{3} such that f_{3}^{-1} is continuous. Let, for $i=1,2, \ldots, N, h_{i}: E_{1} \longrightarrow 2^{E_{1}^{*}}$ and $g_{i}: E_{2} \longrightarrow 2^{E_{2}^{*}}$ be maximal monotone mappings with $\operatorname{dom}\left(h_{N}\right) \subset C$ and $\operatorname{dom}\left(g_{N}\right) \subset Q$. Assume that for $n \in \mathbb{N}, T_{n}: C \longrightarrow E_{1}$ and $S_{n}: Q \longrightarrow E_{2}$ are an infinite family of Bregman quasi-nonexpansive mappings such that $\left(\left\{T_{n}\right\}_{n=1}^{\infty}, T\right)$ and $\left(\left\{S_{n}\right\}_{n=1}^{\infty}, S\right)$ satisfy the AKTT-condition, and $F(T)=F(\hat{T}) F(S)=F \hat{(S)}$. Put

$$
\Omega=\left\{(x, y): \quad x \in \cap_{n=1}^{\infty} F\left(T_{n}\right) \cap\left(\cap_{i=1}^{N} h_{i}^{-1} 0\right), y \in \cap_{n=1}^{\infty} F\left(S_{n}\right) \cap\left(\cap_{i=1}^{N} g_{i}^{-1} 0\right) \text { such that } A x=B y\right\} \neq \emptyset .
$$

Let $\left\{x_{n}\right\}$ be the sequence generated by:

$$
\left\{\begin{array}{l}
z_{n}=\operatorname{Res}_{\lambda_{n}^{N} h_{N}}^{f_{1}} o \cdots o \operatorname{Res}_{\lambda_{n}^{1} h_{1}}^{f_{1}} \nabla f_{1}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}-\gamma_{n} A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right), \tag{6}\\
x_{n+1}=\nabla f_{1}^{*}\left(\beta_{n} \nabla f_{1} z_{n}+\left(1-\beta_{n}\right) \nabla f_{1} T_{n} z_{n}\right) \\
u_{n}=\operatorname{Res}_{\lambda_{n}^{N} f_{N}}^{f_{n}} o \cdots o \operatorname{Res}_{\lambda_{n}^{1} g_{1}}^{f_{2}} \nabla f_{2}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{2} x_{n}+\gamma_{n} B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right), \\
y_{n+1}=\nabla f_{2}^{*}\left(\beta_{n} \nabla f_{2} u_{n}+\left(1-\beta_{n}\right) \nabla f_{2} S_{n} u_{n}\right)
\end{array}\right.
$$

where the step-size γ_{n} is chosen as follows:

$$
\gamma_{n}=\sigma_{n} \min \left\{\frac{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|}, \frac{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{2}\left(y_{n}\right)\right|}\right\}
$$

where $\sigma_{n} \in(0,1)$ is defined in such a way that $\sum_{n=1}^{\infty} \gamma_{n}=\infty$. Assume that the sequences $\left\{\lambda_{n}^{i}\right\},\left\{\beta_{n}\right\} \in(0,1)$ satisfy the following conditions:
(i) $\lim \inf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$,
(ii) $\liminf _{n \rightarrow \infty} \lambda_{n}^{i}>0$.

Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to $(\bar{x}, \bar{y}) \in \Omega$.
Proof. It follows from Proposition 2.8 that Ω is closed and convex. Let

$$
w_{n}=\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}-\gamma_{n} A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)
$$

and $(\hat{x}, \hat{y}) \in \Omega$. Note that

$$
\begin{aligned}
D_{f_{1}}\left(\hat{x}, \nabla f_{1}^{*} w_{n}\right) & =D_{f_{1}}\left(\hat{x}, \nabla f_{1}^{*}\left(\left(1-\gamma_{n}\right) \nabla f x_{n}-\gamma_{n} A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right) \\
& =f_{1}(\hat{x})+f_{1}^{*}\left(w_{n}\right)-\left\langle\hat{x}, w_{n}\right\rangle \\
& \leq f_{1}(\hat{x})+\left(1-\gamma_{n}\right) f_{1}^{*}\left(\nabla f_{1} x_{n}\right)+\gamma_{n} f_{1}^{*}\left(-A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right) \\
& -\left\langle\hat{x},\left(1-\gamma_{n}\right) \nabla f x_{n}-\gamma_{n} A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle \\
& \leq f_{1}(\hat{x})+f_{1}^{*}\left(\nabla f_{1} x_{n}\right)-\left\langle\hat{x}, \nabla f_{1} x_{n}\right\rangle+\gamma_{n}\left[f_{1}^{*}\left(-A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right. \\
& \left.+\left\langle\hat{x}, \nabla f x_{n}+A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle\right] \\
& =D_{f_{1}}\left(\hat{x}, x_{n}\right)+\gamma_{n}\left[\sup _{x \in X}\left\{\left\langle-x, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle-f_{1}(x)\right\}\right. \\
& \left.+\left\langle\hat{x}, \nabla f x_{n}\right\rangle+\left\langle\hat{x}, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle\right] \\
& \leq D_{f_{1}\left(\hat{x}, x_{n}\right)+\gamma_{n}\left[\sup _{x \in X}\left\{\left\langle-x, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle-f_{1}(x)\right\}\right.} \\
& \left.+f_{1}\left(x_{n}+\hat{x}\right)-f_{1}\left(x_{n}\right)+\left\langle\hat{x}, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle\right] \\
& \leq D_{f_{1}\left(\hat{x}, x_{n}\right)+\gamma_{n}\left[-\left\langle x_{n}+\hat{x}, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle-f_{1}\left(x_{n}+\hat{x}\right)\right.}+ \\
& \left.+f_{1}\left(x_{n}+\hat{x}\right)-f_{1}\left(x_{n}\right)+\left\langle\hat{x}, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle\right] \\
& =D_{f_{1}\left(\hat{x}, x_{n}\right)+\gamma_{n}\left[-\left\langle A x_{n}, \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle-f_{1}\left(x_{n}\right)\right]} \\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)+\gamma_{n}\left[f_{3}\left(-B y_{n}\right)-f_{3}\left(A x_{n}-B y_{n}\right)-f_{1}\left(x_{n}\right)\right] \\
& =D_{f_{1}\left(\hat{x}, x_{n}\right)-\gamma_{n}\left[f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)-f_{3}\left(-B y_{n}\right)\right] .}
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
D_{f_{1}}\left(\hat{x}, z_{n}\right) & =D_{f_{1}}\left(\hat{x}, \operatorname{Res}_{\lambda_{n}^{N} h_{N}}^{f_{1}} o \cdots o \operatorname{Res}_{\lambda_{n}^{1} h_{1}}^{f_{1}} \nabla f_{1}^{*} w_{n}\right) \leq D_{f_{1}}\left(\hat{x}, \nabla f_{1}^{*} w_{n}\right) \tag{7}\\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)-\gamma_{n}\left[f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)-f_{3}\left(-B y_{n}\right)\right]
\end{align*}
$$

Following a similar argument as above, we obtain

$$
\begin{equation*}
D_{f_{2}}\left(\hat{y}, u_{n}\right) \leq D_{f_{2}}\left(\hat{y}, y_{n}\right)-\gamma_{n}\left[f_{3}\left(A x_{n}-B y_{n}\right)+f_{2}\left(y_{n}\right)-f_{3}\left(A x_{n}\right)\right] . \tag{8}
\end{equation*}
$$

From (7), (8) and the convexity of f_{3}, we obtain

$$
\begin{align*}
D_{f_{1}}\left(\hat{x}, z_{n}\right)+D_{f_{2}}\left(\hat{y}, u_{n}\right) & \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)-\gamma_{n}\left[2 f_{3}\left(A x_{n}-B y_{n}\right)\right. \\
& \left.+f_{1}\left(x_{n}\right)+f_{2}\left(y_{n}\right)-f_{3}\left(A x_{n}\right)-f_{3}\left(-B y_{n}\right)\right] \tag{9}\\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)-\gamma_{n}\left[f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)+f_{2}\left(y_{n}\right)\right] .
\end{align*}
$$

Also from (6), by using (9), we obtain

$$
\begin{align*}
D_{f_{1}}\left(\hat{x}, x_{n+1}\right)+D_{f_{2}}\left(\hat{y}, y_{n+1}\right) & \leq \beta_{n}\left[D_{f_{1}}\left(\hat{x}, z_{n}\right)+D_{f_{2}}\left(\hat{y}, u_{n}\right)\right]+\left(1-\beta_{n}\right)\left[D_{f_{1}}\left(\hat{x}, T z_{n}\right)+D_{f_{2}}\left(\hat{y}, S u_{n}\right)\right] \\
& \left.\leq \beta_{n}\left[D_{f_{1}}\left(\hat{x}, z_{n}\right)+D_{f_{2}}\left(\hat{y}, u_{n}\right)\right]+\left(1-\beta_{n}\right) D_{f_{1}}\left(\hat{x}, z_{n}\right)+D_{f_{2}}\left(\hat{y}, u_{n}\right)\right] \tag{10}\\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)-\gamma_{n}\left(1-\beta_{n}\right)\left[f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)+f_{2}\left(y_{n}\right)\right] .
\end{align*}
$$

On the other hand, suppose that there is no x_{n} such that $\left|f_{1}\left(x_{n}\right)\right| \geq\left|f_{2}\left(y_{n}\right)\right|$ for all $n \geq n_{0}$. It follows that

$$
\gamma_{n}=\sigma_{n} \frac{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\mid f_{3}\left(A x_{n}-B y_{n}\left|+\left|f_{1}\left(x_{n}\right)\right|\right.\right.}
$$

and

$$
\begin{align*}
\gamma_{n}\left[f_{3}\left(A x_{n}-B y_{n}\right)+f_{2}\left(y_{n}\right)+f_{1}\left(x_{n}\right)\right] & \geq-\gamma_{n}\left|f_{3}\left(A x_{n}-B y_{n}\right)+f_{2}\left(y_{n}\right)+f_{1}\left(x_{n}\right)\right| \\
& \geq-\gamma_{n}\left[\left|f_{2}\left(y_{n}\right)\right|-\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|-\left|f_{1}\left(x_{n}\right)\right|\right] \\
& =\gamma_{n} \mid\left[\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|-\left|f_{2}\left(y_{n}\right)\right|\right] \tag{11}\\
& =\left|f_{3}\left(A x_{n}-B y_{n}\right)\right| \sigma_{n}\left[1-\frac{\left|f_{2}\left(y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|}\right] \geq 0 .
\end{align*}
$$

Conversely, suppose there exists n_{1} such that $\left|f_{1}\left(x_{n}\right)\right| \leq\left|f_{2}\left(y_{n}\right)\right|$ for all $n \geq n_{1}$. From (11) and $\beta_{n} \in(0,1)$, we have

$$
D_{f_{1}}\left(\hat{x}, x_{n+1}\right)+D_{f_{2}}\left(\hat{y}, y_{n+1}\right) \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right) .
$$

Now we use induction to obtain

$$
\begin{equation*}
D_{f_{1}}\left(\hat{x}, x_{n+1}\right)+D_{f_{2}}\left(\hat{y}, y_{n+1}\right) \leq D_{f_{1}}\left(\hat{x}, x_{1}\right)+D_{f_{2}}\left(\hat{y}, y_{1}\right) . \tag{12}
\end{equation*}
$$

From Theorem 2.13, f_{1}^{*} and f_{2}^{*} are bounded on bounded subsets of E_{1}^{*} and E_{2}^{*}, respectively. Hence ∇f_{1}^{*} and ∇f_{2}^{*} are also bounded on bounded subsets of E_{1}^{*} and E_{2}^{*}, respectively. From (12) and Proposition 2.4, the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{\infty},\left\{\left(\nabla f_{1}^{*} z_{n}, \nabla f_{2}^{*} u_{n}\right)\right\}_{n=1}^{\infty}$ and $\left\{\left(T_{n} z_{n}, S_{n} u_{n}\right)\right\}_{n=1}^{\infty}$ are bounded. So by the boundedness of ∇f_{1} and ∇f_{2} on bounded subsets of E_{1} and E_{2}, respectively, $\left\{\left(\nabla f_{1} x_{n}, \nabla f_{2} y_{n}\right)\right\}_{n=1}^{\infty},\left\{\left(z_{n}, u_{n}\right)\right\}$ and $\left\{\left(\nabla f_{1} T_{n} z_{n}, \nabla f_{2} S_{n} u_{n}\right)\right\}_{n=1}^{\infty}$ are bounded. In view of Theorem 2.11 and Theorem 2.12, dom $f_{1}^{*=}=E_{1}^{*}, f_{1}^{*}$ is super coercive and uniformly convex on bounded subsets of E_{1}^{*}. Let

$$
s \geq \sup \left\{\left\|z_{n}\right\|,\left\|\nabla f_{1}\left(T_{n} z_{n}\right)\right\|,\left\|\nabla f_{1} z_{n}\right\|: n \in \mathbb{N}\right\}
$$

be large enough and let $\rho_{s}^{*}:[0, \infty) \longrightarrow[0, \infty)$ be the gauge of uniform convexity of f_{1}^{*}. Now we have

$$
\begin{aligned}
D_{f_{1}}\left(\hat{x}, x_{n+1}\right) & =D_{f_{1}}\left(\hat{x}, \nabla f_{1}^{*}\left(\beta_{n} \nabla f_{1} z_{n}+\left(1-\beta_{n}\right) \nabla f_{1} T_{n} z_{n}\right)\right) \\
& =f_{1}(\hat{x})+f_{1}^{*}\left(\beta_{n} \nabla f_{1} z_{n}+\left(1-\beta_{n}\right) \nabla f_{1} T_{n} z_{n}\right)-\left\langle\hat{x}, \beta_{n} \nabla f_{1} z_{n}+\left(1-\beta_{n}\right) \nabla f_{1} T_{n} z_{n}\right\rangle \\
& \leq \beta_{n} f_{1}(\hat{x})+\left(1-\beta_{n}\right) f_{1}(\hat{x})+\beta_{n} f_{1}^{*}\left(\nabla f_{1} z_{n}\right)+\left(1-\beta_{n}\right) f_{1}^{*}\left(\nabla f_{1} T_{n} z_{n}\right) \\
& -\beta_{n}\left(1-\beta_{n}\right) \rho_{s}^{*}\left(\left\|\nabla f_{1} z_{n}-\nabla f_{1} T_{n} z_{n}\right\|\right)-\left\langle\hat{x}, \beta_{n} \nabla f_{1} z_{n}+\left(1-\beta_{n}\right) \nabla f_{1} T_{n} z_{n}\right\rangle \\
& =\beta_{n} D_{f_{1}}\left(\hat{x}, z_{n}\right)+\left(1-\beta_{n}\right) D_{f_{1}}\left(\hat{x}, T_{n} z_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) \rho_{s}^{*}\left(\left\|\nabla f_{1} z_{n}-\nabla f_{1} T_{n} z_{n}\right\|\right) \\
& \leq D_{f_{1}}\left(\hat{x}, z_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) \rho_{s}^{*}\left(\left\|\nabla f_{1} z_{n}-\nabla f_{1} T_{n} z_{n}\right\|\right) \\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) \rho_{s}^{*}\left(\left\|\nabla f_{1} z_{n}-\nabla f_{1} T_{n} z_{n}\right\|\right) .
\end{aligned}
$$

It follows from the above inequality that

$$
\begin{equation*}
\beta_{n}\left(1-\beta_{n}\right) \rho_{s}^{*}\left(\left\|\nabla f_{1} z_{n}-\nabla f_{1} T_{n} z_{n}\right\|\right) \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)-D_{f_{1}}\left(\hat{x}, x_{n+1}\right) . \tag{13}
\end{equation*}
$$

Let $r \geq \sup _{n \in \mathbb{N}}\left\{\left\|u_{n}\right\|,\left\|\nabla f_{2} S_{n} u_{n}\right\|,\left\|\nabla f_{2} u_{n}\right\|\right\}$ be large enough, $\rho_{r}^{*}:[0, \infty) \longrightarrow[0, \infty)$ be the gauge of uniform convexity of f_{2}^{*}. We use a similar argument to obtain

$$
\begin{equation*}
\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f_{1} u_{n}-\nabla f_{1} S_{n} u_{n}\right\|\right) \leq D_{f_{1}}\left(\hat{y}, y_{n}\right)-D_{f_{1}}\left(\hat{y}, y_{n+1}\right) \tag{14}
\end{equation*}
$$

Also from (10), we obtain

$$
\begin{align*}
\gamma_{n}\left(1-\beta_{n}\right)\left[f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)+f_{2}\left(y_{n}\right)\right] & \leq\left[D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)\right] \\
& -\left[D_{f_{1}}\left(\hat{x}, x_{n+1}\right)+D_{f_{2}}\left(\hat{y}, y_{n+1}\right)\right] . \tag{15}
\end{align*}
$$

For all $n \in \mathbb{N}$, we have

$$
\begin{align*}
D_{f_{1}}\left(\hat{x}, x_{n+1}\right)+D_{f_{2}}\left(\hat{y}, y_{n+1}\right) & =D_{f_{1}}\left(\hat{x}, \nabla f_{1}^{*}\left(\beta_{n} \nabla f_{1} z_{n}+\left(1-\beta_{n}\right) \nabla f_{1} T_{n} z_{n}\right)\right) \\
& +D_{f_{2}}\left(\hat{y}, \nabla f_{2}^{*}\left(\beta_{n} \nabla f_{1} u_{n}+\left(1-\beta_{n}\right) \nabla f_{2} S_{n} u_{n}\right)\right) \\
& \leq D_{f_{1}}\left(\hat{x}, z_{n}\right)+D_{f_{2}}\left(\hat{y}, u_{n}\right) \\
& =V_{f_{1}}\left(\hat{x},\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}+\gamma_{n}\left(-A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right) \\
& +V_{f_{2}}\left(\hat{y},\left(1-\gamma_{n}\right) \nabla f_{2} y_{n}+\gamma_{n}\left(B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right) \\
& \leq V_{f_{1}}\left(\hat{x},\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}+\gamma_{n}\left(-A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)+\gamma_{n}\left(A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right) \tag{16}\\
& -\left\langle\nabla f_{1}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}+\gamma_{n}\left(-A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right)-\hat{x}, \gamma_{n}\left(A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right\rangle \\
& +V_{f_{2}}\left(\hat{y},\left(1-\gamma_{n}\right) \nabla f_{2} y_{n}+\gamma_{n} B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)-\gamma_{n} B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right) \\
& -\left\langle\nabla f_{2}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{2} y_{n}+\gamma_{n} B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)-\hat{y},-\gamma_{n} B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle \\
& \leq\left(1-\gamma_{n}\right)\left[D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)\right]+\gamma_{n}\left[\left\langle\hat{x}-z_{n}, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle\right. \\
& \left.+\left\langle u_{n}-\hat{y}, B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle\right] .
\end{align*}
$$

To prove that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge in norm, we consider the following two cases.
Case1. Assume that the sequence $\left\{D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)\right\}$ is a monotonically decreasing sequence. Then $\left\{D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)\right\}$ is convergent. Clearly, we have

$$
\left[\left\{D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)\right\}\right]-\left[\left\{D_{f_{1}}\left(\hat{x}, x_{n+1}\right)+D_{f_{2}}\left(\hat{y}, y_{n+1}\right)\right\}\right] \rightarrow 0 .
$$

Therefore, from (15) and $\beta_{n} \in(0,1)$, it follows that

$$
\gamma_{n}\left(f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)+f_{2}\left(y_{n}\right)\right) \rightarrow 0, \quad n \rightarrow \infty
$$

Suppose that there exists n_{0} such that $\left|f_{1}\left(x_{n}\right)\right| \geq\left|f_{2}\left(y_{n}\right)\right|$ for all $n \geq n_{0}$, which implies that

$$
\gamma_{n}=\frac{\sigma_{n}\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|}
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{\sigma_{n}\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|}\left|f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)+f_{2}\left(y_{n}\right)\right|=0
$$

On the other hand, we consider

$$
\left|f_{2}\left(y_{n}\right)\right|-\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|-\left|f_{1}\left(x_{n}\right)\right| \leq\left|f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)+f_{2}\left(y_{n}\right)\right| .
$$

So, we have

$$
\lim _{n \rightarrow \infty} \sigma_{n}\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|\left(\frac{f_{2}\left(y_{n}\right)}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|}-1\right)=0
$$

This together with the condition on σ_{n} and $\left(\frac{f_{2}\left(y_{n}\right)}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|}-1\right)>0$ implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{3}\left(A x_{n}-B y_{n}\right)=0 \tag{17}
\end{equation*}
$$

Since f_{3}^{-1} is continuous, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-B y_{n}\right\|=0 \tag{18}
\end{equation*}
$$

Conversely, suppose there exists n_{1} such that $\left|f_{1}\left(x_{n}\right)\right| \leq\left|f_{2}\left(y_{n}\right)\right|$ for all $n \geq n_{1}$. Following the above process, again we come to the same conclusion. Also, from (13), (14) and the condition (i), we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \rho_{s}^{*}\left(\left\|\nabla f_{1} z_{n}-\nabla f_{1} T_{n} z_{n}\right\|\right)=0 \\
& \lim _{n \rightarrow \infty} \rho_{r}^{*}\left(\left\|\nabla f_{2} u_{n}-\nabla f_{2} S_{n} u_{n}\right\|\right)=0
\end{aligned}
$$

Next, we show that $\lim _{n \rightarrow \infty}\left\|\nabla f_{1} z_{n}-\nabla f_{1} T_{n} z_{n}\right\|=0$. If not, there exists $\varepsilon_{0}>0$ and a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\|\nabla f_{1} z_{n_{i}}-\nabla f_{1} T_{n} z_{n_{i}}\right\| \geq \varepsilon_{0}$ for all $i \in \mathbb{N}$. Since ρ_{s}^{*} is nondecreasing, we have $0 \geq \rho_{s}^{*}\left(\varepsilon_{0}\right)$. But this statement contradicts the uniform convexity of f_{1}^{*} on bounded sets. According to Theorems 2.13 and 2.14, ∇f_{1}^{*} is uniformly continuous on bounded subsets of E_{1}^{*}, hence we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-T_{n} z_{n}\right\|=0 \tag{19}
\end{equation*}
$$

By a similar argument, we have

$$
\lim _{n \rightarrow \infty}\left\|u_{n}-S_{n} u_{n}\right\|=0
$$

Since $\left(\left\{T_{n}\right\}_{n=1}^{\infty}, T\right)$ and $\left(\left\{S_{n}\right\}_{n=1}^{\infty}, S\right)$ satisfy the AKTT-condition, we conclude that

$$
\begin{align*}
\left\|z_{n}-T z_{n}\right\| & \leq\left\|z_{n}-T_{n} z_{n}\right\|+\left\|T_{n} z_{n}-T z_{n}\right\| \\
& \leq\left\|z_{n}-T_{n} z_{n}\right\|+\sup \left\{\left\|T_{n} x-T x\right\|: x \in k_{1}\right\} \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
\left\|u_{n}-S u_{n}\right\| & \leq\left\|u_{n}-S_{n} u_{n}\right\|+\left\|S_{n} u_{n}-S u_{n}\right\| \\
& \leq\left\|u_{n}-S_{n} u_{n}\right\|+\sup \left\{\left\|S_{n} x-S x\right\|: x \in k_{2}\right\} \tag{21}
\end{align*}
$$

where $k_{1}=s B=\left\{z \in E_{1}:\|z\| \leq s\right\}$ and $k_{2}=r B=\left\{z \in E_{2}:\|z\| \leq s\right\}$. By using Lemma 2.10, (20) and (21), we get

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=0 \tag{22}\\
& \lim _{n \rightarrow \infty}\left\|u_{n}-S u_{n}\right\|=0 \tag{23}
\end{align*}
$$

From (20), the boundedness of ∇f_{1} and the uniform continuity of f_{1} on bounded subsets of E_{1}, we have

$$
\begin{equation*}
D_{f_{1}}\left(T_{n} z_{n}, z_{n}\right)=f_{1}\left(T_{n} z_{n}\right)-f_{1}\left(z_{n}\right)-\left\langle T_{n} z_{n}-z_{n}, \nabla f_{1} z_{n}\right\rangle \rightarrow 0, \quad n \rightarrow \infty . \tag{24}
\end{equation*}
$$

This implies that

$$
\begin{align*}
D_{f_{1}}\left(T_{n} z_{n}, x_{n+1}\right) & =D_{f_{1}}\left(T_{n} z_{n}, \nabla f_{1}^{*}\left(\beta_{n} \nabla f_{1} z_{n}+\left(1-\beta_{n}\right) \nabla f_{1} T_{n} z_{n}\right)\right) \tag{25}\\
& \leq \beta_{n} D_{f_{1}}\left(T_{n} z_{n}, z_{n}\right)+\left(1-\beta_{n}\right) D_{f_{1}}\left(T_{n} z_{n}, T_{n} z_{n}\right) \rightarrow 0
\end{align*}
$$

as $n \rightarrow \infty$. From Proposition 2.3, (25) and (19), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-z_{n}\right\|=0 \tag{26}
\end{equation*}
$$

By the same argument as above, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n+1}-u_{n}\right\|=0 \tag{27}
\end{equation*}
$$

On the other hand, by the boundedness of ∇f_{1} and ∇f_{2} on bounded subsets of E_{1} and E_{2}, respectively, we have

$$
\begin{gathered}
D_{f_{1}}\left(x_{n+1}, x_{n}\right)=\left\langle x_{n}-\hat{x}, \nabla f_{1} \hat{x}-\nabla f_{1} x_{n+1}\right\rangle+D_{f_{1}}\left(x_{n}, \hat{x}\right)-D_{f_{1}}\left(x_{n+1}, \hat{x}\right) \rightarrow 0 \\
D_{f_{2}}\left(y_{n+1}, y_{n}\right)=\left\langle y_{n}-\hat{y}, \nabla f_{2} \hat{y}-\nabla f_{2} y_{n+1}\right\rangle+D_{f_{2}}\left(y_{n}, \hat{y}\right)-D_{f_{2}}\left(y_{n+1}, \hat{y}\right) \rightarrow 0
\end{gathered}
$$

as $n \rightarrow \infty$. From Proposition 2.3, we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0
$$

So from (26) and (27), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 \tag{28}
\end{equation*}
$$

Since the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is bounded, there exists a subsequence $\left\{\left(x_{n_{k}}, y_{n_{k}}\right)\right\}$ of $\left\{\left(x_{n}, y_{n}\right)\right\}$ such that $x_{n_{k}} \rightharpoonup \bar{x}$ and $y_{n_{k}} \rightharpoonup \bar{x}$. Thus $z_{n_{k}} \rightharpoonup \bar{x}$ and $u_{n_{k}} \rightharpoonup \bar{x}$ and so by (22) and (23), $\bar{x} \in F(T)=\hat{F}(T)$ and $\bar{y} \in F(S)=\hat{F}(S)$. Now, we show that $\bar{x} \in \cap_{i=1}^{N} h_{i}^{-1}(0)$. Writing $\theta_{n}^{0}=I$ and $\theta_{n}^{i}=\operatorname{Res}_{\lambda_{n}^{i} h_{i}}^{f_{1}} o \cdots o \operatorname{Res}_{\lambda_{n}^{1} h_{1}}^{f_{1}}$, we observe that

$$
\begin{aligned}
D_{f_{1}}\left(\hat{x}, z_{n}\right) & =D_{f_{1}}\left(\hat{x}, \theta_{n}^{N}\left(\nabla f_{1}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}-\gamma_{n} A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right)\right. \\
& =D_{f_{1}}\left(\hat{x}, \operatorname{Res}_{\lambda_{n}^{N} h_{N}}^{f_{1}} o \cdots o \operatorname{Res}_{\lambda_{n}^{1} h_{1}}^{f_{1}}\left(\nabla f_{1}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}-\gamma_{n} A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right)\right. \\
& \leq D_{f_{1}}\left(\hat{x}, \nabla f_{1}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}-\gamma_{n} A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right)\right. \\
& \leq D_{f}\left(\hat{x}, x_{n}\right)-\gamma_{n}\left[f_{3}\left(A x_{n}-B y_{n}\right)+f_{1}\left(x_{n}\right)-f_{3}\left(-B y_{n}\right)\right] \\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right) \leq D_{f_{1}}\left(\hat{x}, x_{n-1}\right) .
\end{aligned}
$$

Since $\hat{x} \in h_{N}^{-1}(0)=F\left(\operatorname{Res}_{\lambda_{n}^{N} h_{N}}^{f_{1}}\right)$ and $\operatorname{Res}_{\lambda_{n}^{N} h_{n}}^{f_{1}}$ is a BQFNE operator, it follows that for all $n \geq 1$, we have

$$
\begin{aligned}
D_{f_{1}}\left(z_{n}, \theta_{n}^{N-1} \nabla f_{1}^{*} w_{n}\right) & \leq D_{f_{1}}\left(\hat{x}, \theta_{n}^{N-1} \nabla f_{1}^{*} w_{n}\right)-D_{f_{1}}\left(\hat{x}, z_{n}\right) \\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)-D_{f_{1}}\left(\hat{x}, x_{n+1}\right) \rightarrow 0, \quad n \rightarrow \infty
\end{aligned}
$$

Therefore by Proposition 2.3, the uniform continuity of ∇f_{1} on bounded subsets, and the boundedness of $\left\{\theta_{n}^{N-1} x_{n}\right\}$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-\theta_{n}^{N-1} \nabla f_{1} w_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|\nabla f_{1} z_{n}-\nabla f_{1} \theta_{n}^{N-1}\right\|=0 \tag{29}
\end{equation*}
$$

Again since $\hat{x} \in h_{N-1}^{-1}(0)=F\left(\operatorname{Res}_{\lambda_{n}^{N-1} h_{N-1}}^{f_{1}}\right)$ and $\operatorname{Res}_{\lambda_{n}^{N-1} h_{N-1}}^{f_{1}}$ is a BQFN operator for each $n \geq 1$, we have

$$
\begin{aligned}
D_{f_{1}}\left(\theta_{n}^{N-1} \nabla f_{1}^{*} w_{n}, \theta_{n}^{N-2} \nabla f_{1}^{*} w_{n}\right) & \leq D_{f_{1}}\left(\hat{x}, \theta_{n}^{N-2} \nabla f_{1}^{*} w_{n}\right)-D_{f_{1}}\left(\hat{x}, \theta_{n}^{N-1} \nabla f_{1}^{*} w_{n}\right) \\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)-D_{f_{1}}\left(\hat{x}, \theta_{n}^{N-1} \nabla f_{1}^{*} w_{n}\right) \\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)-D_{f_{1}}\left(\hat{x}, z_{n}\right) \\
& \leq D_{f_{1}}\left(\hat{x}, x_{n}\right)-D_{f_{1}}\left(\hat{x}, x_{n+1}\right), \quad n \rightarrow \infty
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty}\left\|\theta_{n}^{N-1} \nabla f_{1}^{*} w_{n}-\theta_{n}^{N-2} \nabla f_{1}^{*} w_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|\nabla f_{1} \theta_{n}^{N-1} \nabla f_{1}^{*} w_{n}-\nabla f_{1} \theta_{n}^{N-2} \nabla f_{1}^{*} w_{n}\right\|=0$. Similarly, we can verify that

$$
\lim _{n \rightarrow \infty}\left\|\theta_{n}^{N-2} \nabla f_{1}^{*} w_{n}-\theta_{n}^{N-3} \nabla f_{1}^{*} w_{n}\right\|=\cdots=\lim _{n \rightarrow \infty}\left\|\theta_{n}^{1} \nabla f_{1}^{*} w_{n}-\nabla f_{1}^{*} w_{n}\right\|=0
$$

$$
\lim _{n \rightarrow \infty}\left\|\nabla f_{1} \theta_{n}^{N-2} \nabla f_{1}^{*} w_{n}-\nabla f_{1} \theta_{n}^{N-3} \nabla f_{1}^{*} w_{n}\right\|=\cdots=\lim _{n \rightarrow \infty}\left\|\nabla f_{1} \theta_{n}^{1} \nabla f_{1}^{*} w_{n}-w_{n}\right\|=0
$$

Therefore for any $i=1,2, \ldots, N$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\theta_{n}^{i} \nabla f_{1}^{*} w_{n}-\theta_{n}^{i-1} \nabla f_{1}^{*} w_{n}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|\nabla f_{1} \theta_{n}^{i} \nabla f_{1}^{*} w_{n}-\nabla f_{1} \theta_{n}^{i-1} \nabla f_{1}^{*} w_{n}\right\|=0 \tag{30}
\end{equation*}
$$

From (29) and (30), for $i=1,2, \ldots, N$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-\nabla f_{1}^{*} w_{n}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|\theta_{n}^{i} \nabla f_{1}^{*} w_{n}-\nabla f_{1}^{*} w_{n}\right\|=0 \tag{31}
\end{equation*}
$$

From the definition of the f_{1}-resolvent, we have

$$
\nabla f_{1}\left(\theta_{n}^{i-1} \nabla f_{1}^{*} w_{n}\right) \in\left(\nabla f_{1}+\lambda_{n}^{i} h_{i}\right)\left(\theta_{n}^{i} \nabla f_{1}^{*} w_{n}\right)
$$

Hence for any $i=1,2, \ldots, N$

$$
\begin{equation*}
\vartheta_{n}^{i}=\frac{1}{\lambda_{n}^{i}}\left(\nabla f_{1}\left(\theta_{n}^{i-1} \nabla f_{1}^{*} w_{n}\right)-\nabla f_{1}\left(\theta_{n}^{i} \nabla f_{1}^{*} w_{n}\right)\right) \in h_{i}\left(\theta_{n}^{i} \nabla f_{1}^{*} w_{n}\right) . \tag{32}
\end{equation*}
$$

It follows form (30), (32) and the condition (ii) that $\lim _{n \rightarrow \infty}\left\|\vartheta_{n}^{i}\right\|=0$ for any $i=1,2, \ldots, N$. Since $x_{n_{k}} \rightharpoonup \bar{x}$, it follows from (29) that $z_{n_{k}} \rightharpoonup \bar{x}$. Also from (31), we obtain that $\theta_{n_{k}}^{i}\left(\nabla f_{1}^{*} w_{n}\right) \rightharpoonup \bar{x}$, for each $i=1,2, \ldots, N$. Note that from the monotonicity of h_{i}, we have

$$
\left\langle\eta-\vartheta_{n}^{i}, z-\theta_{n_{k}}^{i}\left(\nabla f_{1}^{*} w_{n_{k}}\right)\right\rangle \geq 0
$$

for all $(z, \eta) \in G\left(A_{i}\right)$ and for all $i=1,2, \ldots, N$. This implies that $\langle\eta, z-\bar{x}\rangle \geq 0$ for all $(z, \eta) \in G\left(h_{i}\right)$ and for any $i=1,2, \ldots, N$. Therefore by using the maximal monotonicity of A_{i}, we obtain $\bar{x} \in h_{i}^{-1}(0)$ for any $i=1,2, \ldots, N$. Thus $\bar{x} \in \cap_{i=1}^{N} h_{i}^{-1}(0)$. The same argument as above, reveals that $\hat{x} \in \cap_{i=1}^{N} g_{i}^{-1}(0)$. Furthermore, $A x_{n}-B y_{n} \rightharpoonup A \bar{x}-B \bar{y}$ and by using the lower semicontinuity of f_{3}, we have

$$
\begin{equation*}
f_{3}(A \bar{x}-B \bar{y}) \leq \liminf _{n \rightarrow \infty} f_{3}\left(A x_{n}-B y_{n}\right)=0 \tag{33}
\end{equation*}
$$

From (33) and the fact that f_{3} is a one-to-one function, we have $A \bar{x}=B \bar{y}$. Hence $(\bar{x}, \bar{y}) \in \Omega$. Now we show that

$$
\limsup _{n \rightarrow \infty}\left[\left\langle\hat{x}-z_{n}, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle+\left\langle u_{n}-\hat{y}, B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right] \leq 0\right.
$$

From (18) and the fact that ∇f_{3} is uniformly continuous on bounded subset of E_{3}, we have

$$
\begin{align*}
& \limsup \tag{34}\\
& \quad\left[\left\langle\hat{x}-z_{n}, A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right\rangle+\left\langle u_{n}-\hat{y}, B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right]\right. \\
& =\lim _{m \rightarrow \infty}\left[\left\langle\hat{x}-z_{n_{m}}, A^{*} \nabla f_{3}\left(A x_{n_{m}}-B y_{n_{m}}\right)\right\rangle+\left\langle u_{n_{m}}-\hat{y}, B^{*} \nabla f_{3}\left(A x_{n_{m}}-B y_{n_{m}}\right)\right] .\right.
\end{align*}
$$

Since $\left\{\left(x_{n_{m}}, y_{n_{m}}\right)\right\}$ is bounded, there exists a subsequence $\left\{\left(x_{n_{m_{i}}}, y_{n_{m_{i}}}\right)\right\}$ of $\left\{\left(x_{n_{m}}, y_{n_{m}}\right)\right\}$ such that $\left(x_{n_{m_{i}}}, y_{n_{m_{i}}}\right) \rightharpoonup(\bar{x}, \bar{y})$ and from (28), we have $\left(z_{n_{m_{i}}}, u_{n_{m_{i}}}\right) \rightharpoonup(\bar{x}, \bar{y})$ where $(\bar{x}, \bar{y}) \in \Omega$. It now follows that

$$
\begin{align*}
& \lim _{m \rightarrow \infty}\left[\left\langle\hat{x}-z_{n_{m}}, A^{*} \nabla f_{3}\left(A x_{n_{m}}-B y_{n_{m}}\right)\right\rangle+\left\langle u_{n_{m}}-\hat{y}, B^{*} \nabla f_{3}\left(A x_{n_{m}}-B y_{n_{m}}\right)\right]\right. \\
& =\lim _{i \rightarrow \infty}\left[\left\langle\hat{x}-z_{n_{m_{i}}}, A^{*} \nabla f_{3}\left(A x_{n_{m_{i}}}-B y_{n_{m_{i}}}\right)\right\rangle+\left\langle u_{n_{m_{i}}}-\hat{y}, B^{*} \nabla f_{3}\left(A x_{n_{m_{i}}}-B y_{n_{m_{i}}}\right)\right]=0 .\right. \tag{35}
\end{align*}
$$

Thus from (16), (35), $\sum_{n=1}^{\infty} \gamma_{n}=\infty$ and Lemma 2.15, we have $x_{n} \rightarrow \bar{x}$ and $y_{n} \rightarrow \bar{y}$.
Case2. Suppose $\left\{D_{f_{1}}\left(\hat{x}, x_{n}\right)+D_{f_{2}}\left(\hat{y}, y_{n}\right)\right\}$ is not a monotone decreasing sequences. Then set $\Gamma_{n}=D_{f_{1}}\left(\hat{x}, x_{n}\right)+$ $D_{f_{2}}\left(\hat{y}, y_{n}\right)$ and let $\tau: \mathbb{N} \rightarrow \mathbb{N}$ be a mapping defined for $n \geq N_{0}$, for some sufficiently large N_{0}, by

$$
\tau(n)=\max \left\{k \in \mathbb{N}: k \leq n, \Gamma_{k} \leq \Gamma_{k+1}\right\} .
$$

Then τ is a non-decreasing sequence such that $\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$ and $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n \tau)+1}$ for $n \geq N_{0}$. Using the condition $\beta \in(0,1)$ in (15), we obtain

$$
\gamma_{\tau(n)}\left(f_{3}\left(A x_{\tau(n)}-B y_{\tau(n)}\right)+f_{1}\left(x_{\tau(n)}\right)+f_{2}\left(y_{\tau(n)}\right)\right) \rightarrow 0, \quad n \rightarrow \infty
$$

Also, from (13), (14) and the condition (i), we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \rho_{s}^{*}\left(\left\|\nabla f_{1} z_{\tau(n)}-\nabla f_{1} T_{\tau(n)} z_{\tau(n)}\right\|\right)=0 \\
& \lim _{n \rightarrow \infty} \rho_{r}^{*}\left(\left\|\nabla f_{2} u_{\tau(n)}-\nabla f_{2} S_{\tau(n)} u_{\tau(n)}\right\|\right)=0
\end{aligned}
$$

Following the same argument as in Case 1, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|x_{\tau(n)+1}-z_{\tau(n)}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|y_{\tau(n)+1}-u_{\tau(n)}\right\|=0 \\
& \lim _{n \rightarrow \infty}\left\|x_{\tau(n)+1}-x_{\tau(n)}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|y_{\tau(n)+1}-y_{\tau(n)}\right\|=0
\end{aligned}
$$

As in the Case 1, we also obtain that $x_{\tau(n)} \rightharpoonup \bar{x}$ and $y_{\tau(n)} \rightarrow \bar{y}$ as $n \rightarrow \infty$, where $(\bar{x}, \bar{y}) \in \Omega$. Furthermore, for all $n \geq N_{0}$, we deduce from (16) that

$$
\begin{align*}
D_{f_{1}}\left(\hat{x}, x_{\tau(n)+1}\right)+D_{f_{2}}\left(\hat{y}, y_{\tau(n)+1}\right) & \leq \gamma_{\tau(n)}\left[D_{f_{1}}\left(\hat{x}, x_{\tau(n)}\right)+D_{f_{2}}\left(\hat{y}, y_{\tau(n)}\right)\right] \\
& +\gamma_{\tau(n)}\left[\left\langle y-z_{\tau(n)}, A^{*} \nabla f_{3}\left(A x_{\tau(n)}-B y_{\tau(n)}\right)\right\rangle\right. \tag{36}\\
& \left.+\left\langle u_{\tau(n)}-y, B^{*} \nabla f_{3}\left(A x_{\tau(n)}-B y_{\tau(n)}\right)\right\rangle\right] .
\end{align*}
$$

It now follows from (36) that

$$
\begin{aligned}
D_{f_{1}}\left(\hat{x}, x_{\tau(n)}\right) & +D_{f_{2}}\left(\hat{y}, y_{\tau(n)}\right) \leq\left\langle y-z_{\tau(n)}, A^{*} \nabla f_{3}\left(A x_{\tau(n)}-B y_{\tau(n)}\right)\right\rangle \\
& +\left\langle u_{\tau(n)}-y, B^{*} \nabla f_{3}\left(A x_{\tau(n)}-B y_{\tau(n)}\right)\right\rangle \rightarrow 0, \quad n \rightarrow \infty .
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty} \Gamma_{\tau(n)}=\lim _{n \rightarrow \infty} \Gamma_{\tau(n)+1}
$$

Furthermore, for $n \geq N_{0}$, we have $\Gamma_{n} \leq \Gamma_{\tau(n)+1}$ if $n \neq \tau(n)$ (i.e., $\tau(n)<n$), since $\Gamma_{j}>\Gamma_{j+1}$ for $\tau(n)+1 \leq j \leq n$. It then follows that for all $n \geq N_{0}$ we have

$$
0 \leq \Gamma_{n} \leq \max \left\{\Gamma_{\tau(n)}, \Gamma_{\tau(n)+1}\right\}=\Gamma_{\tau(n)+1} .
$$

This implies that $\lim _{n \rightarrow \infty} \Gamma_{\tau(n)}=0$, and hence $x_{n} \rightarrow \bar{x}$ and $y_{n} \rightarrow \bar{y}$ as $n \rightarrow \infty$, where $(\bar{x}, \bar{y}) \in \Omega$.
In some special cases, our result reduces to the result already obtained by others.
Remark 3.2. When for $n \in \mathbb{N}, T_{n}=S_{n}=0$, Theorem 3.1 improves and extends the results of Sitthithakerngkiet et al [21] and Byrne et al [9].

Remark 3.3. When $h_{i}=\partial \delta_{C_{i}}$ and $g_{i}=\partial \delta_{Q_{i}}$ are the subdifferential of the indicator function of C_{i} and Q_{i}, respectively, and $T_{n}=S_{n}=0$, Theorem 3.1 improves and extends the result of Dong et al [11].

4. Application

In this section, we shall provide some applications of our main result to the split equality equilibrium problem, and to the split equality optimization problem.

4.1. Split equality equilibrium problem

Let C be a nonempty closed convex subset of a Banach space E and let $G: C \times C \rightarrow \mathbb{R}$ be a bifunction. For solving the equilibrium problem, let us assume that the bifunction G satisfies the following conditions:
$\left(A_{1}\right) G(x, x)=0$ for all $x \in C$,
$\left(A_{2}\right) G$ is monotone, i.e., $G(x, y)+G(y, x) \leq 0$ for any $x, y \in C$,
$\left(A_{3}\right) G$ is upper-hemicontinuous, i.e., for each $x, y, z \in C$,

$$
\limsup _{t \rightarrow 0^{+}} G(t z+(1-t) x, y) \leq G(x, y)
$$

$\left(A_{4}\right) G(x, 0)$ is convex and lower semicontinuous for each $x \in C$.
The equilibrium problem is to find $x^{*} \in C$ such that:

$$
G\left(x^{*}, y\right) \geq 0 \quad \forall y \in C
$$

The set of solutions to this problem is denoted by $E P(G)$.
Lemma 4.1. [17] Let $f: E \rightarrow(-\infty,+\infty$] be a super coercive Legendre function and G be a bifunction of $C \times C$ into \mathbb{R} satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and let $x \in E$. Define a mapping $S_{G}^{f}: E \longrightarrow C$ as follows:

$$
S_{G}^{f}(x)=\{z \in C: G(z, y)+\langle y-z, \nabla f z-\nabla f x\rangle \geq 0, \quad \forall y \in C\} .
$$

Then
(i) $\operatorname{dom} S_{G}^{f}=E$,
(ii) S_{G}^{f} is single valued,
(iii) S_{G}^{f} is a BFNE operator,
(iv) the set of fixed points of S_{G}^{f} is the solution set of the corresponding equilibrium problem, i.e., $F\left(S_{G}^{f}\right)=E P(G)$,
(v) $E P(G)$ is closed and convex,
(vi) for all $x \in E$ and for all $u \in F\left(S_{G}^{f}\right)$, we have

$$
D_{f}\left(u, S_{G}^{f}(x)\right)+D_{f}\left(S_{G}^{f}(x), x\right) \leq D_{f}(u, x)
$$

Proposition 4.2. [20] Let $f: E \rightarrow(-\infty,+\infty$] be a super coercive, Legendre, Fréchet differentiable and totally convex function. Let C be a closed and convex subset of E and assume that the bifunction $G: C \times C \rightarrow \mathbb{R}$ satisfies the conditions $\left(A_{1}\right)-\left(A_{4}\right)$. Let A_{G} be a set-valued mapping of E into $2^{E^{*}}$ defined by:

$$
A_{G}(x)= \begin{cases}\left\{z \in E^{*}: G(x, y) \geq\langle y-x, z\rangle \quad \forall y \in C\right\} \quad x \in C \\ \emptyset & x \in E-C\end{cases}
$$

Then A_{G} is a maximal monotone operator, $E P(G)=A_{G}^{-1}(0)$ and $S_{G}^{f}=\operatorname{Res}_{A_{G}}^{f}$.

Theorem 4.3. Let E_{1}, E_{2} and E_{3} be reflexive Banach spaces, let $C \subseteq E_{1}$ and $Q \subseteq E_{2}$ be two nonempty closed convex sets, let $A: E_{1} \longrightarrow E_{3}$ and $B: E_{2} \longrightarrow E_{3}$ be two bounded linear operators and let $f_{1}: E_{1} \longrightarrow \mathbb{R}$ and $f_{2}: E_{2} \longrightarrow \mathbb{R}$ be super coercive Legendre functions which are bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E_{1} and E_{2}, respectively, and $f_{3}: E_{3} \longrightarrow \mathbb{R}$ be a convex, one-to-one and continuous function on E_{3} with f_{3}^{-1} continuous, let for $i=1,2, \ldots, N, H_{i}: C \times C \longrightarrow \mathbb{R}$ and $G_{i}: Q \times Q \longrightarrow \mathbb{R}$ be bifunctions satisfying $\left(A_{1}\right)-\left(A_{4}\right)$. Let

$$
\Omega=\left\{(x, y): \quad x \in \cap_{i=1}^{N} E P\left(h_{i}\right), y \in \cap_{i=1}^{N} E P\left(g_{i}\right) \text { such that } A x=B y\right\} \neq \emptyset
$$

Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\left\{\begin{array}{l}
z_{n}=S_{H_{N}}^{f_{1}} o \cdots o S_{H_{1}}^{f_{1}} \nabla f_{1}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{1} x_{n}-\gamma_{n} A^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right), \tag{37}\\
u_{n}=S_{G_{N}}^{f_{2}} o \cdots o S_{G_{1}}^{f_{2}} \nabla f_{2}^{*}\left(\left(1-\gamma_{n}\right) \nabla f_{2} x_{n}+\gamma_{n} B^{*} \nabla f_{3}\left(A x_{n}-B y_{n}\right)\right),
\end{array}\right.
$$

where the step-size γ_{n} is chosen as follows:

$$
\gamma_{n}=\sigma_{n} \min \left\{\frac{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|}, \frac{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{2}\left(y_{n}\right)\right|}\right\}
$$

where $\sigma_{n} \in(0,1)$ is defined such that $\sum_{n=1}^{\infty} \gamma_{n}=\infty$. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to $(\bar{x}, \bar{y}) \in \Omega$.
Proof. For $1 \leq i \leq N$ and the bifunctions $H_{i}: C \times C \rightarrow \mathbb{R}$ and $G_{i}: Q \times Q \rightarrow \mathbb{R}$, we can define $A_{H_{i}}$ and $A_{G_{i}}$ as in Proposition 4.2. Putting $h_{i}=A_{H_{i}}, g_{i}=A_{G_{i}}$ and for $n \in \mathbb{N}, T_{n}=S_{n}=0$ and $\beta_{n}=0$ in Theorem 3.1, we obtain the desired result.

4.2. Split equality optimization problem

Let E_{1}, E_{2} and E_{3} be Banach spaces, $D \subset E_{1}$ and $U \subset H_{2}$ be two nonempty closed convex subsets. Let $\left\{\tilde{h_{i}}\right\}: D \rightarrow \mathbb{R}$ and $\left\{\tilde{g}_{i}\right\}: U \rightarrow \mathbb{R}$ be two families of proper convex and lower semi-continuous functions. The so-called general split equality optimization problem with respect to $\left\{\tilde{h}_{i}\right\},\left\{\tilde{g}_{i}\right\}, D$ and U is to find $x^{*} \in D, y^{*} \in U$ such that

$$
\begin{equation*}
\tilde{h}_{i}\left(x^{*}\right)=\min _{x \in D} \tilde{h}_{i}(x), \quad \tilde{g}_{i}\left(y^{*}\right)=\min _{y \in U} \tilde{g}_{i}(y) \quad \text { and } \quad A x^{*}=B y^{*}, \quad \text { for each } \quad i \geq 1 \tag{38}
\end{equation*}
$$

where $A: E_{1} \rightarrow E_{3}, B: E_{2} \rightarrow E_{3}$ are two bounded linear operators. We denote the solution set of the problem (38) by Γ

Theorem 4.4. Let $E_{1}, E_{2}, E_{3}, C, Q, A, B, f_{1}, f_{2}$ and f_{3} be the same as in Theorem 4.3. Let for $i=1,2, \ldots, N, \tilde{h_{i}}: C \longrightarrow \mathbb{R}$ and $\tilde{g}_{i}: Q \longrightarrow \mathbb{R}$ be two families of proper convex and lower semi-continuous functions. Let $\Gamma \neq \emptyset$ and the step-size γ_{n} is chosen as follows:

$$
\gamma_{n}=\sigma_{n} \min \left\{\frac{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{1}\left(x_{n}\right)\right|}, \frac{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|}{\left|f_{3}\left(A x_{n}-B y_{n}\right)\right|+\left|f_{2}\left(y_{n}\right)\right|}\right\}
$$

where $\sigma_{n} \in(0,1)$ is defined such that $\sum_{n=1}^{\infty} \gamma_{n}=\infty$. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated in Theorem 4.3 converges strongly to $(\bar{x}, \bar{y}) \in \Gamma$.

Proof. Put $H_{i}(x, y)=\tilde{h_{i}}(y)-\tilde{h_{i}}(x)$ and $G_{i}(x, y)=\tilde{g}_{i}(y)-\tilde{g}_{i}(x), i \geq 1$. It is easy to see that $\left\{H_{i}\right\}: C \times C \rightarrow \mathbb{R}$ and $\left\{G_{i}\right\}: Q \times Q \rightarrow \mathbb{R}$ are two families of equilibrium functions satisfying the conditions $\left(A_{1}\right)-\left(A_{4}\right)$. Thus the desired result follows from Theorem 4.3.

References

[1] K. Aoyama, Y. Kamimura, W. Takahashi, M. Toyoda, Approximation of common fixed point of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal 67 (2007) 2350-2360.
[2] H. Attouch, Alternating minimization and projection algorithms, Communication in Instituto Nazionale diAlta Matematica Citta Universitaria Rome, Italy, (2009)
[3] H. H. Bauschke, J. M. Borwein, P. L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math 3 (2001) 615-647.
[4] L. M. Bregman, A relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys. 7 (1967) 200-217.
[5] D. Butnariu, Y. Censor, S. Reich, Iterative averaging of entropic projections for solving stochastic convex feasibility problems, Comput. Optim. Appl. 8 (1997) 21-39.
[6] D. Butnariu, E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. Art 2006 (2006) 1-39.
[7] D. Butnariu, A. N. Iusem, Totally convex functions for fixed points computation and infinite dimensional optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000).
[8] C. Byrne, Y. Censor, A. Gibali, S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012) 759-775.
[9] C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal. 13 (2012) 759-775.
[10] D. Butnariu, A. N. Iusem, C. Zălinescu, On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal. 10 (2003) 35-61.
[11] Q. Dong, S. He, J. Zhao, Solving the split equality problem without prior knowledge of operator norms, Optimization 64 (2015), DOI 10.1080/02331934.2014.895897.
[12] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, J. Set Valued Anal. 16 (2008) 899-912.
[13] M. Moudafi, Alternating CQ-Algorithm for Convex Feasibility and Split Fixed-Point Problems, J. Nonlinear and Convex Anal. 15 (2018) 809-818.
[14] F. Kohsaka, W. Takahashi, Proximal point algorithm with Bregman functions in Banach spaces, J. Nonlinear Convex Anal. 6 (2005) 505-523.
[15] S. Reich, A weak convergence theorem for the alternating method with Bregman distances, In: Theory and Applications of Nonlinear Operators, (1996) 313-318.
[16] S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, (2011) 299-314.
[17] S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim. 31 (2010) 22-44.
[18] S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal. 10 (2009) 471-485.
[19] E. Resmerita, On total convexity, Bregman projections and stability in Banach spaces, J. Convex Anal. 11 (2004) 1-16.
[20] S. Sabach, Products of finitely many resolvents of maximal monotone mappings in reflexive banach spaces SIAM J. Optim. 21 (2011) 1289-1308.
[21] K. Sitthithakerngkiet, J. Deepho, P. Kumam, A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems, Appl. Math. Comput. 250 (2015) 986-1001.
[22] W. Takahashi, J. C. Yao, Strong convergence theorems by hybrid methods for the split common null point problem in Banach spaces, Fixed Point Theory and Applications 87 (2015) DOI: 10.1186/s13663-015-0324-3
[23] M. Teboulle, Entropic proximal mappings with applications to nonlinear programming, Math. Oper. Res. 17 (1992) 670-690.
[24] H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678.
[25] C. Zălinescu, Convex analysis in general vector spaces, World Scientific Publishing, Singapore (2002)
[26] G. Zamani Eskandani, M. Raeisi, A new algorithm for finding fixed points of Bregman quasi-nonexpansive mappings and zeros of maximal monotone operators by using products of resolvents, Results Math. (2016) DOI: 10.1007/s00025-016-0604-1

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; 47H09
 Keywords. Split equality null point problem, Bregman quasi-nonexpansive mapping, split equality optimization problem, split equality equilibrium problem

 Received: 25 October 2017; Accepted: 23 March 2018
 Communicated by Naseer Shahzad
 Email addresses: abkar@sci.ikiu.ac.ir (Ali Abkar), kshahrosvand@yahoo.com (Elahe Shahrosvand)

