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Abstract. We consider linear maps T : X→ Y, where X and Y are polar local convex spaces over a complete
non-archimedean field K. Recall that X is called polarly barrelled, if each weakly∗ bounded subset in the
dual X′ is equicontinuous. If in this definition weakly∗ bounded subset is replaced by weakly∗ bounded sequence
or sequence weakly∗ converging to zero, then X is said to be `∞-barrelled or c0-barrelled, respectively. For
each of these classes of locally convex spaces (as well as the class of spaces with weakly∗ sequentially
complete dual) as domain class, the maximum class of range spaces for a closed graph theorem to hold
is characterized. As consequences of these results, we obtain non-archimedean versions of some classical
closed graph theorems.

The final section deals with the necessity of the above-named barrelledness-like properties in closed
graph theorems. Among others, counterparts of the classical theorems of Mahowald and Kalton are proved.

1. Introduction

The Banach closed graph theorem is valid under very general circumstances. If X and Y are complete
metrizable topological vector spaces over an arbitrary complete valued field K, then each linear map
T : X→ Y with closed graph is continuous. In the classical case, where K = R or K = C, a well-known result
of V. Pták [15, Theorem 4.9] states that the theorem remains true if X is barrelled and Y is a Br-complete
locally convex space. (Recall that a locally convex space Y is said to be Br-complete, if every weakly∗ dense
subspace S of the dual Y′ whose intersection with each equicontinuous subset H ⊂ Y′ is weakly∗ closed in H,
is necessarily weakly∗ closed, that is, S = Y′.) Since Fréchet spaces are Br-complete, Pták’s theorem holds for
any Fréchet space Y. Moreover, by a famous theorem of M. Mahowald [9], the assumption of barrelledness
of X is necessary for this result to hold. N. J. Kalton [6] has considered the case where the range space
Y is an arbitrary separable Br-complete locally convex space. He proved that in this situation each linear
map T : X → Y with closed graph is weakly continuous if and only if the dual X′ is weakly∗ sequentially
complete. If, in addition, X is a Mackey space, then (according to the Hellinger-Toeplitz theorem) weakly
continuous can be replace by continuous. The maximal class of range spaces (Lr-spaces) for Kalton’s closed
graph theorem was identified by J. H. Qiu [16].

Another line of development in closed graph theorms (also starting from the classic Banach theorem) is
concerned with webbed spaces introduced by M. De Wilde. The class of webbed spaces contains all Fréchet
spaces and has good stability properties. One of De Wilde’s closed graph theorems states (see [4]): If X is an
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ultrabornological space (i.e. an inductive limit of Banach spaces) and Y is a webbed space, then any linear
map T : X → Y with sequentially closed graph is continuous. For a comparison of De Wilde’s approach to
closed graph theorems with the one due to Pták, we refer to the book of G. Köthe [7, the end of §35.5].

The non-archimedean version of Pták’s theorem in which the range space Y is an arbitrary Fréchet space
(originally proved by T. E. Gilsdorf and J. Kakol [5]) one finds in the book by C. Perez-Garcia and W. H.
Schikhof [13, Theorem 11.1.10]. The proof is based on usual technique of metrizable topological vector
spaces. In this paper, using methods from duality theory, we establish some closed graph theorems of this
type, where barrelled spaces X are replaced by some other barrelled-like locally convex spaces. We study
(weak) continuity of linear maps T : X → Y with closed graph, where X is assumed to be either polarly
barrelled, `∞-barrelled, c0-barrelled, or to have the property, that the dual space X′ is weakly∗ sequentially
complete. By use of a general technique (based on duality arguments) which is adapted from a paper by
J. Boos and the author [2], we prove in Section 4 Theorem 4.1, from which we deduce maximal classes of
range space Y in each of four cases. Also we obtain non-archimedean versions of some related classical
theorems, most importantly among them theorems of Pták type and of Kalton type. Here the concept of
Br-completeness plays a crucial role. This concept is justified by the Krein-Šmulian theorem proved by
Perez-Garcia and Schikhof [11, Corollary 3.6 and Proposition 3.7] for Fréchet spaces over non-archimedean
fields.

Section 5 is concerned with the necessity of the above-named barrelledness-like properties in closed
graph theorems. For example, if Y is a Fréchet space of countable type, then a linear map T : X → Y with
closed graph is weakly continuous if and only if X′ is weakly∗ sequentially complete (Theorem 5.2).

Section 3 presents (besides of a brief discussion on Br-completeness of Fréchet spaces) a theorem of
Hellinger-Toeplitz type in the non-archimedean situation. As in the classical case, weak continuity is an
intermediate step in the proof of closed graph theorems; the rest (that is, the continuity with respect to the
Mackey topologies (provided that they exist)) follows from the Hellinger-Toeplitz theorem.

It turns out that if K is spherically complete, then the classical closed graph theorems considered here
hold word for word for the non-archimedean setting. If K is not spherically complete, the trouble is that
there exist Banach spaces which are not Br-complete (Proposition 3.4). In addition to that, we do not know
to what extent the Hellinger-Toeplitz theorem holds true. Furthermore, it is still open whether the (polar)
Mackey topology in any polar locally convex spaces exists if K is not spherically complete.

Note that non-archimedean webbed spaces were introduced by C. T. M. Vinagre [18]. She investigated
stability properties of them and proved the non-archimedean version of the above-quoted De Wilde’s closed
graph theorem. See also F. Bambozzi [3].

2. Preliminaries

Throughout this paper, K = (K, | |) is a complete non-archimedean non-trivially valued field. By BK we
denote the closed unit ball of K. For basic notations and properties concerning locally convex spaces over
K, we refer to the book [13]. Here we recall some definitions and results needed in this paper.

Let X be a vector space over K, let X∗ denote its algebraic dual. A subset A ⊂ X is called absolutely
convex if it is a BK-submodule of X. For a nonempty subset D ⊂ X, the absolutely convex hull is defined by
acoD :=

{∑n
k=1 akxk | n ∈N, ak ∈ BK, xk ∈ D

}
. For an absolutely convex subset A of X, we set Ae := A if the

valuation of K is discrete and Ae :=
⋂
{aA | a ∈ K�BK} if the valuation is dense. A is called edged, if Ae = A.

A seminorm on X is a function p : X → {|a| | a ∈ K} (the closure in R) such that p (ax) = |a| p (x) and
p
(
x + y

)
≤ max

{
p (x) , p

(
y
)}

for all x, y ∈ X and a ∈ K. We denote by Bp the closed unit ball of p. If p is
a seminorm on X, then the function p : X�ker p → R, x + ker p 7→ p (x) is a norm on the quotient space
X/ker p.

A seminorm p is said to be
• of countable type if the normed space X/ker p is of countable type, that is, it has a countable subset C whose
linear hull, denoted by span C, is dense in X/ker p;
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• polar if p (x) = sup
{∣∣∣ f (x)

∣∣∣ | f ∈ Fp

}
for all x ∈ X, where

Fp :=
{

f ∈ X∗ |
∣∣∣ f (x)

∣∣∣ ≤ p (x) (x ∈ X)
}
.

If K is spherically complete, then each seminorm is polar. Every seminorm of countable type is polar.

Let X = (X, τ) be a Hausdorff locally convex space (abbreviated LCS) over K. Its topological dual will be
denoted by X′. X is said to be of countable type if any continuous seminorm on X is of countable type. If the
topology τ is defined by a family of polar seminorms, then X (as well as the topology τ) is called polar. For
any Hausdorff polar LCS X, the dual X′ separates the points of X. The weak topology σ (X,X′) on X with
respect to the dual pair 〈X,X′〉 is defined as usual, as well as the weak∗ topology σ (X′,X) on X′.

A locally convex topology ξ on X is called compatible (with τ) if (X, ξ)′ = X′. If there exists a finest
compatible polar topology, then it is called the Mackey topology and denoted by τ (X,X′) . If K is spherically
complete, then τ (X,X′) always exists. For a polar LCS over a non-spherically complete field, the problem
of existence of the Mackey topology is open. In any case, the Mackey topology on an LCS X (whenever it
exists) is determined by the collection of all polar seminorms p : X → R satisfying Fp ⊂ X′ ([13, Theorems
5.7.8 and 5.8.8]).

In a polar LCS X, a subset is weakly bounded if and only if it is bounded. Every weakly convergent
sequence in a LCS X is convergent when either X is of countable type or the field K is spherically complete.
In a LCS over a spherically complete K, every weakly closed absolutely convex subset is closed. If X is of
countable type, then every weakly closed edged subset is closed.

Let A ⊂ X and B ⊂ X′. The polar sets A0 and B0 (relative to 〈X,X′〉) are defined by

A0 :=
{

f ∈ X′ |
∣∣∣ f (x)

∣∣∣ ≤ 1 (x ∈ A)
}

and B0 :=
{
x ∈ X |

∣∣∣ f (x)
∣∣∣ ≤ 1

(
f ∈ B

)}
,

respectively. The non-archimedean counterpart of the classical Bipolar Theorem states that A00 =
(
A
σ(X,X′)

)e

for any absolutely convex subset A of X (cf. [13, Theorem 5.2.7]). A subset D ⊂ X with D00 = D is called
polar. An LCS X is polar if and only if the polar neighbbourhoods of zero form a neighbourhood basis of
zero.

The polar of A ⊂ X with respect to the duality 〈X,X∗〉we denote by A⊕. Note that Fp =
(
Bp

)⊕
for a polar

seminorm p : X→ R.

A Hausdorff LCS X is called
• barrelled if each pointwise bounded family of continuous seminorms on X is equicontinuous,
• polarly barrelled if each pointwise bounded family of polar continuous seminorms on X is equicontinuous
(or, equivalently, each σ (X′,X)-bounded subset of X′ is equicontinuous),
• `∞-barrelled, if each σ (X′,X)-bounded sequence in X′ is equicontinuous,
• c0-barrelled if each sequence converging weakly∗ to zero in X′ is equicontinuous.
Any polar polarly barrelled LCS admits the Mackey topology. If K is spherically complete or X is of count-
able type, then X is polarly barrelled if and only if it is barrelled.

A complete metrizable LCS is called a Fréchet space; a normable Fréchet space is called a Banach space. For
a set I, the vector space `∞ (I) of all bounded functions φ : I→ K is a polar Banach space with the sup-norm∥∥∥φ∥∥∥

∞
:= sup

{∣∣∣φ (ι)
∣∣∣ | ι ∈ I

}
. Note that (`∞ (I) , ‖·‖∞) is of countable type if and only if I is finite. The subspace

c0 (I) :=
{
φ ∈ `∞ (I) | for each ε > 0, the set

{
ι ∈ I |

∣∣∣φ (ι)
∣∣∣ > ε} is finite

}
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is of countable type if and only if I is countable. Thus the sequence spaces

`∞ := `∞ (N) =

{
x = (xk) | ‖x‖∞ = sup

k∈N
|xk| < ∞

}
,

c0 := c0 (N) =
{
x = (xk) | lim

k→∞
xk = 0 in K

}
,

c :=
{
x = (xk) | lim x := lim

k→∞
xk exists

}
,

equipped with the sup-norm, are polar Banach spaces. The sequences e1 := (1, 0, 0, . . . ) , e2 := (0, 1, 0, . . . ) , . . .
form a Schauder basis of c0. Since c = c0⊕span{e} , where e : = (1, 1, 1, . . . ) , then c is of countable type.
Obviously, lim ∈ c′. It is well known, that (c0)′ = `∞. If K is not spherically complete, then (`∞)′ = c0.

For a topological space H, the function space

BC (H) :=
{
φ ∈ `∞ (H) | φ : H→ K is continuous

}
,

equipped with the sup-norm, is a Banach space.

All LCS’s X and Y considered in this paper are assumed to be Hausdorff. The vector space of all
continuous linear maps T : X → Y is denoted by L (X,Y) . Finally, X′σ and X∗σ stand for (X′, σ (X′,X)) and
(X∗, σ (X∗,X)) , respectively. If X is a normed space, then BX stands for the closed unit ball of X.

3. Non-archimedean Theorems of Hellinger-Toeplitz and Krein-Šmulian Type

Let X = (X, τ) and Y = (Y, τ′) be LCSs. For a linear map T : X → Y we write ∆T :=
{
1 ∈ Y′ | 1 ◦ T ∈ X′

}
.

Then
• ∆T = Y′ if and only if T is weakly continuous, that is, T : (X, σ (X,X′))→ (Y, σ (Y,Y′)) is continuous,

• ∆T
σ(Y′,Y)

= Y′ if and only if the graph GrT := {(x,T (x)) | x ∈ X} of T is closed in X × Y.
Clearly, every continuous linear map is weakly continuous. If T is weakly continuous, then the dual map
T′ : Y′σ → X′σ defined by T′

(
1
)

:= 1 ◦ T is continuous.

In classical functional analysis, a well-known extension of the Hellinger-Toeplitz theorem asserts that
every linear map which is weakly continuous, is continuous with respect to the Mackey topologies. The
following theorem provides a non-archimedean counterpart of this result.

Theorem 3.1 (non-archimedean Hellinger-Toeplitz Theorem). Let T be a weakly continuous linear map from a
polar LCS (X, τ) into a polar LCS (Y, τ′) . Suppose that τ is the Mackey topology τ (X,X′) . If either
(a) K is spherically complete or
(b) (X, τ) is polarly barrelled or
(c) X′σ is sequentially complete and Y is of countable type,
then T ∈ L (X,Y) .

Proof. Under the condition (a), the assertion was proved by D. P. Pombo, Jr. [14]. Assume that K is not
spherically complete. To prove the assertion for both cases (b) and (c), let q be a continuous polar seminorm
on Y. We have to verify that the inclusion Fp ⊂ X′ holds for the seminorm p := q ◦ T.

As T is weakly continuous, T′ : Y′σ → X′σ is continuous and H := T′
(
Fq

)
⊂ X′.Thus

H0 =
{
x ∈ X |

∣∣∣ f (x)
∣∣∣ ≤ 1

(
f ∈ H

)}
=

{
x ∈ X | p (x) ≤ 1

}
= Bp,
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from which it follows that Fp = H0⊕ =
(
H
σ(X∗,X)

)e
(here H0⊕ is the bipolar of H in X∗). To finish the proof, we

show that H
σ(X∗,X)

⊂ X′.
(b) Let X be polarly barrelled, then X′σ is quasicomplete (cf. [13, Corollary 7.3.7]). For a fixed f ∈ H

σ(X∗,X)
,

we choose in H a net
(

fγ
)

such that fγ (x) → f (x) for all x ∈ X. Then
(

fγ
)

(as a bounded Cauchy net) is
convergent in X′σ, which implies f ∈ X′.

(c) Assume that X′σ is sequentially complete. If Y is of countable type, then Fq is metrizable in Y′σ ([13,
Theorem 7.6.10]), hence H is a metrizable compactoid in X′σ ([13, Corollary 3.8.27]). By [13, Theorem 3.8.25],

there exists a sequence (hk) in X′σ such that hk → 0 and H ⊂ aco {hk | k ∈N}
σ(X′,X)

=: A. By [13, Theorem

3.8.24], (A, σ (X′,X) |A ) is metrizable, then it is complete by assumption. Thus A
σ(X∗,X)

= A, so we have

H
σ(X∗,X)

⊂ A ⊂ X′.

As noted above, a linear map T : X → Y has closed graph if and only if the subspace ∆T is dense in Y′σ.
Since T is weakly continuous if and only if ∆T = Y′, it is natural to look for properties of Y that guarantee
that ∆T is closed in Y′σ. Following the approach of Ptàk [15], we attempt to reduce the problem of closedness
of ∆T to that of ∆T ∩H, where H ⊂ Y′ is equicontinuous.

Definition. Let X be a polar LCS. A subset A ⊂ X′ is said to be aw∗-closed if A ∩ Fp is σ (X′,X)-closed in
Fp for every continuous polar seminorm p on X. X is called Br-complete if each aw∗-closed dense subspace S
of X′σ is closed (that is, S = X′).

Note that any closed subset of X′σ is aw∗-closed. A subspace S of the dual X′ of a normed space X is
aw∗-closed if and only if S ∩ BX′ is closed in X′σ.

The following non-archimedean Krein-Šmulian Theorem due to Perez-Garcia and Schikhof ([12, Corol-
lary 3.6 and Proposition 3.7]), characterizes aw∗-closed subsets of the dual of a Fréchet space.

Theorem 3.2. Let X be a Fréchet space over K.
(a) If K is spherically complete, then each absolutely convex aw∗-closed subset A ⊂ X′σ is closed.
(b) If X is of countable type, then each edged aw∗-closed subset A ⊂ X′σ is closed.

Corollary 3.3. Let X be a Fréchet space over K. If either
(a) K is spherically complete or
(b) X is of countable type,
then X is Br-complete.

In [17], a normed space (X, ‖·‖) is defined to be a Krein-Šmulian space if every edge absolutely convex
subset A is closed in X′σ whenever

{
f ∈ A |

∥∥∥ f
∥∥∥ ≤ n

}
is closed for all n ∈ N. Unlike the classical situation,

a Banach space over a non-spherically complete field K need not be a Krein-Šmulian space. Schikhof [17,
Corollaries 3.6 an 3.7] proved, that X is not a Krein-Šmulian space if
• X = c0 (I) , where #I ≥ #K (here #I denotes the cardinality of I), or
• X = `∞ (I) , when I is a small set with #I ≥ #KK (for the definition of a small set we refer to [13, Appendix
2]).
Moreover, in the first case, there exists a subspace S of c0 (I)′ = `∞ (I) that is not σ (`∞ (I) , c0 (I))-closed while
S ∩ B`∞(I) is (cf. [17, p. 187]).

Proposition 3.4. Let K be not spherically complete.
(a) There exist Banach spaces, which are not Br-complete.
(b) There exist Br-complete Banach spaces, which are not Krein-Šmulian spaces and not of countable type.
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Proof. (a) By the preceding remark, we can find a Banach space X such that there is an aw∗-closed subspace

S of X′σ with S
σ(X′,X)

, S. We verify that the Banach space X/D is not Br-complete, whenever D := S⊥ =

∩
{
ker f | f ∈ S

}
. The adjoint π′ of the quotient map π : X → X/D is an isometry of (X/D)′ to D⊥ = S

σ(X′,X)
,

so it is a linear homeomorphism with respect to the weak∗ topologies. Then L := (π′)−1 (S) is a dense proper

subspace of (X/D)′σ . Since S ∩ BX′ is closed in S
σ(X′,X)

, then L ∩ B(X/D)′ = (π′)−1 (S ∩ BX′ ) is closed in (X/D)′σ .
Hence X/D is not Br-complete.

(b) Given a small set I, verify that X := (`∞ (I) , ‖·‖∞) is Br-complete. It is known (cf. [13, Theorem
7.4.3]) that X′ = c0 (I). Let S be a dense proper subspace of X′σ = (c0 (I) , σ (c0 (I) , `∞ (I))) , that is, S &

c0 (I) ⊂ S
σ(c0(I),`∞(I))

; then there exists a φ ∈ Bc0(I)�S. Evidently, S ⊃ span {ei | i ∈ I} , where (ei)i∈I is the natural

orthonormal basis of the Banach space c0 (I) . Then φ ∈ Bc0(I) ∩ span {ei | i ∈ I}
‖·‖∞
⊂ Bc0(I) ∩ S

σ(c0(I),`∞(I))
.We see

that Bc0(I) ∩ S is not closed in X′σ; it follows that X is Br-complete.
According to the preceding remark, we can choose I such that X is not a Krein-Šmulian space. Clearly,

X is not of countable type.

4. Closed Graph Theorems

We first prove a general theorem, from which we obtain the nonarchimedean counterparts of some
classical closed graph theorems. The approach proposed here is taken in [2].

Let θ be a condition, which defines in any LCS H = (H, ζ) a class of bounded nets. If H is fixed, we
denote this class by θ [H] or, more formally, θ [(H, ζ)] .Assume furthermore that the following requirements
are satisfied:
10 for each h ∈ H there exists an (hα) ∈ θ [H] such that hα → h in H,
20 (ahα) ∈ θ [H] for all a ∈ K and (hα) ∈ θ [H],
30 if

(
fα
)
α∈A ,

(
1β

)
β∈B
∈ θ [H] with fα → f and 1β → 1 in H, then there exists an

(
hγ

)
∈ θ [H] such that

hγ ∈
{
fα | α ∈ A

}
+

{
1β | β ∈ B

}
and hγ → f + 1,

40 if X ja Y are vector spaces over K and T : X→ Y is a linear map, then
(
1γ

)
∈ θ

[
Y∗σ

]
⇒

(
1γ ◦ T

)
∈ θ

[
X∗σ

]
.

Referring to 40, note that, for any bounded subset B of Y∗σ, the subset
{
1 ◦ T | 1 ∈ B

}
is bounded in X∗σ.

Thus, for each
(
1α

)
∈ θ

[
Y∗σ

]
, the net

(
1α ◦ T

)
is σ (X∗,X)-bounded.

Definition. A LCS H is θ-complete if each Cauchy net (hα) ∈ θ [H] is convergent in H.

Let Y be a vector space over K. For a subset D ⊂ Y∗ we define

pq
D
θ

:=
{
1 ∈ Y∗ | ∃

(
1γ

)
γ∈Γ
∈ θ

[
Y∗σ

]
:
{
1γ | γ ∈ Γ

}
⊂ D and 1γ → 1 in Y∗σ

}
.

The subset D is said to be θw∗-closed whenever D =
pq
D
θ

. If S ⊂ Y∗ is a subspace, the set

xy
S
θ

:=
⋂M ⊂ Y∗ | S ⊂M, M is a subspace and M =

pq
M
θ


is called the θw∗-closure of S.

Note that
xy
S
θ

is the smallest θw∗-closed subspace of Y∗ including S. In general,
pq
S
θ

,
xy
S
θ

.

Definition. A polar LCS Y is called an Lθ-space if
xy
S
θ

⊃ Y′ for any dense subspace S ⊂ Y′σ.
We are now ready to present a general nonarchimedean closed graph theorem.
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Theorem 4.1. For a polar LCS (Y, τ′) the following statements are equivalent:
(a) Y is an Lθ-space,
(b) if (X, τ) is a polar LCS such that X′σ is θ-complete, then each linear map T : (X, τ)→ (Y, τ′) with closed graph is
weakly continuous.
If K is spherically complete and τ is the Mackey topology τ (X,X′), then in (b) weakly continuous can be replaced
by continuous.

Proof. (a)⇒ (b): Let X be a LCS such that X′σ is θ-complete, and let T : X → Y be a linear map with closed

graph. Since the subspace ∆T is dense in Y′σ, then Y′ ⊂
xyθ
∆T by the assumption (a). In order to prove that T

is weakly continuous, it suffices to show that ∆T is θw∗-closed. For that, let
(
1α

)
be a net in ∆T such that(

1α
)
∈ θ

[
Y∗σ

]
and 1α → 1 in Y∗σ. Then 1α ◦ T ∈ X′ for each α and

(
1α ◦ T

)
∈ θ

[
X∗σ

]
. Moreover,

(
1α ◦ T

)
is a

Cauchy net in X′σ. So 1 ◦ T ∈ X′ by the assumption that X′σ is θ-complete. That is, 1 ∈ ∆T, which means that
∆T is θw∗-closed.

(b)⇒ (a): Let S be a dense subspace of Y′σ. Observe that G :=
xy
S
θ

is θ-complete in Y∗σ (if a net
(
1α

)
∈ θ

[
Y∗σ

]
is σ (Y∗,Y)-Cauchy in G, then the functional 1 ∈ Y∗, defined by 1

(
y
)

:= limα 1α
(
y
) (

y ∈ Y
)
, belongs to G,

because G is θw∗-closed). Since the identity map i : (Y, σ (Y,G))→ (Y, τ′) clearly has closed graph, then, by
(b), it is continuous and we have G ⊃ Y′. Therefore Y is an Lθ-space.

The conclusion of the second part of the theorem follows directly from Theorem 3.1(a).

Next we apply Theorem 4.1 to obtain closed graph theorems for the following four choices of θ:
• θ = θbn, where θbn

[
Y∗σ

]
is the class of all bounded nets in Y∗σ,

• θ = θbs, where θbs
[
Y∗σ

]
is the class of all bounded sequences in Y∗σ,

• θ = θ`∞ , which is defined as follows:
(
1γ

)
γ
∈ θ`∞

[
Y∗σ

]
if and only if there exists a bounded sequence (hk)

in Y∗σ such that 1γ ∈ aco {hk | k ∈N} for each γ,
• θ = θc0 , which is defined as follows:

(
1γ

)
γ∈Γ
∈ θc0

[
Y∗σ

]
if and only if there exists a sequence (hk) converging

to zero in Y∗σ with 1γ ∈ aco {hk | k ∈N} for each γ.

Below, like in the classical case (cf. Qiu [16]), the Lθbs -spaces are called Lr-spaces;
pq
D and

xy
S stand for

pq
D
θbs

and
xy
S
θbs

, respectively.

The case θ = θbn. If X is a polarly barrelled LCS, then X′σ is quasicomplete (cf. [13, Corollary 7.3.7]), that
is, θbn-complete. Then from Theorems 4.1 and 3.1(b), it follows that a polar LCS Y is an Lθbn -space if and only
if any linear map T : X→ Y with closed graph is continuous for each polar polarly barrelled space X.

Proposition 4.2. Any Br-complete LCS Y is an Lθbn -space.

Proof. Suppose that Y is a Br-complete LCS, let S be a dense subspace of Y′σ. We show that M :=
xy
S
θbn

∩ Y′

is aw∗-closed (then
xy
S
θbn

⊃ Y′ by assumption). For that, let q be a polar continuous seminorm on Y and let(
1γ

)
be a net in M∩ Fq converging to some 1 in Y′σ. Then 1 ∈ Fq because Fq is closed in Y∗σ. Moreover, since(

1γ

)
∈ θbn

[
Y∗σ

]
, then 1 ∈M, and thus 1 ∈M ∩ Fq. So we have that M is aw∗-closed.

The following theorem, which is the non-archimedean version of the Pták closed graph theorem [15,
Theorem 4.9], is an immediate consequence of the preceding observations.

Theorem 4.3 (non-archimedean Pták’s closed graph theorem). Let X be a polar, polarly barrelled LCS. If Y is a
Br-complete LCS, then each linear map T : X→ Y with closed graph is continuous. If K is spherically complete, then
the assertion holds for each Fréchet space Y over K.
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The case θ = θbs. Clearly, a subset A ⊂ Y∗ is θbsw∗-closed if and only if it is sequentially closed, and
θbs-completeness means the sequential completeness.

It follows from Theorem 4.1 that a polar LCS Y is an Lr-space if and only if any linear map T : X → Y with
closed graph is weakly continuous whenever X is an arbitrary LCS such that X′σ is sequentially complete. If K
is spherically complete and τ = τ (X,X′), then, by Theorem 3.1(a), weakly continuous may be replaced by
continuous.

Proposition 4.4. Any Br-complete LCS of countable type is an Lr-space.

Proof. Assume Y is a Br-complete LCS of countable type, take a dense subspace S of Y′σ. We show that M :=
xy
S ∩ Y′ is aw∗-closed (so

xy
S ⊃ Y′ by assumption). For that we verify that M ∩ Fq is complete in Y′σ for every

continuous seminorm q on Y.
Since Y is of countable type, then the equicontinuous subset M ∩ Fq of Y′ is metrizable in Y′σ (see [13,

Theorem 7.6.10]). So, it sufficies to prove that any σ (Y′,Y)-Cauchy sequence
(
1k

)
of points of M ∩ Fq is

σ (Y′,Y)-convergent in M ∩ Fq. Indeed, because Fq is σ (Y′,Y)-complete, 1k → 1 for some 1 ∈ Fq. On the

other hand, 1 ∈
xy
S because

xy
S is σ (Y∗,Y)-sequentially closed. Thus 1 ∈

xy
S ∩Fq = M∩Fq and we are done.

From the preceding remark and Proposition 4.4 (in view of Theorem 3.1(c)), we get the counterpart of a
classical result by Kalton [6].

Theorem 4.5 (non-archimedean Kalton’s closed graph theorem). Let (X, τ) be a polar LCS such that τ is the
Mackey topology τ (X,X′) and X′σ is sequentially complete. If Y is a Br-complete LCS of countable type, then any
linear map T : X→ Y with closed graph is continuous.

If K = R or K = C, then the Banach space `∞ is not an Lr-space (cf. [1, Example 3.13(a)]). The next
example says that in the nonarchimedean case the situation is essentially different.

Example 4.6. The Banach space `∞ is an Lr-space if and only if K is not spherically complete.

Proof. First suppose K is shperically complete. Then every σ (c0, `∞)-convergent sequence is norm con-
vergent in c0. Therefore, (c0, σ (c0, `∞)) is sequentially complete (see [13, Theorem 5.5.4(ii)]). If `∞ were an
Lr-space, then the identity map i : (`∞, τ (`∞, c0))→ (`∞, ‖·‖∞) (which clearly has closed graph) is continuous.
Thus, (`∞, ‖·‖∞)′ = c0, a contradiction.

Conversely, suppose K is not spherically complete. Then (`∞)′σ = (c0, σ (c0, `∞)) . In order to prove that

`∞ is an Lr-space, we need to show that c0 ⊂
xy
S for arbitrary σ (c0, `∞)-dense subspace S ⊂ c0. Obviously,

ϕ :=span{ek | k ∈N} ⊂ S. Since for every z = (zk) ∈ c0 we have

〈
y, z

〉
= lim

n→∞

〈
y,

n∑
k=1

zkek

〉
= lim

n→∞

n∑
k=1

zkyk =

∞∑
k=1

zkyk
(
y ∈ `∞

)
,

then c0 ⊂
xy
ϕ ⊂

xy
S.

The case θ = θ`∞ . Since θbs
[
X∗σ

]
⊂ θ`∞

[
X∗σ

]
, we have that any Lr-space is an Lθ`∞ -space. The next

proposition presents the main connection between `∞-barrelledness and weak∗ θ`∞ -completeness of the
dual for a LCS.

Proposition 4.7. If a LCS (X, τ) is `∞-barrelled, then X′σ is θ`∞ -complete. The converse holds when τ is the Mackey
topology τ (X,X′) .
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Proof. Suppose X is `∞-barrelled. Let
(

fγ
)
∈ θ`∞

[
X∗σ

]
be a Cauchy net in X′σ and let (hk) be a σ (X′,X)-bounded

sequence such that fγ ∈ H := aco {hk | k ∈N}
σ(X′,X)

for each γ. Then H is equicontinuous, and hence complete
in X′σ. Thus,

(
fγ
)

is convergent in X′σ, which shows that X′σ is θ`∞ -complete.
For the converse, assume that τ = τ (X,X′) , and let X′σ be θ`∞ -complete. To prove that each bounded

sequence (hk) in X′σ is equicontinuous, we first verify that H := aco {hk | k ∈N}
σ(X′,X)

is σ (X′,X)-complete.
Indeed, if

(
fγ
)

is a σ (X′,X)-Cauchy net in H, then
(

fγ
)
∈ θ`∞

[
X∗σ

]
and, by assumption, the linear functional f

defined by f (x) := limγ fγ (x) (x ∈ X) , belongs to X′. Thus H = H
σ(X∗,X)

, and so we have that H0⊕ = He
⊂ X′.

Hence the seminorm p (x) = sup f∈H

∣∣∣ f (x)
∣∣∣ (x ∈ X) is τ (X,X′)-continuous. So, (hk) is equicontinuous.

From Proposition 4.7 and Theorem 4.1 we obtain the following closed graph theorem for `∞-barrelled
spaces. For a classical counterpart see [10].

Theorem 4.8. For a polar LCS Y the following statements are equivalent:
(i) Y is an Lθ`∞ -space,
(ii) if (X, τ) is `∞-barrelled, then any linear map T : X→ Y with closed graph is weakly continuous.
If K is spherically complete and τ is the Mackey topology τ (X,X′) , then in (ii) weakly continuous may be replaced
by continuous.

The case θ = θc0. The proof of the next result is almost identical to that of Proposition 4.7.

Proposition 4.9. If a LCS (X, τ) is c0-barrelled, then X′σ is θc0-complete. The converse holds when τ is the Mackey
topology τ (X,X′) .

The following closed graph theorem for c0-barrelled spaces follows directly from Theorem 4.1 and
Proposition 4.9.

Theorem 4.10. For a polar LCS Y the following statements are equivalent:
(i) Y is an Lθc0 -space,
(ii) if (X, τ) is c0-barrelled, then any linear map T : (X, τ)→ (Y, τ′) with closed graph is weakly continuous.
If K is spherically complete and τ = τ (X,X′) , then in (ii) weakly continuous may be replaced by continuous.

Example 4.11. The Banach space Y := c0 is an Lθc0 -space.

Proof. Let S be a dense subspace of Y′σ = (`∞, σ (`∞, c0)) . Since c0 is Br-complete (cf. Corollary 3.3(b)), it

suffices to show that the subset A :=
xy
S
θc0

∩ B`∞ (which obviously is θc0w∗-closed) is σ (`∞, c0)-closed. For

that we prove that
pq
A
θc0

⊃ A
σ(`∞,c0)

, or equivalently, that any σ (`∞, c0)-convergent net
(
zγ

)
in A belongs to

θc0
[
Y∗σ

]
.

For all γ and u ∈ c0 there exists

lim
n→∞

〈
u,

n∑
k=1

z(γ)
k ek

〉
=

∞∑
k=1

z(γ)
k uk

(here zγ =
(
z(γ)

k

)
k∈N

), so
(∑n

k=1 z(γ)
k ek

)
n∈N

is a σ (`∞, c0)-Cauchy sequence in B`∞ . Then it converges to zγ

(since B`∞ is weakly∗ complete). Thus zγ ∈ aco {ek | k ∈N}
σ(`∞,c0)

, whereas
∣∣∣∣∣z(γ)

k

∣∣∣∣∣ ≤ 1 for all γ and k. Then(
zγ

)
∈ θc0

[
Y∗σ

]
follows, since ek → 0 in Y′σ.
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5. Converse Theorems

In the preceding section we have characterized the maximum class of range spaces for closed graph
theorems to hold. This is the main idea of Theorem 4.1. For a given class D of LCS X, we have looked
for (possibly maximum) class R of LCS Y such that each linear map T : X → Y with closed graph is
(weakly) continuous. For example, if D is the class of all LCS X with the Mackey topology for which
X′σ is sequentially complete, then the Lr-spaces form the maximum class R. Likewise, polarly barrelled,
`∞-barrelled and c0-barrelled spaces as domain spaces are considered.

This section studies the necessity of this barrelledness-like properties in closed graph theorems. In the
classical situation, results of this kind (known as converse closed graph theorems) are studied in Wilansky’s
book [19, Chapter 12.6].

Theorem of the Mahowald type. In the classical case, the famous Mahowald [9] theorem asserts that a
LCS X is barrelled if and only if for each Banach space Y each linear map T : X → Y with closed graph is
continuous. By the next theorem we see that, in the non-archimedean setting, this result holds when K is
spherically complete.

Theorem 5.1 (non-archimedean Mahowald’s theorem). For a polar LCS X, consider the following statements:
(i) X is barrelled, i.e., each absolutely convex, closed, absorbing subset is a neighbourhood of zero,
(ii) for each Fréchet space Y, any linear map T : X→ Y with closed graph is continuous,
(iii) for each polar Fréchet space Y, any linear map T : X→ Y with closed graph is continuous,
(iv) each linear map T : X→ (BC (H) , ‖·‖∞) with closed graph is continuous for every Hausdorff topological space H,
(v) X is polarly barrelled.
Then we have that (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v).
If K is spherically complete, then statements (i) – (v) are equivalent. In this case, the following statement is equivalent
to (i) – (v):
(iii∗) for each Br-complete LCS Y, any linear map T : X→ Y with closed graph is continuous.

Proof. The implication (i)⇒ (ii) is [13, Theorem 11.1.10]; (ii)⇒ (iii)⇒ (iv) are obvious.
(iv)⇒ (v): Let H be a bounded subset in X′σ endowed with σ (X′,X) |H . To prove that H is equicontinuous,
we define the map T : X→ BC (H) by

(T (x))
(

f
)

:= f (x)
(
x ∈ X, f ∈ H

)
.

Then T is obviously linear and has closed graph (if xγ → 0 in X and T
(
xγ

)
→ d in BC (H) , then d =

limγ f
(
xγ

)
= 0). By assumption (iv), T ∈ L (X,BC (H)) . Thus, H0 = T−1

(
BBC(H)

)
is a zero neighbourhood in

X, so H is equicontinuous.
If K is spherically complete, then (i) ⇔ (v), that is, statements (i) – (v) are equivalent. Moreover, (iii∗)

is equivalent to these statements. Indeed, then (v)⇒ (iii∗) by Theorem 4.3, and (iii∗)⇒ (iii) because each
Fréchet space is Br-complete (cf. Corollary 3.3(a)).

Converse theorems of Kalton’s type. The classical counterpart of the following results can be found in
[6].

Theorem 5.2. If X is a polar LCS, then the following statements are equivalent:
(i) X′σ is sequentially complete,
(ii) for each Lr-space Y, each linear map T : X→ Y with closed graph is weakly continuous,
(iii) for each Br-complete LCS Y of countable type, each linear map T : X→ Y with closed graph is weakly continuous,
(iv) for each Fréchet space Y of countable type, each linear map T : X→ Y with closed graph is weakly continuous,
(v) each linear map T : X→ c with closed graph is weakly continuous,
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Proof. The implication (i)⇒ (ii) follows from Theorem 4.1 (see the remark before Proposition 4.4). Further,
(ii)⇒ (iii) (cf. Proposition 4.4), (iii)⇒ (iv) (cf. Corollary 3.3(b)) and (iv)⇒ (v).

(v)⇒ (i): Let
(

fk
)

be a Cauchy sequence in X′σ. We have to verify that the linear functional f : X → K
defined by f (x) := limk→∞ fk (x) is continuous on X. To this end, consider the linear map

T : X→ c, x 7→
(

fk (x)
)
.

Since T has closed graph (if xγ → 0 in X and T
(
xγ

)
→ d = (dk) in c, then dk = limγ fk

(
xγ

)
= 0 for all k), then,

by (v), T is weakly continuous. Therefore, f = lim ◦T ∈ X′.

Theorem 5.3. Let (X, τ) be a LCS, where τ is the Mackey topology τ (X,X′). The following statements are equivalent:
(i) X′σ is sequentially complete,
(ii) for each Br-complete LCS Y of countable type, each linear map T : X→ Y with closed graph is continuous,
(iii) for each Fréchet space (Y, τ′) of countable type, each linear map T : X→ Y with closed graph is continuous,
(iv) each linear map T : X→ c with closed graph is continuous,
(v) each linear map T : X→ c0 with closed graph is continuous.

Proof. Since c = c0⊕span{e} , then it is easy to check that (iv) and (v) are equivalent. According to the
preceding theorem, we only have to prove (i)⇒ (ii). This follows from Theorems 5.2 and 3.1(c).

Converse theorems for `∞- and c0-barrelled spaces.

Theorem 5.4. For a polar LCS (X, τ) , consider the following statements:
(i) X is `∞-barrelled,
(ii) each linear map T : X→ `∞ with closed graph is continuous.
Then (ii)⇒ (i). If, in addition, either K is not spherically complete or τ = τ (X,X′), then (i)⇔ (ii).

Proof. Let
(

fk
)

be a bounded sequence in X′σ. If (ii) holds, then the linear map T : X → `∞, x 7→
(

fk (x)
)

is
continuous or, equivalently,

{
fk | k ∈N

}
is equicontinuous. So, (ii)⇒ (i).

Suppose K is not spherically complete. Then `∞ is an Lr-space (cf. Example 4.6), hence an Lθ`∞ -space.
Let X be `∞-barrelled and let T : X → `∞ be a linear map with closed graph. To prove (i)⇒ (ii), we verify
that the seminorm p := ‖·‖∞ ◦ T is continuous on X.

By Theorem 4.8, T is weakly continuous, so the dual map T′ : (c0, σ (c0, `∞)) → X′σ is continuous. Let
φk := T′ (ek), i.e., φk (x) = T (x)k for each x ∈ X and each k. From σ (c0, `∞)-boundedness of (ek) we have that{
φk | k ∈N

}
is σ (X′,X)-bounded, hence equicontinuous by (i). Since each f ∈ T′

(
Bc0

)
has the form

f (x) =

∞∑
k=1

ukT (x)k =

∞∑
k=1

ukφk (x) (x ∈ X) ,

where |uk| ≤ 1 for each k, then f ∈ aco
{
φk | k ∈N

}σ(X′,X)

. We see that T′
(
Bc0

)
is equicontinuous, therefore its

polar

T′
(
Bc0

)0 =

x ∈ X | sup
u∈Bc0

∣∣∣∣∣∣∣
∞∑

k=1

ukT (x)k

∣∣∣∣∣∣∣ ≤ 1

 =
{
x ∈ X | ‖T (x)‖∞ ≤ 1

}
= Bp

is a neighbourhood of zero in X. So we have that p is continuous.
If τ = τ (X,X′), then (i)⇒ (ii) follows from Theorem 4.8.

Theorem 5.5. For a polar LCS (X, τ) , consider the following statements:
(i) X is c0-barrelled,
(ii) each linear map T : X→ c0 with closed graph is continuous.
Then (i)⇒ (ii). If, in addition, τ is the Mackey topology τ (X,X′) , then (i)⇔ (ii).
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Proof. (i)⇒ (ii): Let T : X → c0 be a linear map with closed graph. Since c0 is an Lθc0 -space, then Theorem
4.10 ensures the weak continuity of T. Hence, the dual map T′ : (`∞, σ (`∞, c0)) → X′σ is continuous. To
verify that the seminorm p := ‖·‖∞ ◦ T is continuous on X, let φk := T′ (ek) for each k. Obviously, ek → 0

in (`∞, σ (`∞, c0)) , which implies that φk → 0 in X′σ. By (i), aco
{
φk | k ∈N

}σ(X′,X)

is equicontinuous. Since

T′ (B`∞ ) ⊂ aco
{
φk | k ∈N

}σ(X′,X)

, then T′ (B`∞ )0 = Bp is a neighbourhood of zero in X. Hence p is continuous.
Assume now that (ii) holds with τ = τ (X,X′) . Then X′σ is sequentially complete by Theorem 5.3. Let

(
fk
)

be a sequence converging to 0 in X′σ. To prove that it is equicontinuous, we put A := aco
{
fk | k ∈N

}σ(X′,X)

and show that the seminorm p on X defined by p (x) := sup
{∣∣∣ f (x)

∣∣∣ | f ∈ A
}

(x ∈ X) is τ (X,X′)-continuous.
To see this, we first notice that A is a metrizable compactoid (see [13, Theorem 3.8.24]). Then, by the fact
that X′σ is sequentially complete, A is a complete subset in X′σ. Therefore, Fp = A0⊕ = Ae

⊂ X′. Hence Bp is a
τ (X,X′)-neighbourhood of zero and so p is continuous on (X, τ).

Finally, we close this section with some examples that say that the barrelledness conditions considered
above are different in general. For a polar LCS (X, τ) , we consider the following conditions:
(a) X is polarly barrelled,
(b) X is `∞-barrelled,
(c) X is c0-barrelled,
(d) X′σ is sequentially complete.
Clearly, (a)⇒ (b)⇒ (c). The implication (c)⇒ (d) follows from Theorems 5.2 and 5.5. If τ is the Mackey
topology, then (d)⇒ (c) by Theorems 5.3 and 5.5.

Note that (c)⇒ (d) may be false in the classical case (for example, (`, τ (`, c0)) ; see [8, p. 102]).

The following examples show that all the implications (a)⇒ (b)⇒ (c)⇒ (d) are irreversible in general.

Example 5.6. There exist `∞-barrelled LCS’s which are not polarly barrelled.

Proof. See [11, Example 2].

Example 5.7. There exist c0-barrelled LCS’s which are not `∞-barrelled.

Proof. Let ζ be the polar topology on `∞ defined by the seminorms p(un) (z) := supn∈N

∣∣∣∑∞k=1 u(n)
k zk

∣∣∣ (z ∈ `∞) ,

where un =
(
u(n)

k

)
k∈N
∈ c0 and un → 0 in (c0, σ (c0, `∞)) . Clearly, (`∞, ζ)′ ⊃ c0. Since

p(un)

z−
m∑

k=1

zkek

 = sup
n∈N

∣∣∣∣∣∣∣
∞∑

k=m+1

u(n)
k zk

∣∣∣∣∣∣∣ ≤ ‖z‖∞ sup
k>m

sup
n∈N

∣∣∣u(n)
k

∣∣∣→ 0 (m→∞, z ∈ `∞) ,

then, for each f ∈ (`∞, ζ)′ , we have f (z) =
∑
∞

k=1 vkzk (z ∈ `∞) with v =
(

f (ek)
)
∈ c0. Thus, (`∞, ζ)′ = c0.

Obviously, (`∞, ζ) is c0-barrelled. To verify that it is not `∞-barrelled, we show that the sequence(∑m
k=1 ek

)
m∈N (which clearly is σ (c0, `∞)-bounded in c0) is not ζ-equicontinuous. Assume, therefore, that this

is not the case. Then the polar seminorm q defined by q (z) := supm∈N

∣∣∣∑m
k=1 zk

∣∣∣ (z ∈ `∞) is continuous on
(`∞, ζ). Hence we can find a sequence (un) such that un → 0 in (c0, σ (c0, `∞)) and q (z) ≤ supn∈N

∣∣∣∑∞k=1 u(n)
k zk

∣∣∣
(z ∈ `∞) . Since ‖un‖∞ → 0, there exists an N ∈Nwith sup

n+k>N

∣∣∣u(n)
k

∣∣∣ < 1
2 . So, the sequence t := (0, . . . , 0, 1, 1, . . . ) ,

where t1 = · · · = tN = 0, yields the contradiction:

1 = sup
m>N

∣∣∣∣∣∣∣
m∑

k=N+1

tk

∣∣∣∣∣∣∣ = q (t) ≤ sup
n∈N

∣∣∣∣∣∣∣
∞∑

k=N+1

u(n)
k

∣∣∣∣∣∣∣ ≤ sup
n∈N

sup
k>N

∣∣∣u(n)
k

∣∣∣ ≤ 1
2
.
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Example 5.8. There exist a LCS X which is not c0-barrelled but X′σ is sequentially complete.

Proof. Let X := (c0, σ (c0, `∞)) , then X′σ = (`∞, σ (`∞, c0)) = (c0, ‖·‖∞)′σ is sequentially complete. It is not difficult
to see that the sequence (en) (which obviously converges to 0 in X′σ) is not σ (c0, `∞)-equicontinuous. Hence
X is not c0-barrelled.
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