Tauberian Theorems for Cesàro Summability of \(n^{th}\) Sequences

P. Parida\(^a\), S. K. Paikray\(^b\), Hemen Dutta\(^c\), B. B. Jena\(^b\), M. Dash\(^d\)

\(^a\)Research Scholar, Department of Mathematics, Ravenshaw University, Cuttack 753003, Odisha, India
\(^b\)Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India
\(^c\)Department of Mathematics, Gauhati University, Guwahati 781014, Assam, India
\(^d\)Department of Mathematics, Ravenshaw University, Cuttack 753003, Odisha, India

Abstract. Tauberian theorem provides a criterion for the convergence of non convergent (summable) sequences. In this paper, we established a Tauberian theorem for \(n^{th}\) real sequences via Cesàro summability by using de la Vallée Poussin mean and slow oscillation. The discussion and findings are capable to unify several useful concepts in the literature, and should also provide nontrivial extension of several results. Some examples are incorporated in support of our definitions and results. The findings are further expected to be helpful in designing and study several other interesting problems in summability theory and applications.

1. Introduction and Definitions

Tauberian theorems for single sequences, that an Abel summable sequence is convergent under certain suitable conditions was introduced by Tauber [12]. A few researchers like Landau [7], Hardy and Littlewood [4], and Schmidt [10] obtained some classical Tauberian theorems for Cesàro and Abel summability methods of single sequences. Later on, Knopp [6] introduced some classical type of Tauberian theorems for Abel and \((C,1,1)\) summability methods of double sequences and obtained that Abel and \((C,1,1)\) summability methods are equivalent for the set of bounded sequences. Móricz [8], and Jena et al. [5] proved some Tauberian theorems for Cesàro \((C,1,1)\) summable double sequences. Very recently, Çanak and Totur [2] has extended some classical type of Tauberian theorems from double sequences to triple sequences and thereby established Tauberian theorems via \((C,1,1,1)\) mean. In this paper, we aim at establishing classical Tauberian theorems via \((C,1,1,...,1)\) mean for \(n^{th}\) real sequences and that will generalize earlier existing results and unify several ideas. Aasma et al. [1] may be consulted for basic notions and ideas and Dutta and Rhoades [3] for some topics of current interest in summability theory and its applications.

Let \((u_{m_1,m_2,...,m_n})\) be a \(n^{th}\) real sequence. We have,

\[
\Delta_{m_1}(u_{m_1,m_2,...,m_n}) = u_{m_1,m_2,...,m_n} - u_{m_1-1,m_2,...,m_n};
\]

\[
\Delta_{m_2}(u_{m_1,m_2,...,m_n}) = u_{m_1,m_2,...,m_n} - u_{m_1,m_2-1,...,m_n};
\]

2010 Mathematics Subject Classification. Primary 40G05; 40D10; 40E05

Keywords. Cesàro summability, Slow oscillation, Tauberian theorem, \(n^{th}\)-sequence

Received: 30 October 2017; Accepted: 08 March 2018

Communicated by Ivana Djolović

Email addresses: priyadarsiniparida1@gmail.com (P. Parida), skpaikray_math@vssut.ac.in (S. K. Paikray\(^*\)), hemen_dutta@00rediffmail.com (Hemen Dutta), bidumath.05@gmail.com (B. B. Jena), dash.minakshi@gmail.com (M. Dash)
In this case, we write
\(\epsilon > 0 \) given

Similarly,

\(\Delta_{m_1, m_2} (u_{m_3, m_4, \ldots, m_n}) = \Delta_{m_1} (\Delta_{m_2} (u_{m_3, m_4, \ldots, m_n})) = \Delta_{m_2} (\Delta_{m_1} (u_{m_3, m_4, \ldots, m_n})) \);

\(\Delta_{m_1, m_2, m_3} (u_{m_4, m_5, \ldots, m_n}) = \Delta_{m_1} (\Delta_{m_2} (\Delta_{m_3} (u_{m_4, m_5, \ldots, m_n}))) = \Delta_{m_2} (\Delta_{m_1} (\Delta_{m_3} (u_{m_4, m_5, \ldots, m_n}))) \).

Similarly,

\(\Delta_{m_1, m_2, m_3} (u_{m_4, m_5, \ldots, m_n}) = \Delta_{m_1} (\Delta_{m_2} (\Delta_{m_3} (u_{m_4, m_5, \ldots, m_n}))) \)

A given sequence \((u_{m_1, m_2, \ldots, m_n}) \) is said to be convergent (in Pringsheims sense) to \(L \) (see [9]), if for each given \(\epsilon > 0 \), there exists a positive integer \(N_0 \) such that \(|(u_{m_1, m_2, \ldots, m_n}) - L| < \epsilon \), for all nonnegative integers \(m_1, m_2, \ldots, m_n > N_0 \).

In this case, we write
\[\lim_{m_1, m_2, \ldots, m_n \to \infty} (u_{m_1, m_2, \ldots, m_n}) = L. \]

Note that, a \(n^{th} \) real sequence \((u_{m_1, m_2, \ldots, m_n}) \) is said to be bounded, if there exists a constant, \(K > 0 \) such that \(|(u_{m_1, m_2, \ldots, m_n})| < K \), for all nonnegative integers \(m_1, m_2, \ldots, m_n \).

The \((C, 1, 1, \ldots, 1) \) mean of \(n^{th} \) sequence, denoted by \((\sigma_{m_1, m_2, \ldots, m_n} (u)) \) is defined as
\[\sigma_{m_1, m_2, \ldots, m_n} (u) = \frac{1}{(m_1 + 1)(m_2 + 1)\ldots(m_n + 1)} \sum_{i_1=0}^{m_1} \sum_{i_2=0}^{m_2} \ldots \sum_{i_n=0}^{m_n} u_{i_1, i_2, \ldots, i_n}. \]

The sequence \((u_{m_1, m_2, \ldots, m_n}) \) is \((C, 1, 1, \ldots, 1) \) summable to \(L \), if
\[\lim_{m_1, m_2, \ldots, m_n \to \infty} \sigma_{m_1, m_2, \ldots, m_n} (u) = L. \] \hspace{1cm} (1)

Clearly, a bounded sequence \((u_{m_1, m_2, \ldots, m_n}) \) is \(P \)-convergent to \(L \), if
\[\lim_{m_1, m_2, \ldots, m_n \to \infty} u_{m_1, m_2, \ldots, m_n} = L. \] \hspace{1cm} (2)

Also, existence of (2) implies the existence of (1) but not conversely. To prove the converse part, we use some conditions such as slow oscillation and de la Vallée Poussin mean of \(n^{th} \) sequence. Such conditions are called Tauberian conditions and theorems with Tauberian conditions are called Tauberian theorems.

It is known that from [5], a double sequence can written as,
\[U_{m_1, n} - \sigma_{m_1, n} = v_{m_1, n} \Delta (u), \]
where
\[v_{m_1, n} \Delta (u) = \frac{1}{(m + 1)(n + 1)} \sum_{i_1=0}^{m} \sum_{i_2=0}^{n} i_1 i_2 \Delta_{i_1, i_2} (u_{i_1, i_2}). \]
Similarly, here for n^{th} sequence, we may write
\[u_{m_1, \ldots, m_n} - \sigma_{m_1, \ldots, m_n} = v_{m_1, \ldots, m_n} \Delta(u), \]
where
\[v_{m_1, \ldots, m_n} \Delta(u) = \frac{1}{(m_1 + 1)(m_2 + 1) \cdots (m_n + 1)} \sum_{i_1=0}^{m_1} \sum_{i_2=0}^{m_2} \cdots \sum_{i_n=0}^{m_n} \Delta_{i_1 \cdots i_n} (u_{i_1 \cdots i_n}). \]

Now, we present below an illustrative example to show that a sequence is $(C, 1, 1, \ldots, 1)$ summable but not P-convergent.

Example 1.1. Let us consider a bounded sequence
\[u_{m_1, m_2, \ldots, m_n} = \begin{cases} 1 & (m_1 = \text{even}) \\ 0 & \text{(otherwise)}. \end{cases} \]

Now
\[\sigma_{m_1, m_2, \ldots, m_n}(u) = \frac{1}{(m_1 + 1)(m_2 + 1) \cdots (m_n + 1)} \sum_{i_1=0}^{m_1} \sum_{i_2=0}^{m_2} \cdots \sum_{i_n=0}^{m_n} (m_{i_1} m_{i_2} \cdots m_{i_n})^{1/2}, \]
where
\[\begin{cases} \frac{(m_1 - 1)m_1 \cdots m_n}{2[(m_1 + 1)(m_2 + 1) \cdots (m_n + 1)]} & \text{if } m_1 = \text{odd}, \\ \frac{m_1 m_2 \cdots m_n}{2[(m_1 + 1)(m_2 + 1) \cdots (m_n + 1)]} & \text{if } m_1 = \text{even}. \end{cases} \]

Clearly, the sequence is $(C, 1, 1, \ldots, 1)$ summable to $\frac{1}{2}$. But it is not P-convergent.

Next, it will be interesting to see that unlike single sequences, every P-convergent n^{th} sequence need not be bounded and further every P-convergent n^{th} sequence does not have to be $(C, 1, 1, \ldots, 1)$ summable. It can be illustrated in the following example.

Example 1.2. Let us consider a sequence
\[u_{m_1, m_2, \ldots, m_n} = \begin{cases} m_1, & (m_2 = \ldots = m_n = 0, \ m_1 = 0, 1, 2, \ldots) \\ m_2, & (m_1 = \ldots = m_n = 0, \ m_2 = 0, 1, 2, \ldots) \\ 0, & \text{(otherwise)}. \end{cases} \]

Obviously, the sequence is unbounded but P-convergent to 0.

Furthermore,
\[\sigma_{m_1, m_2, \ldots, m_n}(u) = \lim_{m_1, m_2, \ldots, m_n \to \infty} \frac{1}{(m_1 + 1)(m_2 + 1) \cdots (m_n + 1)} \sum_{i_1=0}^{m_1} \sum_{i_2=0}^{m_2} \cdots \sum_{i_n=0}^{m_n} u_{i_1 \cdots i_n}, \]
\[= \lim_{m_1, m_2, \ldots, m_n \to \infty} \frac{(m_1^2 + m_2)(m_2^2 + m_2)(m_n^2 + m_n)}{(n+1)(m_1 + 1)(m_2 + 1) \cdots (m_n + 1)}. \]
does not tend to a finite limit. Therefore, it is not \((C,1,\ldots,1)\) summable.

Now, the definition of slow oscillation for \(n\)th sequences is introduced in the sense of Stanojević [11] as follows:

A \(n\)th sequence \((u_{m_1,\ldots,m_n})\) is said to be slowly oscillating in sense \((0,0,\ldots,1,\ldots,0)\) with \(1\) in the \(k\)th place if,

\[
\lim_{\lambda \to 1^+} \lim_{m_1,m_2,\ldots,m_n \to \infty} \sup_{m_1+1 \leq k \leq m_n} \max_{r=m_k+1} \left| \sum_{r=m_k+1}^{\lambda} \Delta_r u_{m_1,\ldots,m_n} \right| = 0.
\]

Next, the de la Vallée Pousson mean \(\tau_{m_1,m_2,\ldots,m_n}(u)\) of the \(n\)th sequence \((u_{m_1,\ldots,m_n})\) is defined for \(\lambda > 1\) as,

\[
\frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)\cdots(\lambda_{m_n} - m_n)} \sum_{i_1=m_{k_1}+1}^{\lambda_{m_1}} \sum_{i_2=m_{k_2}+1}^{\lambda_{m_2}} \cdots \sum_{i_n=m_{k_n}+1}^{\lambda_{m_n}} (u_{i_1,\ldots,i_n}).
\]

and for \(0 < \lambda < 1\) as,

\[
\frac{1}{(m_1 - \lambda_{m_1})(m_2 - \lambda_{m_2})\cdots(m_n - \lambda_{m_n})} \sum_{i_1=m_{k_1}+1}^{m_{k_1}} \sum_{i_2=m_{k_2}+1}^{m_{k_2}} \cdots \sum_{i_n=m_{k_n}+1}^{m_{k_n}} (u_{i_1,\ldots,i_n}).
\]

Moreover, now we define the Cesàro mean for each sequence of non-negative integers \((k_1,k_2,\ldots,k_n)\),

\[
\sigma_{k_1,k_2,\ldots,k_n} = \left\{ \begin{array}{ll}
\frac{1}{(m_1+1)\cdots(m_n+1)} \sum_{i_1=0}^{m_1} \cdots \sum_{i_n=0}^{m_n} \sigma_{k_1-1,\ldots,k_n-1}, & \text{for } k_1,\ldots,k_n \geq 1 \\
u_{m_1,m_2,\ldots,m_n}, & \text{for } k_1,\ldots,k_n = 0.
\end{array} \right.
\]

A sequence \((u_{m_1,\ldots,m_n})\) is said to be \((C,k_1,\ldots,k_n)\) summable to \(L\), if \(\lim_{m_1,m_2,\ldots,m_n \to \infty} \sigma_{k_1,\ldots,k_n}(u) = L\).

Remark 1.1 If \(k_1 = \ldots = k_n = 1\) then \((C,k_1,\ldots,k_n)\) summability reduces to \((C,1,\ldots,1)\) summability.

The following is a list of some known theorems.

Theorem 1.1 (see [13]) If \((u_{m,n})\) is Cesàro \((C,1,1)\) summable to \(s\) and \((u_{m,n})\) is slowly oscillating, then \(\lim_{n \to \infty} (u_{m,n}) = s\).

Theorem 1.2 (see [5]) If \((u_{m,n})\) is Cesàro \((C,k,r)\) summable to \(s\) and \((u_{m,n})\) is slowly oscillating, then \(\lim_{n \to \infty} (u_{m,n}) = s\).

Theorem 1.3 (see [2]) If \((u_{m,n,s})\) is Cesàro \((C,1,1,1)\) summable to \(L\) and \((u_{m,n,s})\) is slowly oscillating, then \(\lim_{n \to \infty} (u_{m,n,s}) = L\).

2. Main Theorems

The objective of the present paper is to prove the generalized Littlewood-Tauberian theorem [2] for \((C,1,\ldots,1)\) summability of a \(n\)th sequence by using slow oscillations and de la Vallée mean.

Theorem 2.1 Let \((u_{m_1,m_2,\ldots,m_n})\) be \((C,1,1,\ldots,1)\) summable to \(L\). If \((u_{m_1,m_2,\ldots,m_n})\) is slowly oscillating in sense \((1,0,0,\ldots,0),\ (0,1,0,\ldots,0),\ldots,\ (0,0,0,0,\ldots,1)\), then \((u_{m_1,m_2,\ldots,m_n})\) is \(P\)-convergent to \(L\).
The following lemmas give two representations of the difference $u_{m_1m_2...m_n} - \sigma_{m_1m_2...m_n}(u)$ and are required for the proof of our main Theorem 2.1.

Lemma 2.1 (see [2], p. 4, Lemma 4.1) Let $\lambda_{m_1}, \lambda_{m_2}, ..., \lambda_{m_n}$ denote the integral part of $\lambda_{m_1}, \lambda_{m_2}, ..., \lambda_{m_n}$ respectively.

(i) If $\lambda > 1$, then

$$u_{m_1m_2...m_n} - \sigma_{m_1m_2...m_n}(u) = \frac{(\lambda_{m_1} + 1)(\lambda_{m_2} + 1)...(\lambda_{m_n} + 1)}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)...(\lambda_{m_n} - m_n)} \times$$

$$\left[\sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) - \sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) - ... - \sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) + \sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) + ... + \sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) - \sigma_{m_1m_2...m_n}(u)\right]$$

(ii) If $0 < \lambda < 1$, then

$$u_{m_1m_2...m_n} - \sigma_{m_1m_2...m_n}(u) = \frac{(\lambda_{m_1} + 1)(\lambda_{m_2} + 1)...(\lambda_{m_n} + 1)}{(m_1 - \lambda_{m_1})(m_2 - \lambda_{m_2})...(m_n - \lambda_{m_n})} \times$$

$$\left[\sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) - \sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) - ... - \sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) + \sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) + ... + \sigma_{\lambda_{m_1},\lambda_{m_2},...,\lambda_{m_n}}(u) - \sigma_{m_1m_2...m_n}(u)\right]$$
\[
+\sigma_{\lambda_1 \lambda_2 m_3 \ldots m_n} u(u) + \sigma_{\lambda_1 \lambda_2 m_2 \ldots m_n} u(u) + \ldots + \sigma_{\lambda_1 m_2 \ldots m_n} u(u) \\
- \sigma_{m_1 m_2 \ldots m_n} u(u)
\]

\[
is - \sum_{n=1}^{m} \sum_{i_2=m_n+1}^{\lambda_m} \ldots \sum_{i_k=m_{n+1}+1}^{\lambda_{m_n}} (\lambda_{m_1} m_1) \ldots (\lambda_{m_n} m_n) \times \left[\sum_{i_1=m_1+1}^{\lambda_m} \sum_{i_2=m_2+1}^{\lambda_{m_1}} \ldots \sum_{i_n=m_{n+1}+1}^{\lambda_{m_{n-1}}} (u_{m_1 m_2 \ldots m_n} - u_{i_1 i_2 \ldots i_n}).
\]

Proof (i) For \(\lambda > 1 \), by the definition of de la Vallée Poussin means of \(u_{m_1 m_2 \ldots m_n} \), we have

\[
\tau_{m_1 m_2 \ldots m_n} (u) = \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2) \ldots (\lambda_{m_n} - m_n)} \sum_{i_1=m_1+1}^{\lambda_m} \sum_{i_2=m_2+1}^{\lambda_{m_1}} \ldots \sum_{i_n=m_{n+1}+1}^{\lambda_{m_{n-1}}} (u_{i_1 i_2 \ldots i_n})
\]

\[
= \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2) \ldots (\lambda_{m_n} - m_n)} \times \left[\sum_{i_1=0}^{\lambda_m} \sum_{i_2=0}^{\lambda_{m_1}} \ldots \sum_{i_n=0}^{\lambda_{m_{n-1}}} \left(\sum_{i_1} \sum_{i_2} \ldots \sum_{i_n} \right) u_{i_1 i_2 \ldots i_n} \right]
\]

\[
= \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2) \ldots (\lambda_{m_n} - m_n)} \times \left[\sum_{i_1=0}^{\lambda_m} \sum_{i_2=0}^{\lambda_{m_1}} \ldots \sum_{i_n=0}^{\lambda_{m_{n-1}}} \left(\sum_{i_1} \sum_{i_2} \ldots \sum_{i_n} \right) \right] u_{i_1 i_2 \ldots i_n}
\]

\[
+ \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2) \ldots (\lambda_{m_n} - m_n)} \times \left[\sum_{i_1=0}^{\lambda_m} \sum_{i_2=0}^{\lambda_{m_1}} \ldots \sum_{i_n=0}^{\lambda_{m_{n-1}}} \left(\sum_{i_1} \sum_{i_2} \ldots \sum_{i_n} \right) \right] u_{i_1 i_2 \ldots i_n}
\]

\[
+ \ldots + \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2) \ldots (\lambda_{m_n} - m_n)} \times \left[\sum_{i_1=0}^{\lambda_m} \sum_{i_2=0}^{\lambda_{m_1}} \ldots \sum_{i_n=0}^{\lambda_{m_{n-1}}} \left(\sum_{i_1} \sum_{i_2} \ldots \sum_{i_n} \right) \right] u_{i_1 i_2 \ldots i_n}
\]

\[
\ldots + \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2) \ldots (\lambda_{m_n} - m_n)} \times \left[\sum_{i_1=0}^{\lambda_m} \sum_{i_2=0}^{\lambda_{m_1}} \ldots \sum_{i_n=0}^{\lambda_{m_{n-1}}} \left(\sum_{i_1} \sum_{i_2} \ldots \sum_{i_n} \right) \right] u_{i_1 i_2 \ldots i_n}
\]
Hence,

\[
\tau_{m_1m_2...m_n}(u) = \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)...(\lambda_{m_n} - m_n)} \times \left[((\lambda_{m_1} + 1)(\lambda_{m_2} + 1)...(\lambda_{m_n} + 1)...(\lambda_{m_1} - 1)(\lambda_{m_2} - 1)...(\lambda_{m_n} - 1)) \sigma_{m_1m_2...m_n}(u) \right.
\]

\[
- ((\lambda_{m_1} + 1)(\lambda_{m_2} + 1)...(\lambda_{m_n} + 1)\sigma_{m_1m_2...m_n}(u) - ((m_1 + 1)(\lambda_{m_2} + 1)...(\lambda_{m_n} + 1)) \sigma_{m_1m_2...m_n} - ...
\]

\[
+ \left((m_1 + 1)(m_2 + 1)(\lambda_{m_3} + 1)\sigma_{m_1m_2m_3...m_n}(u) \right) + ... + (\lambda_{m_1} + 1)(\lambda_{m_2} + 1)...
\]

\[
(\lambda_{m_1} + 1)(m_2 + 1)(m_n + 1)\sigma_{m_1m_2...m_n} - ...
\]

\[
- (m_1 + 1)(m_2 + 1)...(m_n + 1)\sigma_{m_1m_2...m_n}(u)]
\]

and

\[
\tau_{m_1m_2...m_n}(u) = \frac{\lambda_{m_1} + 1)(\lambda_{m_2} + 1)...(\lambda_{m_n} + 1)}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)...(\lambda_{m_n} - m_n)} \sigma_{m_1m_2...m_n}(u)
\]

\[
- \left[(m_1 + 1)(m_2 + 1)...(m_n + 1) - (\lambda_{m_1} + 1)(\lambda_{m_2} + 1)...(\lambda_{m_n} + 1) \sigma_{m_1m_2...m_n} - ...
\]

\[
+ \left((m_1 + 1)(m_2 + 1)(\lambda_{m_3} + 1)\sigma_{m_1m_2m_3...m_n}(u) \right) + ... + (\lambda_{m_1} + 1)(\lambda_{m_2} + 1)...
\]

\[
(\lambda_{m_1} + 1)(m_2 + 1)(m_n + 1)\sigma_{m_1m_2...m_n} - ...
\]

\[
- (m_1 + 1)(m_2 + 1)...(m_n + 1)\sigma_{m_1m_2...m_n}(u)]
\]
The difference \(\tau_{m_2\ldots m_n}(u) - \sigma_{m_2\ldots m_n}(u) \) can be written as

\[
\tau_{m_2\ldots m_n}(u) - \sigma_{m_2\ldots m_n}(u) = \frac{(\lambda_{m_1} + 1)(\lambda_{m_2} + 1)\ldots(\lambda_{m_n} + 1)}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)\ldots(\lambda_{m_n} - m_n)} \left[\sigma_{\lambda_{m_1}\lambda_{m_2}\ldots\lambda_{m_n}}(u) - \sigma_{m_1\lambda_{m_2}\ldots\lambda_{m_n}}(u) \right] - \ldots - \sigma_{\lambda_{m_1}\lambda_{m_2}\ldots\lambda_{m_n-1}m_n}(u) + \sigma_{m_1\lambda_{m_2}\ldots\lambda_{m_n}(u)} + \sigma_{m_1\lambda_{m_2}\lambda_{m_3}\ldots\lambda_{m_n}(u)} + \ldots + \sigma_{m_1\lambda_{m_2}\lambda_{m_3}\ldots\lambda_{m_n}(u)}(u) - \sigma_{m_2\ldots m_n}(u)
\]

It follows from the previous equation that,

\[
u_{m_1\ldots m_n} = \sigma_{m_1\ldots m_n}(u) - m_1
\]

\[
= \frac{(\lambda_{m_1} + 1)(\lambda_{m_2} + 1)\ldots(\lambda_{m_n} + 1)}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)\ldots(\lambda_{m_n} - m_n)} \left[\sigma_{\lambda_{m_1}\lambda_{m_2}\ldots\lambda_{m_n}}(u) - \sigma_{m_1\lambda_{m_2}\ldots\lambda_{m_n}}(u) \right] - \ldots - \sigma_{\lambda_{m_1}\lambda_{m_2}\ldots\lambda_{m_n-1}m_n}(u) + \sigma_{m_1\lambda_{m_2}\ldots\lambda_{m_n}(u)} + \sigma_{m_1\lambda_{m_2}\lambda_{m_3}\ldots\lambda_{m_n}(u)} + \ldots + \sigma_{m_1\lambda_{m_2}\lambda_{m_3}\ldots\lambda_{m_n}(u)}(u) - \sigma_{m_2\ldots m_n}(u)
\]

\[
u_{m_1\ldots m_n} = \sigma_{m_1\ldots m_n}(u) - m_1
\]

\[
\frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)\ldots(\lambda_{m_n} - m_n)} \sum_{i_1=m_1+1}^{\lambda_{m_1}} \sum_{i_2=m_2+1}^{\lambda_{m_2}} \ldots \sum_{i_n=m_n+1}^{\lambda_{m_n}} (u_{i_1i_2\ldots i_n} - \nu_{m_1\ldots m_n}).
\]
This completes the proof of Lemma (2.1)(i). □

(ii) The proof for $0 < \lambda < 1$ is similar to that of first part of Lemma 2.1(i).

Lemma 2.2 (see [5], Lemma 6. p. 2-3) A sequence $(u_{m_1m_2...m_n})$ is slowly oscillating if and only if $v_{u_{m_1m_2...m_n}} \Delta(u)$ is slowly oscillating and bounded.

Proof of Theorem 2.1 By Lemma 2.1(i) we obtain

$$|u_{m_1m_2...m_n} - \sigma_{m_1m_2...m_n}(u)| \leq |\tau_{m_1m_2...m_n}(u) - \sigma_{m_1m_2...m_n}(u)|$$

$$+ \left| \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)...(\lambda_{m_n} - m_n)} \sum_{i_1 = m_1+1}^{\lambda_{m_1}} \sum_{i_2 = m_2+1}^{\lambda_{m_2}} \ldots \sum_{i_n = m_n+1}^{\lambda_{m_n}} (u_{i_1i_2...i_n} - u_{m_1m_2...m_n}) \right|$$

(6)

For the second term on the right hand side of the inequality (6), we have

$$\left| \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)...(\lambda_{m_n} - m_n)} \sum_{i_1 = m_1+1}^{\lambda_{m_1}} \sum_{i_2 = m_2+1}^{\lambda_{m_2}} \ldots \sum_{i_n = m_n+1}^{\lambda_{m_n}} (u_{i_1i_2...i_n} - u_{m_1m_2...m_n}) \right|$$

$$\leq \left| \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)...(\lambda_{m_n} - m_n)} \sum_{i_1 = m_1+1}^{\lambda_{m_1}} \sum_{i_2 = m_2+1}^{\lambda_{m_2}} \ldots \sum_{i_n = m_n+1}^{\lambda_{m_n}} \left(\sum_{r_1 = m_1+1}^{\lambda_{m_1}} \Delta_{r_1} u_{r_1i_2...i_n} \right) \right|$$

and then

$$\left| \frac{1}{(\lambda_{m_1} - m_1)(\lambda_{m_2} - m_2)...(\lambda_{m_n} - m_n)} \sum_{i_1 = m_1+1}^{\lambda_{m_1}} \sum_{i_2 = m_2+1}^{\lambda_{m_2}} \ldots \sum_{i_n = m_n+1}^{\lambda_{m_n}} (u_{i_1i_2...i_n} - u_{m_1m_2...m_n}) \right|$$

$$\leq \max_{m_1+1 \leq i_1 \leq \lambda_{m_1}} \left| \sum_{r_1 = m_1+1}^{i_1} \Delta_{r_1} u_{r_1i_2...i_n} \right| + \max_{m_2+1 \leq i_2 \leq \lambda_{m_2}} \left| \sum_{r_2 = m_2+1}^{i_2} \Delta_{r_2} u_{m_1r_2i_3...i_n} \right|$$

$$+ \ldots + \max_{m_n+1 \leq i_n \leq \lambda_{m_n}} \left| \sum_{r_n = m_n+1}^{i_n} \Delta_{r_n} u_{m_1m_2...m_{n-1}r_n} \right|$$

(7)

By taking the lim sup on both sides of the inequality (7) as $m_1...m_n \to \infty$, and the first term on the right hand side of the inequality (7) vanishes by Lemma 2.1(i). We have,

$$\lim_{m_1,m_2,...,m_n \to \infty} \sup |u_{m_1m_2...m_n} - \sigma_{m_1m_2...m_n}| \leq \lim_{m_1,m_2,...,m_n \to \infty} \sup \max_{1 \leq i_1 \leq \lambda_{m_1}} \left| \sum_{r_1 = m_1+1}^{i_1} \Delta_{r_1} u_{r_1i_2...i_n} \right|$$

$$+ \lim_{m_1,m_2,...,m_n \to \infty} \sup \max_{m_2+1 \leq i_2 \leq \lambda_{m_2}} \left| \sum_{r_2 = m_2+1}^{i_2} \Delta_{r_2} u_{m_1r_2i_3...i_n} \right|$$

$$+ \ldots + \lim_{m_1,m_2,...,m_n \to \infty} \sup \max_{m_n+1 \leq i_n \leq \lambda_{m_n}} \left| \sum_{r_n = m_n+1}^{i_n} \Delta_{r_n} u_{m_1m_2...m_{n-1}r_n} \right|.$$
Taking limit to both sides of the last inequality as \(\lambda \to 1^+ \), again since \((u_{m_1m_2...m_n}) \) is slowly oscillating in senses \((1,0,0,...,0), (0,1,0,...,0), (0,0,0,...,1) \); we have
\[
\lim_{m_1m_2...m_n \to \infty} \sup |u_{m_1m_2...m_n} - \sigma_{m_1m_2...m_n}(u)| \leq 0.
\]
Therefore, \((u_{m_1m_2...m_n}) \) is \(P \)-convergent to \(L \).

This completes the proof of of Theorem 2.1.

Corollary 2.1 Let \((u_{m_1m_2...m_n}) \) be \((C,k_1,k_2,...,k_n)\) summable to \(L \). If \((u_{m_1m_2...m_n}) \) is slowly oscillating in sense \((1,0,0,...,0), (0,1,0,...,0), (0,0,0,...,1)\); then \((u_{m_1m_2...m_n}) \) is \(P \)-convergent to \(L \).

Proof. Let \((u_{m_1m_2...m_n}) \) be slowly oscillating, then \((\delta^{k_1...k_n}) \) is slowly oscillating (by Lemma 2.2). Further, since \(u = (u_{m_1m_2...m_n}) \) is \((C,k_1,k_2,...,k_n)\) summable to \(L \); so by Theorem 2.1,
\[
\lim_{m_1m_2...m_n \to \infty} (\delta^{k_1...k_n})(u) = L. \tag{8}
\]
Next from the definition,
\[
(\delta^{k_1...k_n})(u) = \delta^{1...1}(u)(\delta^{k_1...k_n})(u) = L. \tag{9}
\]
Clearly, (8) and (9) imply that \(u = (u_{m_1m_2...m_n}) \) is \((C,k_1-1,k_2-1,...,k_n-1)\) summable to \(L \). Again, \((\delta^{k_1...k_n-1}(u)) \) is also slowly oscillating (by Lemma 2.2); Thus, by Theorem 2.1, we have
\[
\lim_{m_1m_2...m_n \to \infty} (\delta^{k_1...k_n-1})(u) = L. \tag{10}
\]
Continuing in this way, we get \((u_{m_1m_2...m_n}) \) is \(P \)-convergent to \(L \).

This completes the proof of Corollary 2.1.

Theorem 2.2 Let \(u_{m_1m_2...m_n} \) be \((C,1,1,...,1)\) summable to \(L \). If \(m_1\Delta_m u_{m_1m_2...m_n} \geq -K, m_2\Delta_m u_{m_1m_2...m_n} \geq -K,..., m_n\Delta_m u_{m_1m_2...m_n} \geq -K \); then \((u_{m_1m_2...m_n}) \) is \(P \)-convergent to \(L \).

Proof. Taking \(\text{lim sup} \) on both sides of the identity in Lemma 2.1(i) as \(m_1m_2...m_n \to \infty \) for \(\lambda > 1 \), we have
\[
\lim_{m_1m_2...m_n \to \infty} \sup |u_{m_1m_2...m_n} - \sigma_{m_1m_2...m_n}(u)| \\
\leq \lim_{m_1m_2...m_n \to \infty} \left\{ \frac{(\lambda m_1 + 1)(\lambda m_2 + 1)...(\lambda m_n + 1)}{(\lambda m_1 - m_1)(\lambda m_2 - m_2)...(\lambda m_n - m_n)} \right\} \left| \sigma_{m_1m_2...m_n}(u) \right|
\]
\[
- \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) + \sigma_{\lambda m_1,\lambda m_2,\lambda m_3,...,\lambda m_n}(u) + \sigma_{\lambda m_1,\lambda m_2,\lambda m_3,...,\lambda m_n}(u)
\]
\[
+ \ldots + \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) - \sigma_{m_1m_2...m_n}(u) \right| \\
- \frac{(\lambda m_1 + 1)(\lambda m_2 + 1)...(\lambda m_n + 1)}{(\lambda m_1 - m_1)(\lambda m_2 - m_2)...(\lambda m_n - m_n)} \left| \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) \right|
\]
\[
+ \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) + \ldots + \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) - \sigma_{m_1m_2...m_n}(u) \right| \\
- \frac{(\lambda m_1 + 1)(\lambda m_2 + 1)...(\lambda m_n + 1)}{(\lambda m_1 - m_1)(\lambda m_2 - m_2)...(\lambda m_n - m_n)} \left| \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) + \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) \right|
\]
\[
+ \ldots + \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) + \ldots - \sigma_{m_1m_2...m_n}(u) \right|
\]
\[
- \frac{(\lambda m_1 + 1)(\lambda m_2 + 1)...(\lambda m_n + 1)}{(\lambda m_1 - m_1)(\lambda m_2 - m_2)...(\lambda m_n - m_n)} \left| \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) + \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) \right|
\]
\[
+ \ldots + \sigma_{\lambda m_1,\lambda m_2,...,\lambda m_n}(u) + \ldots - \sigma_{m_1m_2...m_n}(u) \right|
\]
This completes the proof of Theorem 2.2 □

Acknowledgement

The authors are grateful to the referees for their useful comments and suggestions.
References

