Subsequences of Triangular Partial Sums of Double Fourier Series on Unbounded Vilenkin Groups

György Gát ${ }^{\text {a }}$, Ushangi Goginava ${ }^{\text {b }}$
${ }^{a}$ Institute of Mathematics, University of Debrecen, H-4002 Debrecen, Pf. 400, Hungary
${ }^{b}$ Department of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia

Abstract

In 1987 Harris proved-among others-that for each $1 \leq p<2$ there exists a two-dimensional function $f \in L_{p}$ such that its triangular partial sums $S_{2^{A}}^{\triangle} f$ of Walsh-Fourier series does not converge almost everywhere. In this paper we prove that subsequences of triangular partial sums $S_{n_{A} M_{A}}^{\Delta} f, n_{A} \in$ $\left\{1,2, \ldots, m_{A}-1\right\}$ on unbounded Vilenkin groups converge almost everywhere to f for each function $f \in L_{2}$.

Let \mathbb{P} denote the set of positive integers, $\mathbb{N}:=\mathbb{P} \cup\{0\}$. Let $m:=\left(m_{0}, m_{1}, \ldots\right)$ denote a sequence of positive integers not less than 2 . Denote by $Z_{m_{k}}:=\left\{0,1, \ldots, m_{k}-1\right\}$ the additive group of integers modulo m_{k}. Define the group G_{m} as the complete direct product of the groups $Z_{m_{j}}$, with the product of the discrete topologies of $Z_{m_{j}}$'s. The direct product μ of the measures

$$
\mu_{k}(\{j\}):=\frac{1}{m_{k}} \quad\left(j \in Z_{m_{k}}\right)
$$

is the Haar measure on G_{m} with $\mu\left(G_{m}\right)=1$. The elements of G_{m} can be represented by sequences $x:=$ $\left(x_{0}, x_{1}, \ldots, x_{j}, \ldots\right),\left(x_{j} \in Z_{m_{j}}\right)$. The group operation + in G_{m} is given by

$$
x+y=\left(x_{0}+y_{0}\left(\bmod m_{0}\right), \ldots, x_{k}+y_{k}\left(\bmod m_{k}\right), \ldots\right),
$$

where $x=\left(x_{0}, \ldots, x_{k}, \ldots\right)$ and $y=\left(y_{0}, \ldots, y_{k}, \ldots\right) \in G$. The inverse of + will be denoted by - .
It is easy to give a base for the neighborhoods of G_{m} :

$$
\begin{aligned}
& I_{0}(x):=G_{m} \\
& I_{n}(x):=\left\{y \in G_{m} \mid y_{0}=x_{0}, \ldots, y_{n-1}=x_{n-1}\right\}
\end{aligned}
$$

for $x \in G_{m}, n \in \mathbb{N}$. Define $I_{n}:=I_{n}(0)$ for $n \in \mathbb{N}$. The sets $I_{n}(x)$ are called (m-adic) intervals.
Define $\mathcal{A}_{A, B}$ the σ-algebra generated by rectangles $I_{A}\left(x^{1}\right) \times I_{B}\left(x^{2}\right)$ as $x=\left(x^{1}, x^{2}\right)$ rolls over $G_{m} \times G_{m}$. Let $E_{A, B}$ be the conditional expectation operator with respect to σ-algebra $\mathcal{A}_{A, B}$. That is,

$$
E_{A, B} f\left(x^{1}, x^{2}\right)=M_{A} M_{B} \int_{I_{A}\left(x^{1}\right) \times I_{B}\left(x^{2}\right)} f\left(y^{1}, y^{2}\right) d \mu\left(y^{1}, y^{2}\right) .
$$

[^0]If $A=B$, then we simple write \mathcal{A}_{A} and E_{A} instead of $\mathcal{A}_{A, A}$ and $E_{A, A}$.
If we define the so-called generalized number system based on m in the following way: $M_{0}:=1, M_{k+1}:=$ $m_{k} M_{k}(k \in \mathbb{N})$, then every $n \in \mathbb{N}$ can be uniquely expressed as $n=\sum_{j=0}^{\infty} n_{j} M_{j}$, where $n_{j} \in Z_{m_{j}}(j \in \mathbb{N})$ and only a finite number of n_{j} 's differ from zero.

Next, we introduce on G_{m} an orthonormal system which is called the Vilenkin system [1]. At first, define the complex valued functions $r_{k}(x): G_{m} \rightarrow \mathbb{C}$, the generalized Rademacher functions in this way

$$
\rho_{k}(x):=\exp \frac{2 \pi i x_{k}}{m_{k}}\left(z^{2}=-1, x \in G_{m}, k \in \mathbb{N}\right)
$$

Now define the Vilenkin system $\psi:=\left(\psi_{n}: n \in \mathbb{N}\right)$ on G_{m} as follows.

$$
\psi_{n}(x):=\prod_{k=0}^{\infty} \rho_{k}^{n_{k}}(x) \quad(n \in \mathbb{N})
$$

Specifically, we call this system the Walsh-Paley one if $m \equiv 2$.
Dirichlet kernels are defined as follows

$$
D_{n}:=\sum_{k=0}^{n-1} \psi_{k} \quad(n \in \mathbb{N})
$$

Recall that [7]

$$
D_{M_{n}}(x)= \begin{cases}M_{n}, & \text { if } x \in I_{n} \tag{1}\\ 0, & \text { if } x \in G_{m} \backslash I_{n}\end{cases}
$$

It is well known that (see ([7]))

$$
\begin{equation*}
D_{n}=\psi_{n} \sum_{j=0}^{\infty} D_{M_{j}} \sum_{a=m_{j}-n_{j}}^{m_{j}-1} \rho_{j}^{a} \tag{2}
\end{equation*}
$$

The norm of the space $L_{p}\left(G_{m} \times G_{m}\right)$ is defined by (μ is the product measue $\mu \times \mu$)

$$
\|f\|_{p}:=\left(\int_{G_{m} \times G_{m}}\left|f\left(x^{1}, x^{2}\right)\right|^{p} d \mu\left(x^{1}, x^{2}\right)\right)^{1 / p}<\infty, 1 \leq p<\infty
$$

The rectangular partial sums of the double Vilenkin-Fourier series are defined as follows:

$$
S_{n, m}\left(f ; x^{1}, x^{2}\right):=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \widehat{f}(i, j) \psi_{i}\left(x^{1}\right) \psi_{j}\left(x^{2}\right)
$$

where the number

$$
\widehat{f}(i, j)=\int_{G_{m} \times G_{m}} f\left(x^{1}, x^{2}\right) \bar{\psi}_{i}\left(x^{1}\right) \bar{\psi}_{j}\left(x^{2}\right) d \mu\left(x^{1}, x^{2}\right) .
$$

is said to be the (i, j) th Vilenkin-Fourier coefficient of the function f.

The triangular partial sums are defined as

$$
S_{k}^{\triangle}\left(x^{1}, x^{2} ; f\right)=\sum_{i=0}^{k-1} \sum_{j=0}^{k-i-1} \hat{f}(i, j) \psi_{i}\left(x^{1}\right) \psi_{j}\left(x^{2}\right)
$$

Set

$$
S_{n}^{\square}\left(x^{1}, x^{2} ; f\right):=S_{n, n}\left(x^{1}, x^{2} ; f\right) .
$$

It is evident that

$$
\begin{aligned}
S_{k}^{\triangle}\left(x^{1}, x^{2} ; f\right) & =\left(f * D_{k}^{\Delta}\right)\left(x^{1}, x^{2}\right) \\
& :=\int_{G_{m} \times G_{m}} f\left(y^{1}, y^{2}\right) D_{k}^{\Delta}\left(x^{1}-y^{1}, x^{2}-y^{2}\right) d \mu\left(y^{1}, y^{2}\right), \\
S_{k}^{\square}\left(x^{1}, x^{2} ; f\right) & =\left(f * D_{k}^{\square}\right)\left(x^{1}, x^{2}\right) \\
& :=\int_{G_{m} \times G_{m}} f\left(y^{1}, y^{2}\right) D_{k}^{\square}\left(x^{1}-y^{1}, x^{2}-y^{2}\right) d \mu\left(y^{1}, y^{2}\right),
\end{aligned}
$$

where

$$
D_{k}^{\Delta}\left(x^{1}, x^{2}\right):=\sum_{i=0}^{k-1} \sum_{j=0}^{k-i-1} \psi_{i}\left(x^{1}\right) \psi_{j}\left(x^{2}\right)
$$

and

$$
D_{k}^{\square}\left(x^{1}, x^{2}\right):=\sum_{i=0}^{k-1} \sum_{j=0}^{k-1} \psi_{i}\left(x^{1}\right) \psi_{j}\left(x^{2}\right) .
$$

In 1971 Fefferman proved [3] the following result with respect to the trigonometric system. Let P be an open polygonal region in \mathbb{R}^{2}, containing the origin. Set

$$
\lambda P:=\left\{\left(\lambda x^{1}, \lambda x^{2}\right):\left(x^{1}, x^{2}\right) \in P\right\}
$$

for $\lambda>0$. Then for every $p>1, f \in L_{p}\left([-\pi, \pi]^{2}\right)$ it holds the relation

$$
\sum_{\left(n^{1}, n^{2}\right) \in \lambda P} \widehat{f}\left(n^{1}, n^{2}\right) \exp \left(i\left(n^{1} y^{1}+n^{2} y^{2}\right)\right) \rightarrow f\left(y^{1}, y^{2}\right) \text { as } \lambda \rightarrow \infty
$$

for a. e. $\left(y^{1}, y^{2}\right) \in[-\pi, \pi]^{2}$. That is, $S_{\lambda P} f \rightarrow f$ a. e. Sjölin gave [6] a better result in the case when P is a rectangle. He proved the a. e. convergence for the class $f \in L\left(\log ^{+} L\right)^{3} \log ^{+} \log ^{+} L$ and for functions $f \in L\left(\log ^{+} L\right)^{2} \log ^{+} \log ^{+} L$ when P is a square. This result for squares is improved by Antonov [2]. There is a sharp constrant between the trigonometric and the Walsh case. In 1987 Harris proved [5] for the Walsh system that if S is a region in $[0, \infty) \times[0, \infty)$ with piecewise C^{1} boundary not always paralled to the axes and $1 \leq p<2$, then there exists an $f \in L_{p}\left(G_{2} \times G_{2}\right)$ such that $S_{\lambda P} f$ does not converges a. e. and in L_{p} norms as $\lambda \rightarrow \infty$. In particular, from theorem of Harris it follows that for any $1 \leq p<2$ there exists an $f \in L_{p}\left(G_{2} \times G_{2}\right)$ such that $S_{2^{A}}^{\Delta} f$ does not converges a. e. as $A \rightarrow \infty$.

In this paper we prove that the following is true.

Theorem 1. Let $n_{A} \in\left\{1,2, \ldots, m_{A}-1\right\}$ and $f \in L_{2}\left(G_{m} \times G_{m}\right)$. Then subsequences of triangular partial sums $S_{n_{A} M_{A}}^{\triangle} f$ of two-dimensional Fourier series on unbounded Vilenkin group converges almost everywhere to f.

Proof. We can write

$$
\begin{align*}
D_{n_{A} M_{A}}^{\Delta}\left(x^{1}, x^{2}\right)= & \sum_{i=0}^{n_{A} M_{A}-1} \sum_{j=0}^{n_{A} M_{A}-i-1} \psi_{i}\left(x^{1}\right) \psi_{j}\left(x^{2}\right) \tag{3}\\
= & \sum_{i=0}^{n_{A} M_{A}-1} \psi_{i}\left(x^{1}\right) D_{n_{A} M_{A}-i}\left(x^{2}\right) \\
= & \sum_{r=0}^{n_{A}-1} \sum_{i=0}^{M_{A}-1} \psi_{i+r M_{A}}\left(x^{1}\right) D_{n_{A} M_{A}-i-r M_{A}}\left(x^{2}\right) \\
= & \sum_{r=0}^{n_{A}-1} \rho_{A}^{r}\left(x^{1}\right) \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{\left(n_{A}-r\right) M_{A}-i}\left(x^{2}\right) \\
= & \sum_{r=0}^{n_{A}-2} \rho_{A}^{r}\left(x^{1}\right) \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{\left(n_{A}-r\right) M_{A}-i}\left(x^{2}\right) \\
& +\rho_{A}^{n_{A}-1}\left(x^{1}\right) \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{M_{A}-i}\left(x^{2}\right) \\
= & : T_{A}^{(1)}\left(x^{1}, x^{2}\right)+T_{A}^{(2)}\left(x^{1}, x^{2}\right) .
\end{align*}
$$

Let $n_{A}=1$. Since (see [4])

$$
\begin{equation*}
D_{M_{A}-i}(x)=D_{M_{A}}(x)-\bar{\psi}_{M_{A}-1}(-x) D_{i}(-x) \tag{4}
\end{equation*}
$$

for $T_{A}^{(2)}\left(x^{1}, x^{2}\right)$ we can write

$$
\begin{align*}
T_{A}^{(2)}\left(x^{1}, x^{2}\right)= & \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{M_{A}-i}\left(x^{2}\right) \tag{5}\\
= & D_{M_{A}}\left(x^{1}\right) D_{M_{A}}\left(x^{2}\right) \\
& -\bar{\psi}_{M_{A}-1}\left(-x^{2}\right) \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{i}\left(-x^{2}\right) .
\end{align*}
$$

Since (see [7])

$$
\begin{aligned}
D_{r M_{A-1}+i}(x) & =D_{r M_{A-1}}(x)+\psi_{r M_{A-1}}(x) D_{i}(x) \\
r & =1, \ldots, m_{A-1}-1, i=0, \ldots, M_{A-1}-1
\end{aligned}
$$

then we have

$$
\begin{aligned}
& \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{i}\left(-x^{2}\right) \\
&= \sum_{i=0}^{M_{A-1}-1} \psi_{i}\left(x^{1}\right) D_{i}\left(-x^{2}\right) \\
&+\sum_{r=1}^{m_{A-1}-1} \sum_{i=0}^{M_{A-1}-1} \psi_{i+r M_{A-1}}\left(x^{1}\right) D_{i+r M_{A-1}}\left(-x^{2}\right) \\
&= \sum_{i=0}^{M_{A-1}-1} \psi_{i}\left(x^{1}\right) D_{i}\left(-x^{2}\right) \\
&+\sum_{r=1}^{m_{A-1}-1} \rho_{A-1}^{r}\left(x^{1}\right) D_{M_{A-1}}\left(x^{1}\right) D_{r M_{A-1}}\left(-x^{2}\right) \\
&= \sum_{i=0}^{m_{A-1}-1} \rho_{A-1}^{r}\left(x^{1}\right) \rho_{A-1}^{r}\left(-x^{2}\right) \sum_{i=0}^{M_{A-1}-1} \psi_{i}\left(x^{1}\right) D_{i}\left(-x^{2}\right) \\
&+\left(\sum_{r=1}^{M_{A-1}-1} D_{i}\left(-x^{2}\right) \sum_{r=0}^{m_{A-1}-1} \rho_{A-1}^{r}\left(x^{1}-x^{2}\right)\right. \\
&\left.m_{A-1}\left(x^{1}\right) D_{r M_{A-1}}\left(-x^{2}\right)\right) D_{M_{A-1}}\left(x^{1}\right) .
\end{aligned}
$$

Iterating this equality we obtain

$$
\begin{align*}
& \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{i}\left(-x^{2}\right) \tag{6}\\
= & \sum_{j=0}^{A-1}\left(\left(\sum_{r=1}^{m_{j}-1} \rho_{j}^{r}\left(x^{1}\right) D_{r M_{j}}\left(-x^{2}\right)\right) D_{M_{j}}\left(x^{1}\right)\right) \\
& \times \prod_{s=j+1}^{A-1} \sum_{l=0}^{m_{s}-1} \rho_{s}^{l}\left(x^{1}-x^{2}\right) .
\end{align*}
$$

Combining (5) and (6) we have (recall that still $n_{A}=1$ is supposed)

$$
\begin{align*}
T_{A}^{(2)}\left(x^{1}, x^{2}\right)= & D_{M_{A}}\left(x^{1}\right) D_{M_{A}}\left(x^{2}\right) \tag{7}\\
& -\bar{\psi}_{M_{A}-1}\left(-x^{2}\right) \sum_{j=0}^{A-1}\left(\sum_{r=1}^{m_{j}-1} \rho_{j}^{r}\left(x^{1}\right) D_{r M_{j}}\left(-x^{2}\right)\right) \\
& \times D_{M_{j}}\left(x^{1}\right) \prod_{s=j+1}^{A-1} \sum_{l=0}^{m_{s}-1} \rho_{s}^{l}\left(x^{1}-x^{2}\right) \\
= & D_{M_{A}}\left(x^{1}\right) D_{M_{A}}\left(x^{2}\right)-T_{A}^{(2,1)}\left(x^{1}, x^{2}\right) .
\end{align*}
$$

We can write

$$
\begin{align*}
& T_{A}^{(2,1)}\left(x^{1}, x^{2}\right) \\
= & \bar{\psi}_{M_{A}-1}\left(-x^{2}\right) \sum_{r=1}^{m_{A-1}-1} \rho_{A-1}^{r}\left(x^{1}\right) D_{r M_{A-1}}\left(-x^{2}\right) D_{M_{A-1}}\left(x^{1}\right) \tag{8}\\
& +\bar{\psi}_{M_{A}-1}\left(-x^{2}\right) \sum_{j=0}^{A-2}\left(\sum_{r=1}^{m_{j}-1} \rho_{j}^{r}\left(x^{1}\right) D_{r M_{j}}\left(-x^{2}\right)\right) \\
& \times D_{M_{j}}\left(x^{1}\right) \prod_{s=j+1}^{A-2} \sum_{l=0}^{m_{s}-1} \rho_{s}^{l}\left(x^{1}-x^{2}\right) \\
& \times\left(1+\sum_{l=1}^{m_{A-1}-1} \rho_{A-1}^{l}\left(x^{1}-x^{2}\right)\right) \\
= & : T_{A}^{(2,1,1)}\left(x^{1}, x^{2}\right)+T_{A}^{(2,1,2)}\left(x^{1}, x^{2}\right) .
\end{align*}
$$

The properties of the m-adic number system and the Vilenkin functions give $M_{A}-1=\sum_{j=0}^{A-1}\left(m_{j}-1\right) M_{j}$ and then

$$
\begin{aligned}
& \psi_{M_{A}-1}(x)=\prod_{j=0}^{A-1} \rho_{j}^{m_{j}-1}(x) \\
& =\prod_{j=0}^{A-1} \exp \left(2 \pi \imath\left(m_{j}-1\right) x_{j} / m_{j}\right)=\prod_{j=0}^{A-1} \exp \left(-2 \pi \imath x_{j} / m_{j}\right)=\prod_{j=0}^{A-1} \bar{\psi}_{M_{j}}(x) .
\end{aligned}
$$

That is, since

$$
\begin{equation*}
D_{r M_{A-1}}(x)=\left(\sum_{q=0}^{r-1} \rho_{A-1}^{q}(x)\right) D_{M_{A-1}}(x) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{M_{A}-1}(x)=\bar{\psi}_{M_{A-1}}(x) \bar{\psi}_{M_{A-2}}(x) \cdots \bar{\psi}_{M_{0}}(x) \tag{10}
\end{equation*}
$$

we get

$$
\begin{align*}
& T_{A}^{(2,1,1)}\left(x^{1}, x^{2}\right) \tag{11}\\
= & \psi_{M_{A-1}}\left(-x^{2}\right) \psi_{M_{A-2}}\left(-x^{2}\right) \cdots \psi_{M_{0}}\left(-x^{2}\right) \\
& \times\left(\sum_{r=1}^{m_{A-1}-1} \rho_{A-1}^{r}\left(x^{1}\right) \sum_{q=0}^{r-1} \rho_{A-1}^{q}\left(-x^{2}\right)\right) D_{M_{A-1}}\left(x^{1}\right) D_{M_{A-1}}\left(-x^{2}\right) \\
= & \psi_{M_{A-2}}\left(-x^{2}\right) \cdots \psi_{M_{0}}\left(-x^{2}\right) \\
& \times\left(\sum_{r=1}^{m_{A-1}-1} \rho_{A-1}^{r}\left(x^{1}\right) \sum_{q=1}^{r} \rho_{A-1}^{q}\left(-x^{2}\right)\right) D_{M_{A-1}}\left(x^{1}\right) D_{M_{A-1}}\left(-x^{2}\right) \\
= & \left(\sum_{r=1}^{m_{A-1}-1} \rho_{A-1}^{r}\left(x^{1}\right) \sum_{q=1}^{r} \rho_{A-1}^{q}\left(-x^{2}\right)\right) \Phi_{A-1}^{(1)}\left(x^{1}, x^{2}\right),
\end{align*}
$$

where function $\Phi_{A-1}^{(1)}\left(x^{1}, x^{2}\right)$ is \mathcal{A}_{A-1} measurable.
From (10) we have

$$
\begin{align*}
T_{A}^{(2,1,2)} & \left(x^{1}, x^{2}\right) \tag{12}\\
= & \sum_{j=0}^{A-2}\left(\sum_{r=1}^{m_{j}-1} \rho_{j}^{r}\left(x^{1}\right) \sum_{q=0}^{r-1} \rho_{A-1}^{q}\left(-x^{2}\right)\right) \\
& \times D_{M_{j}}\left(x^{1}\right) D_{M_{j}}\left(-x^{2}\right) \prod_{s=j+1}^{A-2}\left(1+\sum_{l=1}^{m_{s}-1} \rho_{s}^{l}\left(x^{1}-x^{2}\right)\right) \\
& \times \rho_{A-1}\left(-x^{2}\right) \psi_{M_{A-2}}\left(-x^{2}\right) \cdots \psi_{M_{0}}\left(-x^{2}\right) \\
& +\sum_{j=0}^{A-2}\left(\sum_{r=1}^{m_{j}-1} \rho_{j}^{r}\left(x^{1}\right) \sum_{q=0}^{r-1} \rho_{A-1}^{q}\left(-x^{2}\right)\right) \psi_{M_{A-2}}\left(-x^{2}\right) \cdots \psi_{M_{0}}\left(-x^{2}\right) \\
& \times D_{M_{j}}\left(x^{1}\right) D_{M_{j}}\left(-x^{2}\right) \prod_{s=j+1}^{A-2}\left(1+\sum_{l=1}^{m_{s}-1} \rho_{s}^{l}\left(x^{1}-x^{2}\right)\right) \\
= & \times \sum_{l=1}^{m_{A-1}-1} \rho_{A-1}^{l}\left(x^{1}\right) \sum_{l=1}^{m_{A-1}-1} \rho_{A-1}^{l+1}\left(-x^{2}\right) \\
& \rho_{A-1}\left(-x^{2}\right) \Phi_{A-1}^{(2)}\left(x^{1}, x^{2}\right) \\
& +\left(\sum_{l=1}^{m_{A-1}-1} \rho_{A-1}^{l}\left(x^{1}\right) \sum_{l=1}^{m_{A-1}-1} \rho_{A-1}^{l+1}\left(-x^{2}\right)\right) \Phi_{A-1}^{(3)}\left(x^{1}, x^{2}\right),
\end{align*}
$$

where functions $\Phi_{A-1}^{(j)}\left(x^{1}, x^{2}\right), j=2,3$ are \mathcal{A}_{A-1} measurable.
Combining (8), 11 and (12) we have

$$
\begin{align*}
& T_{A}^{(2,1)}\left(x^{1}, x^{2}\right) \tag{13}\\
= & \left(\sum_{r=1}^{m_{A-1}-1} \rho_{A-1}^{r}\left(x^{1}\right) \sum_{q=1}^{r} \rho_{A-1}^{q}\left(-x^{2}\right)\right) \Phi_{A-1}^{(1)}\left(x^{1}, x^{2}\right) \\
& +\rho_{A-1}\left(-x^{2}\right) \Phi_{A-1}^{(2)}\left(x^{1}, x^{2}\right) \\
& +\left(\sum_{l=1}^{m_{A-1}-1} \rho_{A-1}^{l}\left(x^{1}\right) \sum_{l=1}^{m_{A-1}-1} \rho_{A-1}^{l+1}\left(-x^{2}\right)\right) \Phi_{A-1}^{(3)}\left(x^{1}, x^{2}\right) .
\end{align*}
$$

Set

$$
t_{A}^{(2,1)}\left(y^{1}, y^{2} ; f\right):=\left(f * T_{A}^{(2,1)}\right)\left(y^{1}, y^{2}\right)
$$

Then it is evident that

$$
t_{A}^{(2,1)}(f)=S_{M_{A}}^{\square}\left(t_{A}^{(2,1)}(f)\right)=t_{A}^{(2,1)}\left(S_{M_{A}}^{\square}(f)\right)
$$

On the other hand, from (13) we conclude that

$$
t_{A}^{(2,1)}\left(S_{M_{A-1}}^{\square}(f)\right)=0
$$

Hence,

$$
\begin{equation*}
t_{A}^{(2,1)}(f)=t_{A}^{(2,1)}\left(S_{M_{A}}^{\square}(f)-S_{M_{A-1}}^{\square}(f)\right) \tag{14}
\end{equation*}
$$

Since

$$
\left\|t_{A}^{(2,1)}(f)\right\|_{2} \leq c\|f\|_{2}
$$

from (14) and Bessel's inequality for two dimensional L_{2} functions and the two dimensional Vilenkin system we obtain

$$
\begin{aligned}
\left\|\sup _{A} \mid t_{A}^{(2,1)}(f)\right\|_{2}^{2} & \leq \sum_{A=0}^{\infty}\left\|t_{A}^{(2,1)}(f)\right\|_{2}^{2} \\
& =\sum_{A=0}^{\infty}\left\|t_{A}^{(2,1)}\left(S_{M_{A}}^{\square}(f)-S_{M_{A-1}}^{\square}(f)\right)\right\|_{2}^{2} \\
& \leq c \sum_{A=0}^{\infty}\left\|S_{M_{A}}^{\square}(f)-S_{M_{A-1}}^{\square}(f)\right\|_{2}^{2} \\
& \leq c\|f\|_{2}^{2} .
\end{aligned}
$$

Now, we suppose that $n_{A}>1$. Then we have

$$
\begin{aligned}
T_{A}^{(2)}\left(x^{1}, x^{2}\right) & =\rho_{A}^{n_{A}-1}\left(x^{1}\right) \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{M_{A}-i}\left(x^{2}\right) \\
& =\rho_{A}^{n_{A}-1}\left(x^{1}\right) \Phi_{A}^{(4)}\left(x^{1}, x^{2}\right)
\end{aligned}
$$

where function $\Phi_{A-1}^{(4)}\left(x^{1}, x^{2}\right)$ is \mathcal{A}_{A} measurable. Then we can write

$$
\begin{aligned}
& t_{A}^{(2)}(f):=f * T_{A}^{(2)}=S_{M_{A+1}}^{\square}\left(t_{A}^{(2)}(f)\right)=t_{A}^{(2)}\left(S_{M_{A+1}}^{\square}(f)\right), \\
& t_{A}^{(2)}\left(S_{M_{A}}^{\square}(f)\right)=0, \\
& t_{A}^{(2)}(f)=t_{A}^{(2)}\left(S_{M_{A+1}}^{\square}(f)-S_{M_{A}}^{\square}(f)\right) .
\end{aligned}
$$

Since for any fixed A

$$
\left\|t_{A}^{(2)}(f)\right\|_{2} \leq c\|f\|_{2},
$$

then as above we can prove that

$$
\begin{equation*}
\left\|\sup _{A} t_{A}^{(2)}(f)\right\|_{2} \leq c\|f\|_{2} . \tag{16}
\end{equation*}
$$

Since

$$
\left\|\sup _{A} \mid S_{M_{A}}^{\square}(f)\right\|\left\|_{2} \leq c\right\| f \|_{2},
$$

from (5) we obtain that

$$
\begin{equation*}
\left\|\sup _{A} \mid t_{A}^{(2)}(f)\right\|_{2} \leq c\|f\|_{2} . \tag{17}
\end{equation*}
$$

Since

$$
\begin{aligned}
D_{\left(n_{A}-r\right) M_{A}-i}(x) & =D_{\left(n_{A}-r-1\right) M_{A}+M_{A}-i}(x) \\
& =D_{\left(n_{A}-r-1\right) M_{A}}(x)+\psi_{\left(n_{A}-r-1\right) M_{A}}(x) D_{M_{A}-i}(x),
\end{aligned}
$$

using (9) for $T_{A}^{(1)}\left(x^{1}, x^{2}\right)$ we have

$$
\begin{aligned}
& T_{A}^{(1)}\left(x^{1}, x^{2}\right) \\
= & \sum_{r=0}^{n_{A}-2} \rho_{A}^{r}\left(x^{1}\right) D_{\left(n_{A}-r-1\right) M_{A}}\left(x^{2}\right) D_{M_{A}}\left(x^{1}\right) \\
= & D_{M_{A}}\left(x^{1}\right) D_{M_{A}}\left(x^{2}\right) \\
& +D_{M_{A}}\left(x^{1}\right) D_{M_{A}}\left(x^{2}\right)\left\{\sum_{q=1}^{n_{A}-2} \sum_{A}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{M_{A}-i}\left(x^{2}\right) \psi_{\left(n_{A}-r-1\right) M_{A}}\left(x^{2}\right)\right. \\
& +\sum_{r=1}^{n_{A}-2} \sum_{q=1}^{n_{A}-2} \sum_{r=1}^{n_{A}-2} \rho_{A}^{r}\left(x^{1}\right) \\
& +\sum_{r=1}^{n_{A}-r-2} \rho_{A}^{r}\left(x^{2}\right) \rho_{A}^{r}\left(x^{1}\right) \rho_{A}^{n_{A}-r-1}\left(x^{2}\right) \sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{M_{A}-i}\left(x^{2}\right) \\
& +\sum_{i=0}^{M_{A}-1} \psi_{i}\left(x^{1}\right) D_{M_{A}-i}\left(x^{2}\right) \rho_{A}^{n_{A}-1}\left(x^{2}\right) \\
= & D_{M_{A}}\left(x^{1}\right) D_{M_{A}}\left(x^{2}\right) \\
& +\Phi_{A}^{(5)}\left(x^{1}, x^{2}\right)\left\{\sum_{q=1}^{n_{A}-2} \rho_{A}^{q}\left(x^{2}\right)+\sum_{r=1}^{n_{A}-2} \rho_{A}^{r}\left(x^{1}\right)\right. \\
& \left.+\sum_{r=1}^{n_{A}-2} \sum_{q=1}^{n_{A}-r-2} \rho_{A}^{q}\left(x^{2}\right) \rho_{A}^{r}\left(x^{1}\right)\right\} \\
& +\left\{\sum_{r=1}^{n_{A}-2} \rho_{A}^{r}\left(x^{1}\right) \rho_{A}^{n_{A}-r-1}\left(x^{2}\right)+\rho_{A}^{n_{A}-1}\left(x^{2}\right)\right\} \Phi_{A}^{(6)}\left(x^{1}, x^{2}\right),
\end{aligned}
$$

where functions $\Phi_{A}^{(j)}\left(x^{1}, x^{2}\right), j=5,6$ are \mathcal{A}_{A} measurable. Then analogously, as above we can prove that

$$
\begin{equation*}
\left\|\sup _{A}\left|f * T_{A}^{(1)}\right|\right\|_{2} \leq c\|f\|_{2} . \tag{18}
\end{equation*}
$$

Combining (3), (17) and (18) we conclude that

$$
\left\|\sup _{A} \mid S_{n_{A} M_{A}}^{\Delta}(f)\right\|_{2} \leq c\|f\|_{2} \quad\left(f \in L_{2}\left(G_{m} \times G_{m}\right)\right) .
$$

By the well-known density argument we complete the proof of Theorem 1.

References

[1] G.N. Agaev, N.Ya. Vilenkin, G.M. Dzhafarli and A.I. Rubinshtejn, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku, Ehlm, 1981 (in Russian).
[2] N. Yu. Antonov, Convergence of Fourier series. Proceedings of the XX Workshop on Function Theory (Moscow, 1995). East J. Approx. 2 (1996), no. 2, 187-196.
[3] Ch. Fefferman, On the convergence of multiple Fourier series. Bull. Amer. Math. Soc. 77 (1971), 744-745.
[4] G. Gát, U. Goginava, Almost everywhere convergence of (C, α)-means of quadratical partial sums of double Vilenkin-Fourier series. Georgian Math. J. 13 (2006), no. 3, 447-462.
[5] D. Harris, Almost everywhere divergence of multiple Walsh-Fourier series. Proc. Amer. Math. Soc. 101 (1987), no. 4, 637-643
[6] P. Sjölin, Convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. Mat. 9, 65-90. (1971).
[7] F. Schipp, W. R. Wade, P. Simon, P. Pál, Walsh Series, an Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, New York, 1990.

[^0]: 2010 Mathematics Subject Classification. Primary 42C10
 Keywords. Unbounded Vilenkin system, Almost Everywhere Converges, Triangular Partial Sums
 Received: 11 October 2017; Accepted: 13 April 2018
 Communicated by Ivana Djolović
 The first author supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. K111651 and by project EFOP-3.6.2-16-2017-00015 supported by the European Union, co-financed by the European Social Fund.

 Email addresses: gat.gyorgy@science.unideb.hu (György Gát), zazagoginava@gmail.com (Ushangi Goginava)

