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Abstract. Let A be a Banach algebra with a unit e, and let a ∈ A be an invertible element. We define the
following algebra:

B
loc
a :=

{
x ∈ A :

∥∥∥anxa−n
∥∥∥ ≤ cxnα(x) for some α (x) ≥ 0 and cx > 0

}
.

In this article we study some properties of this algebra; in particular, we prove thatBloc
e+p =

{
x ∈ A : px

(
e − p

)
= 0

}
,

where p is an idempotent in A. We also investigate the following Deddens subspace. Let a, b ∈ A be two
elements. Fix any number α, 0 ≤ α < 1, and consider the following subspace ofA :

Dα
a,b := {x ∈ A : ‖anxbn

‖ = O (nα) as n→∞} .

Here we study some properties of the subspaces Dα
a,b and Dα

b,a.

1. Introduction

In this article, the Deddens subspaces of Banach algebras with unit are introduced and their some
properties are studied.

Let A be a Banach algebra with a unit e, and let a, b ∈ A be two elements such that b is invertible.
We define the following subspace in A, which we call following by Karaev and Pehlivan [8] the Deddens
subspace:

Da,b :=
{

x ∈ A : sup
n≥0

∥∥∥anxb−n
∥∥∥ =: cx < +∞

}
.

Note that, when a ∈ A is also invertible, our definition coincides with the definition of Karaev and Pehlivan
in [8], where was firstly introduced the notion of Deddens subspace. We also remark that when a is invertible
and b = a, the concept of Deddens subspace coincides with the concept of Deddens algebra, introduced
firstly by Karaev and Mustafayev in their paper [9].
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Let L (H) denote the Banach algebra of all bounded linear operators on the complex separable infinite-
dimensional Hilbert space H. Recall that given an invertible operator T ∈ L (H), the study of operators A
whose conjugation orbit {TnAT−n

} is bounded, that is, for A ∈ L (H) and T invertible,

sup
n≥0

∥∥∥TnAT−n
∥∥∥ < +∞, (1)

was initiated by Deddens in the 1970s when he gave a characterization of nest algebras in terms of the
so-called Deddens algebra BT (see Karaev and Mustafayev [9]), where BT is the set of operators A in L (H)
satisfying (1). It is easy to see actually that BT is an algebra.

Recall that a family of subspaces of H is called a nest if it is totally ordered by inclusion.
Recall that given a nest R of subspaces on a separable Hilbert space H, Ringrose [15] introduced the

concept of the associated nest algebra

NR :=
{
X ∈ L (H) : every N ∈ R is invariant for X, i.e. XN ⊂ N

}
.

Nest algebras have been studied by many authors, e.g., [1], [2], [6], [10] and [11]. In particular, in [2],
Deddens studied the following set and relationship to nest algebras: given an invertible operator A, let

BA :=
{
X ∈ L (H) :

∥∥∥AkXA−k
∥∥∥ bounded for k = 0, 1, 2, ...

}
.

For X ∈ BA, let CA (X) = sup
k≥0

∥∥∥AkXA−k
∥∥∥ < +∞. In general, BA is an algebra that contains the commutant

{A}′ := {Y ∈ L (H) : YA = AY}

of A. If A is a positive invertible operator, then Deddens proved thatBA is equal to the nest algebra associated
with the nest {E ([0, a]) : a ≥ 0} , where E is the spectral measure of A, and that CA (X) = ‖X‖. Conversely,
every nest algebra arises in this manner. Note that the algebra BA has been investigated previously in [3]:
If A ∈ L (H) is of the form A = λI + N, where 0 , λ ∈ C is a complex number and N is a nilpotent operator
(i.e., Nn = 0, Nn−1 , 0 with some integer n ≥ 2), then BA = {A}′. Furthermore, if H is finite dimensional,
then the converse holds.

More general results are obtained by Karaev and Mustafayev [9], Karaev and Pehlivan [8], Drissi and
Mbekhta [4, 5] and Mustafayev [12, 13], see also references therein.

In this paper, we consider the following two subspaces of a Banach algebra A. Let a, b ∈ A be two
elements. Fix any number α ∈ [0, 1). We define the following Deddens subspace ofA :

Dα
a,b = {x ∈ A : ‖anxbn

‖ = O (nα) as n→∞} .

In some special situations, we give a complete description of the subspace Dα
a,b, which improves the similar

result in [8].
For any fixed invertible element a ∈ A, we also introduce the following set:

B
loc
a =

{
x ∈ A :

∥∥∥anxa−n
∥∥∥ ≤ cxnα(x) for some α (x) ≥ 0 and some cx > 0

}
.

It is easy to see that actually Bloc
a is an algebra. In case of a = e + p, where p is an idempotent element inA,

we prove that Bloc
e+p =

{
x ∈ A : px

(
e − p

)
= 0

}
, which improves a result in [8].

2. Some Properties of Deddens Algebras

If A is a nonzero operator inL (H), then a complex number λ is an extended eigenvalue of A (see Gürdal
[7], and references therein) if there is a nonzero operator T such that

AT = λTA. (2)
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We will denote by the symbol ext (A) the set of extended eigenvalues of A, and the set of all extended
eigenvectors corresponding to λ ∈ ext (A) will be denoted as Extλ (A). It is clear that always 1 ∈ ext (A) for
every operator A ∈ L (H). In fact, one can take T being self of A, or the identity operator I on H.

Here we present a new simple property, and also only for completeness, some known properties of
Deddens algebras. For more details the reader can be see and consult in [2].

Proposition 2.1. Let A ∈ L (H) be an invertible operator, and let λ , 0 be an extended eigenvalue of A. ThenBA and
BA−1 are algebras such that Extλ (A) ⊂ BA ∪ BA−1 , where Extλ (A) is the set of extended eigenvectors corresponding
to λ.

Proof. As is shown already in Section 1, BA is an algebra. Similarly BA−1 is also an algebra.
Now let X be an arbitrary element of the set Extλ (A) . Then, in view of (2), AX = λXA. Hence

AnX = λnXAn (3)

for any integer n > 0. First, assume that |λ| ≤ 1. Then by using (3), we have for any n that∥∥∥AnXA−n
∥∥∥ = ‖λnX‖ ≤ ‖X‖ ,

that is X ∈ BA. Now assume that |λ| > 1. Then we have from (3) that( 1
λ

)n

AnX = XAn,

and hence
(

1
λ

)n
X = A−nXAn for all n ≥ 0. Therefore

∥∥∥A−nXAn
∥∥∥ =

∣∣∣∣∣ 1
λ

∣∣∣∣∣n ‖X‖ → 0 as n→∞,

which implies that X ∈ BA−1 . The obtained inclusions shows that X ∈ BA ∪ BA−1 , as desired.

Corollary 2.2. {A}′ ⊂ BA ∪ BA−1 .

Proposition 2.3 ([2]). If A,A1 ∈ L (H) are two invertible operators such that A = TA1T−1 for some invertible
operator T ∈ L (H) (i.e., A is similar to A1), then BA = BTA1T−1 = TBA1 T−1. Also B∗A = BA∗−1 .

We remark that the same proof can be given for the algebras Bloc
A and Bloc

A1
; we omit it.

Proposition 2.4 ([2]). Suppose A is an invertible operator on
n
⊕
i=1

H of the form A = A1⊕A2⊕...⊕An. If ‖Ai‖
∥∥∥A−1

i+1

∥∥∥ < 1

for i = 1, 2, ...,n − 1, then

BA =
{
X =

(
Xi j

)
∈ L

(
n
⊕
i=1

H
)

: Xii ∈ BAi and Xi j=0 whenever i > j
}
.

That is, BA is all upper triangular matrices whose diagonal entries belong to the corresponding BAi .

Proposition 2.5 ([2]). There is a projection π of BA onto {A}′ that satisfies π (A1XA2) = A1π (X) A2 for A1,A2 ∈

{A}′. If there is a constant C such that cA (X) ≤ C ‖X‖ for all X ∈ BA, then π is bounded in norm by C.

The following theorem due to Deddens [2, Theorem 5], which characterizes the nest algebras in terms
of the Deddens algebra BA.

Theorem 2.6 ([2]). Let A be a positive invertible operator and letR (A) be the completion of the nest {E [0, λ] : λ ≥ 0}.
Then BA = NR(A). Conversely, if R is any complete nest of subspaces, then there exists a positive invertible operator
A with BA = NR. Furthermore, for X ∈ BA one has that

∥∥∥AkXA−k
∥∥∥ ≤ ‖X‖ for all k = 0, 1, 2, ....
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3. Description of Some Special Deddens Subspaces

LetA be a complex Banach algebra with unit e. An element a ∈ A is called quadratic if it satisfies

a2 + λa + µe = 0

for some complex numbers λ, µ ∈ C. Recall that an element p ∈ A is called an idempotent if p2 = p, and p is
called nilpotent if pn = 0 for some n ≥ 2; in particular, if n = 2, an element p is nilpotent of nilpotency order
2. It is trivial then that all idempotents and nilpotent elements of order 2 are quadratic elements.

In this section, we prove some new results for the special type of Deddens subspaces associated with
the idempotent and nilpotent elements. Our results essentially improve the main results of the paper [8,
Theorems 1 and 3]. Before giving the results, we define the following Deddens subspace. Let a, b ∈ A be
two elements. Fix any number α, 0 ≤ α < 1, and consider the following set:

Dα
a,b := {x ∈ A : ‖anxbn

‖ = O (nα) as n→∞} . (4)

It is easy to see that the sets Dα
a,b and Dα

b,a are subspaces ofA. We call these subspaces the Deddens subspaces.
Note that when a and b are invertible, the notion of Deddens subspace coincides with the notion of Deddens
algebra, introduced in [9].

Theorem 3.1. Let A be a Banach algebra with unit e. Let p be any idempotent and q a nilpotent of order 2. Let
Dα

e+p,e+q be the Deddens subspace defined by (4). Then we have:
(i) Dα

e+p,e+q =
{
x ∈ A : px = xq

}
;

(ii) Dα
e+q,e+p =

{
x ∈ A : qx = xp

}
.

Proof. (i) For the proof, we will essentially use the method in [8]. Let us set

Int
{
p, q

}
:=

{
x ∈ A : px = xq

}
.

We will prove that Int
{
p, q

}
= Dα

e+p,e+q. In fact, the inclusion Int
{
p, q

}
⊂ Dα

e+p,e+q is trivial. Let us prove the
reverse inclusion Dα

e+p,e+q ⊂ Int
{
p, q

}
. Let x ∈ Dα

e+p,e+q be arbitrary. Denoting p1 := e + p, q1 := e + q and

cn := pn
1xq−n

1 , n ≥ 0,

we have that

‖cn‖ ≤ cxnα. (5)

Then we obtain

cnq1 = pn
1xq−n

1 q1 = p1

(
pn−1

1 xq−(n−1)
1

)
= p1cn−1,

that is

cnq1 = p1cn−1 (n ≥ 1) . (6)

It follows from (2) that

cnqn
2 = p1c0 (n ≥ 1) , (7)

and hence

cn
(
e + q

)n =
(
e + p

)n c0.

Since p2 = p, it is easy to verify that
(
e + p

)n = e + (2n
− 1) p for all n ≥ 1. Also, it is easy to see that(

e + q
)−n = e − nq because q2 = 0. By considering these in (7), we have

cn =
(
e + (2n

− 1) p
)

x
(
e − nq

)
, n = 1, 2, ...,
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and therefore

cn − x = (2n
− 1) px − nxq − n (2n

− 1) pxq (8)

for all n ≥ 1. By considering inequality (5), we have from (8) that

∥∥∥pxq
∥∥∥ ≤ ‖cn − x‖

n (2n − 1)
+

∥∥∥px
∥∥∥

n
+

∥∥∥xq
∥∥∥

2n − 1

≤
‖cn‖ + ‖x‖
n (2n − 1)

+

∥∥∥px
∥∥∥

n
+

∥∥∥xq
∥∥∥

2n − 1

≤ cx
nα

n (2n − 1)
+

‖x‖
n (2n − 1)

+

∥∥∥px
∥∥∥

n
+

∥∥∥xq
∥∥∥

2n − 1

= cx
1

n1−α (2n − 1)
+

‖x‖
n (2n − 1)

+

∥∥∥px
∥∥∥

n
+

∥∥∥xq
∥∥∥

2n − 1
→ 0

as n→∞, because 1 − α > 0. Thus, we have that pxq = 0, which implies that (see (8))

cn − x = (2n
− 1) px − nxq.

Form this, by using again (5), we have by similar arguments that

∥∥∥px
∥∥∥ ≤ ‖cn − x‖

2n − 1
+

n
2n − 1

∥∥∥xq
∥∥∥→ 0 (n→∞) ,

which implies obviously that px = 0. Hence, we have

cn − x = −nxq,

from which∥∥∥xq
∥∥∥ =
‖cn − x‖

n
≤ cx

nα

n
+
‖x‖
n
→ 0 (n→∞) .

Thus cn − x = 0 for all n ≥ 1. In particular, c1 = x, which means that

x =
(
e + p

)
x
(
e − q

)
.

Hence(
e + p

)
x = x

(
e + q

)
.

Therefore px = xq, which shows that x ∈ Int
{
p, q

}
, and hence Dα

e+p,e+q ⊂ Int
{
p, q

}
as desired.

(ii) The proof of (ii) is the same as in the case (i), and therefore we omit it.
The theorem is proven.

Corollary 3.2. Let A be a Banach algebra with unit e. Let p be any idempotent and q be any nilpotent element of
order 2. Then(

Dα
e+p,e+q ∩Dα

e+q,e+p

)
∩

{
p
}′ =

(
Dα

e+p,e+q ∩Dα
e+q,e+p

)
∩

{
q
}′ ;

here {t}′ := {x ∈ A : xt = tx} is the commutant of the element t ∈ A.
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The proof is immediate from Theorem 3.1.
For any Banach algebraAwith the idempotent p and with a unit e, we define the following set (see [8])

Sp :=
{
x ∈ A : px

(
e − p

)
= 0

}
.

It is easy to see that Sp is an algebra (Sp is a proper subalgebra ofA if p is a nontrivial idempotent element,
i.e., p , 0 and p , e). Indeed, let x, y ∈ Sp be two arbitrary elements. Then we have

pxy
(
e − p

)
= px

(
e − p + p

)
y
(
e − p

)
=

[
px

(
e − p

)
+ pxp

]
y
(
e − p

)
=

(
px

(
e − p

))
y
(
e − p

)
+ px

(
py

(
e − p

))
= 0,

because px
(
e − p

)
= py

(
e − p

)
= 0. This implies that xy ∈ Sp, as desired.

Let a ∈ A be any fixed invertible element. We define the following set:

B
loc
a :=

{
x ∈ A :

∥∥∥anxa−n
∥∥∥ ≤ cxnα for some α = α (x) ≥ 0 and some cx > 0

}
.

It is elementary to show that actuallyBloc
a is an algebra inA. Indeed, let x, y ∈ Bloc

a and λ, µ ∈ C be arbitrary.
Then we have:∥∥∥an (

λx + µy
)

a−n
∥∥∥ =

∥∥∥an (λx) a−n + an (
µy

)
a−n

∥∥∥
≤ |λ| cxnα(x) +

∣∣∣µ∣∣∣ cynβ(y)

≤

(
|λ| cx +

∣∣∣µ∣∣∣ cy

)
nmax{α(x),β(y)}

= cλx+µynmax{α(x),β(y)},

where cλx+µy := |λ| cx +
∣∣∣µ∣∣∣ cy; this shows that Bloc

a is a (linear) subspace in A. Now we verify that Bloc
a is

closed with respect to the multiplication operation. Indeed, we have :∥∥∥anxya−n
∥∥∥ =

∥∥∥(anxa−n) (anya−n)∥∥∥
≤ (cxnα)

(
cynβ

)
= cxcynα+β,

and hence, since cxcy > 0 and α + β = α (x) + β (x) ≥ 0, this inequality means that xy ∈ Bloc
a . Thus, Bloc

a is an
algebra.

Our next result describes the algebra Sp in terms of the Deddens type algebra Bloc
e+p.

Theorem 3.3. LetA be a Banach algebra with an idempotent p and with a unit e. Then Bloc
e+p = Sp.

Proof. It is easy to check that(
e + p

)−1 = e −
1
2

p.

Then we have that(
e + p

)n = e + (2n
− 1) p (9)

and (
e + p

)−n = e +
( 1

2n − 1
)

p (10)

for all n ≥ 0. By setting for any element x ∈ A

cn :=
(
e + p

)n x
(
e + p

)−n (n ≥ 0) ,
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and using equalities (9) , (10), we obtain

cn = x +
( 1

2n − 1
)

xp + (2n
− 1) px + (2n

− 1)
( 1

2n − 1
)

pxp (11)

for all n = 0, 1, 2, .... Since for every x ∈ Bloc
e+p ‖cn‖ ≤ cxnα for some cx > 0 and α = α (x) ≥ 0, by using an

elementary fact that nα
2n → 0 (n→∞) for any α ≥ 0, we have for every x ∈ Bloc

e+p that

lim
n→∞

1

(2n − 1)
(

1
2n − 1

) (cn − x) = 0.

Therefore we obtain from (11) that

0 = lim
n→∞

( 1
2−n − 1

px +
1

2n − 1
xp + pxp

)
= pxp − px,

and hence px
(
e − p

)
= 0, that is x ∈ Sp.

Conversely,let x ∈ Sp be arbitrary. Then, by considering that px = pxp, we have from (11) that

cn = x +
( 1

2n − 1
)

xp + (2n
− 1) px +

2n
− 1

2n pxp − (2n
− 1) pxp

= x +
( 1

2n − 1
)

xp +
2n
− 1

2n pxp.

Whence

‖cn‖ ≤ ‖x‖ +
∥∥∥xp

∥∥∥ +
∥∥∥pxp

∥∥∥ =: cx < +∞

for all n ≥ 0, which means that x ∈ Bloc
e+p (with α (x) = 0). This proves the theorem.

LetA = B (H), the Banach algebra of all bounded linear operators acting in the Hilbert space H, and let
Q ⊂ B (H) be a proper subset. We denote by LatQ the lattice of (closed) subspaces E of H invariant under Q,
i.e.,

LatQ := {E ⊂ H : AE ⊂ E for all A ∈ Q} .

Recall also that Al1LatQ is the following algebra in B (H), which is important in the theory of invariant
subspaces:

Al1LatQ := {A ∈ B (H) : AE ⊂ E for all E ∈ LatQ} .

By considering the well known (and simple) fact that AE ⊂ E if and only if (I − PE) APE = 0 (see, for instance,
Radjavi and Rosenthal [14]), the following is an immediate corollary of Theorem 3.3

Corollary 3.4. Al1LatQ = ∩
E∈LatQ

B
loc
2I−PE

, where PE : H→ E is the orthogonal projector.
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