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Abstract. The edge Szeged index and edge-vertex Szeged index of a graph are defined as Sze(G) =∑
uv∈E(G)

mu(uv|G)mv(uv|G) and Szev(G) = 1
2

∑
uv∈E(G)

[nu(uv|G)mv(uv|G) + nv(uv|G)mu(uv|G)], respectively, where

mu(uv|G) (resp., mv(uv|G)) and nu(uv|G) (resp., nv(uv|G)) are the number of edges and vertices whose distance
to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), respectively. A cactus is a graph in
which any two cycles have at most one common vertex. In this paper, the lower bounds of edge Szeged
index and edge-vertex Szeged index for cacti with order n and k cycles are determined, and all the graphs
that achieve the lower bounds are identified.

1. Introduction

The topological indices are quantity values closely related to chemical structure which can be used in
theoretical chemistry for understand the physicochemical properties of chemical compounds. In this paper,
we consider two topological indices named the edge Szeged index and edge-vertex Szeged index, which
are closely related to two other topological indices, the Wiener index and the Szeged index.

Let G be a connected graph with vertex set V(G) and edge set E(G). For a vertex u ∈ V(G), the degree
of u, denote by dG(u), is the number of vertices which are adjacent to u. Call a vertex u a pendant vertex of
G, if dG(u) = 1 and call an edge uv a pendant edge of G, if dG(u) = 1 or dG(v) = 1. An edge e is called a cut
edge of a connected graph G if G − e is disconnect. For any two vertices u, v ∈ V(G), let dG(u, v) denote the
distance between u and v in G. Denote by Pn, Sn and Cn a path, star and cycle on n vertices, respectively.

A cactus is a graph that any block is either a cut edge or a cycle. It is also a graph in which any two
cycles have at most one common vertex. A cycle in a cactus is called end-block if all but one vertex of this
cycle have degree 2. If all the cycles in a cactus have exactly one common vertex, then they form a bundle.
LetC(n, k) be the class of all cacti of order n with k cycles. Let C0(n, k) ∈ C(n, k) be a bundle of k triangles with
n − 2k − 1 pendant edges attached at the common vertex of the k triangles (see Fig. 1). The Wiener index
is one of the oldest and the most thoroughly studied topological indices. The Wiener index of a graph G is
defined as

W(G) =
∑

{u,v}⊆V(G)

dG(u, v).
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This topological index has been stuided extensively and has been found applications in modelling physic-
ochemical properties. The upper and lower bounds and other aspects of the Wiener index of many graphs
have been fully studied; see, e.g., [4, 8, 9, 11, 12, 16, 22, 23, 26].

For any edge e = uv of G, V(G) can be partitioned into three sets by comparing with the distance of the
vertex in V(G) to u and v, and the three sets are as follows:

Nu(e|G) = {w ∈ V(G) : dG(u,w) < dG(v,w)},

Nv(e|G) = {w ∈ V(G) : dG(v,w) < dG(u,w)},

N0(e|G) = {w ∈ V(G) : dG(u,w) = dG(v,w)}.

The number of vertices of Nu(e|G), Nv(e|G), and N0(e|G) are denoted by nu(e|G), nv(e|G) and n0(e|G), respec-
tively. If G is a tree, then the formula W(G) =

∑
e=uv∈E(G)

nu(e|G)nv(e|G) gives a long time known property of

the Wiener index.
According to the above formula and result, a new topological index, named by Szeged index, was

introduced by Gutman [14], which is an extension of the Wiener index and defined by

Sz(G) =
∑

e=uv∈E(G)

nu(e|G)nv(e|G).

Since it has been proved to be of great applications in the study of the modeling physicochemical properties
of chemical compounds and drugs, the Szeged index has been studied extensively by many researchers,
see, e.g., [5, 6, 8, 10, 17–19, 21, 24, 25, 27].

If e = uv is an edge of G and w is a vertex of G, then the distance between e and w is defined as
dG(e,w) = min{dG(u,w), dG(v,w)}. For e = uv ∈ E(G), let Mu(e|G) be the set of edges whose distance to the
vertex u is smaller than the distance to the vertex v, and Mv(e|G) be the set of edges whose distance to the
vertex v is smaller than the distance to the vertex u. Set mu(e|G) = |Mu(e|G)| and mv(e|G) = |Mv(e|G)|. Gutman
and Ashrafi [15] introduced an edge version of the Szeged index, named edge Szeged index. The edge
Szeged index of G is defined as

Sze(G) =
∑

uv∈E(G)

mu(uv|G)mv(uv|G).

The edge-vertex Szeged index [13] of G is defined as:

Szev(G) =
1
2

∑
uv∈E(G)

[nu(uv|G)mv(uv|G) + nv(uv|G)mu(uv|G)].

In [15], some basic properties of the edge Szeged index were established by Gutman. It can be checked
that the pendant edges make no contributions to the edge Szeged index of a graph. In [20], the edge Szeged
index of the Cartesian product of graphs was computed. In [7], Cai and Zhou determined the n-vertex
unicyclic graphs with the largest, the second largest, the smallest and the second smallest edge Szeged
indices, respectively. In [24], Wang determined a lower bound of the Szeged index for cacti of order n with
k cycles. In [4], Alaeiyan and Asadpour characterized the edge-vertex Szeged index of bridge graphs.

In this paper, we give the lower bounds of the edge Szeged index and edge-vertex Szeged index for
cacti of order n with k cycles, and also characterize those graphs that achieve the lower bounds. Note that
C(3, 0) = {P3}, C(3, 1) = {C3}, C(4, 0) = {P4,S4} and C(4, 1) = {C4,C0(4, 1)}. By simple computations, among
the graphs in C(4, 0), S4 is the graph with minimum edge Szeged index and edge-vertex Szeged index,
respectively. For the graphs in C(4, 1), Sze(C4) < Sze(C0(4, 1)) and Szev(C4) > Szev(C0(4, 1)). So in this paper,
we only consider the graphs with order n ≥ 5. Our main result is the following Theorem 1.1.

Theorem 1.1. For any G ∈ C(n, k) (n ≥ 5), we have

Sze(G) ≥ 2kn + 2k2
− 5k,

Szev(G) ≥
1
2

(n2
− 3n + 3kn − 5k + 2),
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with equalities if and only if G � C0(n, k).

It is obvious that 2kn + 2k2
− 5k and 3kn − 5k get the minimum values when k = 1. Thus we have the

following corollary.

Corollary 1.2. For any cactus G ∈ C(n, k) with n ≥ 5 and k , 0, we have

Sze(G) ≥ 2n − 3,

Szev(G) ≥
1
2

(n2
− 3),

with equalities if and only if G � C0(n, 1).

q q q q
q

qq q q qq
�
�

�
�
�
�

�
�
�
�

�
�
�
�

S
S
S
S

Q
Q
Q

Q
Q
Q

@
@
@
@

S
S
S
S

C
C
C
C

�
�
�
�

�
�
�
�

· · ·· · ·

· · ·

n − 2k − 1 pendant vertices

k triangles

Fig. 1. C0(n, k)

The rest of this paper is organized as follows. In Section 2, we establish two useful lemmas. In Section 3,
we present some transformations of graphs, and use these transformations to prove Theorem 1.1. Section
4 is a conclusion.

2. Useful Lemmas

In this section, we will introduce two useful lemmas which will be used frequently in next section. For
short, for an edge e = uv of graph G, we denote

m′u(e|G) = nu(e|G)mv(e|G) and m′v(e|G) = nv(e|G)mu(e|G).
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Fig. 2. G and G′ in Lemma 2.1
Lemma 2.1. Let G and G′ be the graphs shown as in Fi1. 2, where G consists of G0 and G1 with a common vertex u,
and G′ consists of G0 and G2 with a common vertex u. Then each of the followings holds:
(i) For any edge e = w1w2 ∈ E(G0) and 1 ≤ i ≤ 2, we have

nwi (e|G) = nwi (e|G0) + δ(u)(|V(G1)| − 1),
mwi (e|G) = mwi (e|G0) + δ(u)|E(G1)|,

where

δ(u) =
{

1, u ∈ Nwi (e|G0) ;
0, otherwise.



S. He et al. / Filomat 32:11 (2018), 4069–4078 4072

(ii) If |V(G1)| = |V(G2)| and |E(G1)| = |E(G2)|, then∑
e=w1w2∈E(G0)

mw1 (e|G)mw2 (e|G) =
∑

e=w1w2∈E(G0)

mw1 (e|G′)mw2 (e|G′),∑
e=w1w2∈E(G0)

[m′w1
(e|G) +m′w2

(e|G)] =
∑

e=w1w2∈E(G0)

[m′w1
(e|G′) +m′w2

(e|G′)].

Proof. For any edge e = w1w2 ∈ E(G0) and any vertex w ∈ V(G1), dG(wi,w) = dG0 (wi,u) + dG1 (u,w), which
implies Lemma 2.1(i).

As |V(G1)| = |V(G2)| and |E(G1)| = |E(G2)|, for any edge e = w1w2 ∈ E(G0) and 1 ≤ i ≤ 2, by Lemma 2.1(i),
nwi (e|G) = nwi (e|G′) and mwi (e|G) = mwi (e|G′). Hence Lemma 2.1(ii) holds.

Definition 2.2. Let G be a graph of order n with a cycle Cl = v1v2 · · · vlv1. Assume that G − E(Cl) has exactly l
components G1,G2, · · · ,Gl, where Gi is the component of G − E(Cl) that contains vi for 1 ≤ i ≤ l. For 1 ≤ i ≤ l, let
ni = |V(Gi)| and mi = |E(Gi)|. Let l = 2k or 2k + 1. Set m =

∑l
i=1 mi and

yi = mi +mi−1 + · · · +mi−k+1,

xi = ni + ni−1 + · · · + ni−k+1,

where the subscripts are taken modulo l.

Lemma 2.3. Let G, xi, yi, ni and mi be defined as in Definition 2.2. For 1 ≤ i ≤ l, denote ei = vivi+1, where the
subscripts are taken modulo l. Let

f (m, l) =
{

2k(k − 1)(m + k − 1), l = 2k,
k2(2m + 2k + 1), l = 2k + 1,

and

1(n,m, l) =
{

2k2(n +m) − 2kn, l = 2k,
2k2(n +m), l = 2k + 1.

Then each of the followings holds:

(i)
∑

ei∈E(Cl)
mvi (ei|G)mvi+1 (ei|G) =


f (m, l) +

2k∑
i=1

yi(m − yi), l = 2k;

f (m, l) +
2k+1∑
i=1

yi(m −mi−k − yi), l = 2k + 1.

(ii)
∑

ei∈E(Cl)
[m′vi

(ei|G) +m′vi+1
(ei|G)]

=


1(n,m, l) +

2k∑
i=1

[(xi − k)(m − yi) + yi(n − xi − k)], l = 2k;

1(n,m, l) +
2k+1∑
i=1

[(xi − k)(m −mi−k − yi) + yi(n − ni−k − xi − k)], l = 2k + 1.

(iii) Moreover, we have∑
ei∈E(Cl)

mvi (ei|G)mvi+1 (ei|G) ≥ f (m, l) (1)∑
ei∈E(Cl)

[m′vi
(ei|G) +m′vi+1

(ei|G)] ≥ 1(n,m, l), (2)

where equalities hold if and only if there is at most one positive integer among m1,m2, · · · ,ml.
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Proof. Let G be a graph defined as in Definition 2.2. By Lemma 2.1(i), for any e ∈ E(Cl) and one end v of e,
we have

nv(e|G) =
∑
j∈N

n j and mv(e|G) = mv(e|Cl) +
∑
j∈N

m j,

where N = { j : v j ∈ Nv(e|G)}. So we have

mvi (ei|G)mvi+1 (ei|G) =
{

(yi + k − 1)(m − yi + k − 1), l = 2k,
(yi + k)(m −mi−k − yi + k), l = 2k + 1, (3)

and

m′vi
(ei|G) +m′vi+1

(ei|G) =
{

xi(m − yi + k − 1) + (n − xi)(yi + k − 1), l = 2k,
xi(m −mi−k − yi + k) + (n − ni−k − xi)(yi + k), l = 2k + 1. (4)

By Equality (3), if l = 2k,

∑
ei∈E(Cl)

mvi (ei|G)mvi+1 (ei|G) =

2k∑
i=1

(yi + k − 1)(m − yi + k − 1)

=

2k∑
i=1

[
m(k − 1) + (k − 1)2 + yi(m − yi)

]
= 2k(k − 1)(m + k − 1) +

2k∑
i=1

yi(m − yi);

if l = 2k + 1,

∑
ei∈E(Cl)

mvi (ei|G)mvi+1 (ei|G) =

2k+1∑
i=1

(yi + k)(m −mi−k − yi + k)

= k(2k + 1)(m + k) +
2k+1∑
i=1

yi(m −mi−k − yi) −
2k+1∑
i=1

kmi−k

= k(2k + 1)(m + k) +
2k+1∑
i=1

yi(m −mi−k − yi) − km

= k2(2m + 2k + 1) +
2k+1∑
i=1

yi(m −mi−k − yi).

This justifies Lemma 2.3(i).
By Equality (4), if l = 2k,

∑
ei∈E(Cl)

[m′vi
(ei|G) +m′vi+1

(ei|G)] =

2k∑
i=1

[
xi(m − yi + k − 1) + (n − xi)(yi + k − 1)

]
=

2k∑
i=1

[n(k − 1) +mk +m(xi − k) + nyi − 2xiyi]

= 2k2(n +m) − 2kn +
2k∑
i=1

[(xi − k)(m − yi) + yi(n − xi − k)];
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if l = 2k + 1, ∑
ei∈E(Cl)

[m′vi
(ei|G) +m′vi+1

(ei|G)]

=

2k+1∑
i=1

[
xi(m −mi−k − yi + k) + (n − ni−k − xi)(yi + k)

]
=

2k+1∑
i=1

[xi(m −mi−k − yi) + yi(n − ni−k − xi) − kni−k + kn]

=

2k+1∑
i=1

[(k + xi − k)(m −mi−k − yi) + yi(n − ni−k − xi) − kni−k + kn]

=

2k+1∑
i=1

[(xi − k)(m −mi−k − yi) + yi(n − ni−k − xi − k) + k(m + n −mi−k − ni−k)]

=

2k+1∑
i=1

[(xi − k)(m −mi−k − yi) + yi(n − ni−k − xi − k)] −
2k+1∑
i=1

k(mi−k + ni−k)

+k(n +m)(2k + 1)

=

2k+1∑
i=1

[(xi − k)(m −mi−k − yi) + yi(n − ni−k − xi − k)] + 2k2(n +m).

This justifies Lemma 2.3(ii).
Let 1 ≤ i ≤ l. By definitions, yi, m − yi and xi − k are nonnegative integers; if l = 2k, n − xi − k ≥ 0; if

l = 2k + 1, m −mi−k − yi ≥ 0 and n − ni−k − xi − k ≥ 0. Moreover, xi − k = 0 if and only if yi = 0; if l = 2k, then
n− xi − k = 0 if and only if m− yi = 0; if l = 2k+ 1, n− ni−k − xi − k = 0 if and only if m−mi−k − yi = 0. Hence
by Lemma 2.3(i) and (ii), Inequalities (1) and (2) hold. Furthermore, the equality in (2) holds if and only if
the equality in (1) holds.

If there is at most one positive integer among m1,m2, · · · ,ml, say m1 ≥ 0 and mi = 0 for 2 ≤ i ≤ l, then
m− yi = 0 (or m−mi−k − yi = 0) if 1 ≤ i ≤ k, and yi = 0 if k+ 1 ≤ i ≤ l. Then the equality in (1) holds. Without
loss of generality, now we assume that m1 > 0 and m j > 0. If l = 2k or 2k + 1, by symmetry, assume that
1 < j ≤ k+ 1. Then y1(m− y1) > 0 and the equality in (1) does not hold. This completes the proof of Lemma
2.3.

3. Cacti with Minimum Edge Szeged Index and Edge-vertex Szeged Index in C(n, k)

In this section, we characterize several transformations of cacti which keep the order and the number
of edges of the cacti, but decrease the edge Szeged index and edge-vertex Szeged index of the cacti. Using
these transformations, we determine the lower bounds of the edge Szeged index and edge-vertex Szeged
index of C(n, k) and those graphs that achieve the lower bounds.
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Fig. 3. G and G′ in Lemma 3.1
Lemma 3.1. Let G be a graph with order n and a cut edge u1u2, and G′ be the graph obtained from G by contracting
the edge u1u2 and attaching a pendant edge (which is also denoted by u1u2) at the contracting vertex; see Fi1. 3. If
dG(ui) ≥ 2 for i = 1, 2, we have Sze(G′) < Sze(G) and Szev(G′) < Szev(G).
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Proof. Let G1 and G2 be the components of G − u1u2 that contain u1 and u2, respectively. By Lemma 2.1(ii),
we have ∑

e=uv∈E(G1)∪E(G2)

mu(e|G)mv(e|G) =
∑

e=uv∈E(G1)∪E(G2)

mu(e|G′)mv(e|G′),∑
e=uv∈E(G1)∪E(G2)

m′u(e|G) +m′v(e|G) =
∑

e=uv∈E(G1)∪E(G2)

m′u(e|G′) +m′v(e|G′).

Hence by definitions and Lemma 2.1(ii), we have

Sze(G) − Sze(G′) = mu1 (u1u2|G)mu2 (u1u2|G) −mu1 (u1u2|G′)mu2 (u1u2|G′)
= |E(G1)||E(G2)| − 0,

2(Szev(G) − Szev(G′)) = m′u1
(u1u2|G) +m′u2

(u1u2|G) −m′u1
(u1u2|G′) −m′u2

(u1u2|G′)
= (|V(G1)||E(G2)| + |V(G2)||E(G1)|) − 0 − (|E(G1)| + |E(G2)|)
= (|V(G1)| − 1)|E(G2)| + (|V(G2)| − 1)|E(G1)|.

As dG(ui) ≥ 2 for 1 ≤ i ≤ 2, we have |V(Gi)| ≥ 2 and |E(Gi)| ≥ 1. Hence Sze(G′) < Sze(G) and Szev(G′) <
Szev(G).

Lemma 3.2. Let G be a graph of order n with a cycle Cl = v1v2 · · · vlv1. Assume that G − E(Cl) has exactly l
components G1,G2, · · · ,Gl, where Gi is the component of G − E(Cl) that contains vi for 1 ≤ i ≤ l. Let

G′ = G − ∪l
i=2{wvi : w ∈ NGi (vi)} + ∪l

i=2{wv1 : w ∈ NGi (vi)}.

Then Sze(G′) ≤ Sze(G) and Szev(G′) ≤ Szev(G) with equalities if and only if Cl is an end-block, that is, G � G′.

Proof. By Lemma 2.1(ii), we have∑
e=uv<E(Cl)

mu(e|G)mv(e|G) =
∑

e=uv<E(Cl)

mu(e|G′)mv(e|G′),∑
e=uv<E(Cl)

[m′u(e|G) +m′v(e|G)] =
∑

e=uv<E(Cl)

[m′u(e|G′) +m′v(e|G′)].

So

Sze(G) − Sze(G′) =
∑

e=uv∈E(Cl)

mu(e|G)mv(e|G) −
∑

e=uv∈E(Cl)

mu(e|G′)mv(e|G′),

2(Szev(G) − Szev(G′)) =
∑

e=uv∈E(Cl)

[m′u(e|G) +m′v(e|G)] −
∑

e=uv∈E(Cl)

[m′u(e|G′) +m′v(e|G′)].

Then by Lemma 2.3(iii), Lemma 3.2 holds immediately .
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Fig. 4. G and G′ in Lemma 3.3
Lemma 3.3. Let G be a graph of order n with an end-block Cr = v1v2 · · · vrv1 (r ≥ 5), and G′ = G − {v2v3, vr−1vr} +
{v1v3, v1vr−1}; see Fi1. 4. If dG(v1) ≥ 2, we have Sze(G′) < Sze(G) and Szev(G′) < Szev(G).
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Proof. Let E′ = E(Cr)−{v2v3, vr−1vr}+{v1v3, v1vr−1} (where E′ ⊆ E(G′)) and m = |E(G)\E(Cr)|. By Lemma 2.1(ii),
we have

Sze(G) − Sze(G′) =
∑

e=xy∈E(Cr)

mx(e|G)my(e|G) −
∑

e=xy∈E′
mx(e|G′)my(e|G′), (5)

2(Szev(G) − Szev(G′)) =
∑

e=xy∈E(Cr)

[m′x(e|G) +m′y(e|G)] −
∑

e=xy∈E′
[m′x(e|G′) +m′y(e|G′)]. (6)

As v1v j ( j ∈ {2, r}) is a pendant edge of G′, we have

mv1 (v1v j|G′)mv j (v1v j|G′) = 0 and m′v1
(v1v j|G′) +m′v j

(v1v j|G′) = m + r − 1. (7)

By Lemma 2.3(iii) and Equalities (5) and (7), we have

Sze(G) − Sze(G′) = f (m, r) − f (m + 2, r − 2)

=

{
2k(k − 1)(m + k − 1) − 2(k − 1)(k − 2)(m + k), r = 2k,
k2(2m + 2k + 1) − (k − 1)2(2m + 2k + 3), r = 2k + 1.

=

{
2(k − 1)(2m + k), r = 2k,
2k2 + (4k − 3) + 2m(2k − 1), r = 2k + 1.

Since r ≥ 5, we have k ≥ 2, and so Sze(G′) < Sze(G).
By Lemma 2.3(iii) and Equalities (6) and (7), we have

2(Szev(G) − Szev(G′))
= 1(n,m, r) − 1(n,m + 2, r − 2) − 2(m + r − 1)

=

{
2k2(m + n) − 2kn − 2(k − 1)2(m + n + 2) + 2n(k − 1) − 2(m + 2k − 1), r = 2k ,
2k2(m + n) − 2(k − 1)2(m + n + 2) − 2(m + 2k), r = 2k + 1.

=

{
4m(k − 1) + 2n(k − 2) + 2k(n − 2k) + 4k − 2, r = 2k ,
4m(k − 1) + 2n(k − 1) + 2k(n − 2k) + 4k − 4, r = 2k + 1.

Thus we have Szev(G′) < Szev(G).
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Fig. 5. G and G′ in Lemma 3.4
Lemma 3.4. Let G be a graph with order n (n ≥ 5) and an end-block C4 = v1v2v3v4v1, and G′ = G − {v2v3, v3v4} +
{v2v4, v1v3}; see Fi1. 5. Then we have Sze(G′) < Sze(G) and Szev(G′) < Szev(G).

Proof. Let E′ = {v1v2, v1v3, v1v4, v2v4} ⊆ E(G′) and |E(G) \ E(C4)| = m. By Lemma 2.1(ii), we have

Sze(G) − Sze(G′) =
∑

e=xy∈E(C4)

mx(e|G)my(e|G) −
∑

e=xy∈E′
mx(e|G′)my(e|G′),

2(Szev(G) − Szev(G′)) =
∑

e=xy∈E(C4)

[m′x(e|G) +m′y(e|G)] −
∑

e=xy∈E′
[m′x(e|G′) +m′y(e|G′)].

As v1v3 is a pendant edge of G′, we have

mv1 (v1v3|G′)mv3 (v1v3|G′) = 0 and m′v1
(v1v3|G′) +m′v3

(v1v3|G′) = 3 +m.
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By Lemma 2.3(iii), we have

Sze(G) − Sze(G′) = f (m, 4) − f (m + 1, 3) = 4(m + 1) − (2m + 5) = 2m − 1,
2[Szev(G) − Szev(G′)] = 1(n,m, 4) − 1(n,m + 1, 3)

= 4n + 8m − 2(n +m + 1) − (m + 3)
= 2n + 5m − 5.

Since n ≥ 5, m ≥ 1. Hence, we have our conclusions.

Proof of Theorem 1.1. Suppose that G is the graph that has minimum edge Szeged index (resp., edge-
vertex Szeged index ) in C(n, k) (n ≥ 5). Then there is no graph G′ ∈ C(n, k) such that Sze(G′) < Sze(G) (resp.,
Szev(G′) < Szev(G)). By Lemma 3.1, all the cut edges of G are pendant edges. By Lemma 3.2, all the cycles
of G are end-blocks. So G must be a graph obtained from a bundle of k cycles by attaching pendant edges
to the common vertex of the k cycles. By Lemmas 3.3 and 3.4, the length of any cycle of G is 3. Hence
G � C0(n, k). By Lemma 2.3, we have

Sze(C0(n, k)) = k f (n + k − 4, 3) = 2k(n + k − 4) + 3k = 2kn + 2k2
− 5k,

2Szev(C0(n, k)) = k1(n,n + k − 4, 3) + (n + k − 2)(n − 2k − 1)
= 2k(2n + k − 4) + (n + k − 2)(n − 2k − 1)
= n2

− 3n + 3kn − 5k + 2.

The proof is completed. �

4. Conclusions

In this paper, the edge Szeged index and edge-vertex Szeged index on cactus are discussed. The
extremal graphs with minimum edge Szeged index and edge-vertex Szeged index in the class of all cacti
with n vertices and given number of cycles are obtained. For further study, it would be interesting to
determine the extremal graph that has the maximum edge Szeged and edge-vertex Szeged index in these
class of cacti. Moreover, it would be meaningful to study the edge szeged index and edge-vertex Szeged
index of other kinds of graphs.
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