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Abstract. In this paper, we study the dynamic behavior and control of the fractional-order nutrient-
phytoplankton-zooplankton system. First, we analyze the stability of the fractional-order nutrient-plankton
system and get the critical stable value of fractional orders. Then, by applying the linear feedback control
and Routh-Hurwitz criterion, we yield the sufficient conditions to stabilize the system to its equilibrium
points. Finally, Under a modified fractional-order Adams-Bashforth-Monlton algorithm, we simulate the
results respectively.

1. Introduction

Marine ecosystem has attracted scientists a lot due to its strong ability of adjusting global climate. In
recent researches, scientists found that ocean carbon uptake had increased a lot during few decades in [10],
which meant that the balance of marine ecology has changed. Authors in [36] pointed out that plankton,
which is a general term used to describe freely-floating and weekly-swimming marine or freshwater
organisms, played an important role in keeping the balance of marine ecology. Therefore, the principle of
nutrient-plankton cycle in water or marine system is significant and the control of the system should also
be concerned when imbalance occurs.

Plankton are divided into two groups generally, including phytoplankton and zooplankton. Phyto-
plankton are consumed by zooplankton, the animals, which in turn are eaten by larger organisms. Besides
their role in basic food chain, phytoplankton have important impacts on the global carbon cycle [1]. Direct
measurement of plankton is quite hard to realize, so qualitative researches about the cycle of plankton
came up naturally [13, 16, 33, 34]. Steele [33] first proposed a 3-D differential system containing nutri-
ent, phytoplankton and zooplankton (NPZ). The model described the relation between each variable and
analyzed the system in a qualitative method. Results from simple models could help researchers deal
with complicated system where patterns are quite crucial in determining the output. Ruan [31] further
discussed the persistence and co-existence of nutrient-plankton interaction. Edwards [13, 14] investigated
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the dynamic behavior of plankton population with each term of the model like zooplankton mortality or
higher predation. He also extended the NPZ model into a 4-D model with the component of detritus, which
was named NPZD model [15]. Franks [17] coupled the model into physics and used a NPZ-Physics model
to simulate the ecological system.

Researches on the dynamic nutrient-phytoplankton-zooplankton system were more complicated than
before when it comes to the additional effects of toxicity. Toxin producing phytoplankton is a group of
phytoplankton that have the capability of producing some toxic chemicals. The role of toxin and nutrient
on the plankton system was discussed in [6, 8, 21]. What’s more, time delayed system were being discussed
in the next decade.

As we all know, time delay is a common phenomenon in biological system. The analysis of the system
is rather complex and sometimes it will become unstable when time delay happens [23]. Ruan [30] and
Das [9] considered the interaction of NPZ system with time delay due to gestation and nutrient recycling
and Sharma [32] concluded the properties of Toxin-NPZ system interaction with different functional re-
sponse and time delay. Moreover, with the development above, fractional-order ecology systems grew up
gradually.

Fractional-order calculus is the extension and generalization of integer-order calculus, which has more
than 300 years of history [4]. It is known that fractional differential equations are more effective and valuable
in science and engineering due to its naturally relation to system with memory which is a common feature
of many phenomena. There are numerous application of fractional differential equations in many subjects
like polymer rheology, regular variation in thermodynamics, biophysics, blood flow phenomena, electrical
circuits, energy demand-supply system, ecology system, love triangle system etc. [2, 3, 7, 22, 25, 28]. Then,
fractional-oder NPZ models were studied gradually, including stabilities of the system, properties with
different functional response and time delay in system [20, 29].

In [20], Javidi proposed a fractional-order NPZ system based on [21] as follows:

dα1 N
dtα1

= N0 − AN − BNP + CP,

dα2 P
dtα2

= A1NP − B1P −
WPZ
D + P

,

dα3 Z
dtα3

=
W1PZ
D + P

− A2Z − C1PZ,

(1)

where 0 < αi < 1, N0,A,B,C,A1,B1,W,W1,A2,C1 are all positive parameters. N(t), P(t), Z(t) denote the
concentration of nutrient, the biomass of phytoplankton and zooplankton, respectively; N0 is the constant
supply rate of nutrient to the system and AN is the loss of nutrient due to leaching; We make the assumption
that the growth rate of phytoplankton biomass is A, W is the rate of predation phytoplankton by zooplankton
and the corresponding conversion rate of zooplankton is W1; The Holling type-II funtional response here
with D as half-saturation constant is used to explain the interaction; We take BN as the specific rate of
nutrient uptaken per unit biomass of phytoplankton in unit time and depletion of zooplankton biomass
due to toxin producing phytoplankton is given C1PZ; What’s more, the phytoplankton and zooplankton
biomass depletion due to natural mortality at the rate of B1 and A2, respectively. Much work need to be
done of system (1) and Javidi investigated the stable condition of system (1) at each equilibrium by changing
parameters.

During past decades, chaos control of different chaotic fractional-order system was also a hot issue
due to its importance in stabilizing the system in life. There were various approaches to control different
chaotic fractional-order systems. For example, Li and Chen [24] applied linear feedback control in a chaotic
fractional Chen system, Zhang et al. [38] investigated an adaptive single driving variable controller in a
chaotic fractional-order Lü-Lü system and Yin et al. [37] analyzed adaptive sliding mode control methods.
A proper controller could help managers to do better in dealing with imbalance phenomena in nature.

As far as we know, control of chaotic fractional-order NPZ system has not been studied in any literature.
Motivated by the researches above, we investigate the problem of the control of fractional-order NPZ
system in this article. First, we look back on the stability at each equilibrium point of the system (1) and
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analyze the dynamic behavior in system. Moreover, in order to stabilize the system, we design a linear
feedback control and give the sufficient condition with corresponding proof about feedback gains of each
equilibrium point, respectively. Finally, we do some numerical simulation and verify the results obtained
before.

The paper is arranged as follows. Section 2 gives the preliminary of the fractional calculus and analyzes
the stability of the fractional-order nutrient-phytoplankton-zooplankton system. Section 3 does the linear
feedback control in fractional-order NPZ system and gives the sufficient condition about feedback of each
equilibrium point, respectively. Section 4 shows the numerical simulations to verify our results in Section
2 and 3.

2. The Stability of the Fractional-order NPZ System

2.1. Basics of fractional-order calculus
The Caputo definition of fractional derivative [5] is given as

Dα f (t) = Jl−α f (l)(t), α > 0,

where the operator Dα is referred as the “α-order Caputo differential operator”, f (l) represents the l-order
derivative of f (t), l = bαc is the smallest integer which is not less than α and Jθ is the θ-order Riemann-
Liouville integral operator which can be described as

Jθu(t) =
1

Γ(θ)

∫ t

0
(t − τ)(θ−1)u(τ)d(τ), θ > 0,

where Γ(θ) is the Euler’s Gamma function.
In [19, 26, 27], stability conditions and their applications to systems of fraction-order differential equa-

tions were reported. We consider the following nonlinear autonomous fractional-order system

DαX(t) = F(X(t)),X(0) = X0, (2)

where X(t) = (x1, x2, x3)T
∈ R3, F : R3

→ R3 is a nonlinear vector function in terms of X. The Jacobian matrix
evaluated at the equilibrium point X∗ = (x∗1, x

∗

2, x
∗

3) is

J(X∗) =

(
∂Fi

∂x j

)
i j

∣∣∣∣∣
x=x∗

. (3)

The local stability of the equilibrium points of a linearized fractional-order system can be obtained from
the following lemma [27]:

Lemma 2.1. If all the eigenvalues λ1, λ2, λ3 of the equilibrium point X∗ of Jacobian matrix (3), satisfy the Matignon’s
conditions [26] which can be described as∣∣∣argλi

∣∣∣ > απ/2, (i = 1, 2, 3), (4)

where | argλi|(i = 1, 2, 3) denotes the argument value of the eigenvalue λi. Then X∗ is locally asymptotically stable.

2.2. Stability in equilibrium points
In this section, we look back on the stability of system (1). Let

dα

dtα
N = 0,

dα

dtα
P = 0,

dα

dtα
Z = 0. (5)

There exist four equilibrium points as follows:
(i) Boundary equilibrium point E1 =

(
N∗1, 0, 0

)
, where N∗1 = N0

A .
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(ii) Zooplankton-free point E2 =
(
N∗2,P

∗

2, 0
)

if (A1N0 − AB1) (BB1 − A1C1) > 0, where N∗2 = B1
A1
, P∗2 =

A1N0−AB1
BB1−A1C1

, 0.

(iii) Interior equilibrium points E3 =
(
N∗3,P

∗

3,Z
∗

3

)
and E4 =

(
N∗4,P

∗

4,Z
∗

4

)
exist if S < 0,

A1(N0+CP∗3)
A+BP∗3

> B1,
A1(N0+CP∗3)

A+BP∗3
> B1, and S2 > 4C1DA2, where

P∗3 =
−S −

√
S2 − 4C1DA2

2C1
, P∗4 =

−S +
√

S2 − 4C1DA2

2C1
,

N∗3 =
N0 + CP∗3
A + BP∗3

, N∗4 =
N0 + CP∗4
A + BP∗4

,

Z∗3 =

(
D + P∗3

) (
A1N∗3

)
− B1

W
, Z∗4 =

(
D + P∗4

) (
A1N∗4

)
− B1

W
,

and S = A2 + DC1 −W1.
The Jacobian matrix of system (1) at equilibrium points is

J (E∗) =
(
Ji j

) ∣∣∣
E∗ , (6)

where

J11 = −A − BP∗, J12 = −BN∗ + C, J13 = 0,

J21 = A1P∗, J22 = A1N∗ − B1 −
WDZ∗

(D + P∗)2 , J23 = −
WP∗

D + P∗
,

J31 = 0, J32 =
W1DZ∗

(D + P∗)2 − C1Z∗, J33 =
W1P∗

D + P∗
− A2 − C1P∗,

and the corresponding characteristic equation of matrix (6) is given by

λ3 + σ1λ
2 + σ2λ + σ3 = 0, (7)

where

σ1 = − (J11 + J22 + J33) ,
σ2 = J11 J22 + J11 J33 + J22 J33 − J23 J32 − J12 J21,

σ3 = J12 J21 J33 + J11 J23 J32 − J11 J22 J33.

Table 1: Stability of each equilibrium of system (1)
E∗1 E∗2 E∗3 E∗4

λ1 −0.2 −4.1158 0.1019 + 0.2790i −6.0422
λ2 2.6 0.0158 0.1019 − 0.2790i 0.4555
λ3 −0.05 0.0614 −0.0981 0.4412

Stability unstable saddle
point

unstable saddle
point

conditionally stable* unstable saddle
point

Index 1 2 – 2
*System (1) is stable if αi < min 2

π

∣∣∣argλi

∣∣∣ = 2
π | arctan(0.2790/0.1019)| = 0.7771 according to Lemma 2.1.

Due to the complexity of getting the analytical solutions of Eq. (7) if parameters are continuous functions,
we take N0 = 1.1,A = 0.2,B = 0.3,C = 0.1,A1 = 0.5,B1 = 0.15,W = 0.2,W1 = 0.26,A2 = 0.05,C1 = 0.01,D = 1
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from [20] to show this stability. Substituting the parameters and E∗i (i = 1, 2, 3, 4) into Eq. (7), one obtains the
roots of Eq. (7) and stabilities as shown in Table 1 according to Lemma 2.1.

From Table 1, there exists only one stable equilibrium point when the maximum fractional order among
α1, α2 and α3 is less than 0.7771. When α1 = α2 = α3 = 0.7771, system (1) will display instability and
there is no stable equilibrium if α1, α2, α3 are all greater than 0.7771. Thus, system (1) is oscillatory which is
displayed in Figure 1(a) and Figure 1(b) when α1 = α2 = α3 = 0.95.
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Figure 1: The phase orbit and the evolution over time of fractional-order nutrient-phytoplankton-zooplankton system

To be more precise, we calculate the Lyapunov exponents of the system by methods in [35] when
αi = 0.95(i = 1, 2, 3). As shown in Figure 2, three Lyapunov exponents are 0, −0.1347, and −1.4335
respectively, which means that the trend of system (1) is a limit cycle.
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Figure 2: Dynamics of Lyapunov exponents of the fractional-order NPZ system

3. Control of the System

Since the balance of nutrient and plankton plays an important role in the preservation of the ecological
environment, this chaotic fractional-order nutrient-plankton system needed to be controlled for a healthy
ecology.

In this section, linear state feedback controller is designed to control fractional-order chaotic NPZ system
in its equilibrium points as introduced in [24, 27]. Linear feedback controllers have advantages of simple
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structure and intuitive. To be convenient, we set α1=α2=α3=α, the controlled fractional-order NPZ system
is given by

dαN
dtα

= N0 − AN − BNP + CP + k1 (N −N∗) ,

dαP
dtα

= A1NP − B1P −
WPZ
D + P

+ k2 (P − P∗) ,

dαZ
dtα

=
W1PZ
D + P

− A2Z − C1PZ + k3 (Z − Z∗) ,

(8)

where k1, k2 and k3 are feedback gains and (N∗,P∗,Z∗) is the desired equilibrium point to be controlled.
The Jacobian matrix of system (8) at (N∗,P∗,Z∗) is

J′ (E∗) =
(
J′i j

) ∣∣∣
E∗ , (9)

where

J′11 = −A − BP∗ + k1, J′12 = −BN∗ + C, J′13 = 0,

J′21 = A1P∗, J′22 = A1N∗ − B1 −
WDZ∗

(D + P∗)2 + k2, J′23 = −
WP∗

D + P∗
,

J′31 = 0, J′32 =
W1DZ∗

(D + P∗)2 − C1Z∗, J′33 =
W1P∗

D + P∗
− A2 − C1P∗ + k3,

and the corresponding characteristic equation of matrix (9) is given by

λ3 + σ′1λ
2 + σ′2λ + σ′3 = 0, (10)

where

σ′1 = −
(
J′11 + J′22 + J′33

)
− (k1 + k2 + k3) ,

σ′2 =J′11 J′22 + J′11 J′33 + J′22 J′33 − J′23 J′32 − J′12 J′21 + k1

(
J′22 + J′33

)
+ k2

(
J′11 + J′33

)
+ k3

(
J′11 + J′22

)
+ k1k2 + k2k3 + k1k3 − J′23 J′32 − J′12 J′21,

σ′3 =J′12 J′21 J′33 + J′11 J′23 J′32 − J′11 J′22 J′33 + k1

(
J′23 J′32 − J′22 J′33

)
+ k3

(
J′12 J′21 − J′11 J′22

)
− k2 J′11 J′33 − k1k2k3.

Our goal is to find suitable feedback gains such that system (8) can be controlled in its equilibrium
points. We have the following theorems to describe the control the system:

Theorem 3.1. The equilibrium E∗1 =
(
N∗1, 0, 0

)
is locally asymptotically stable if k1, k2, k3 satisfy

k1 < A1, k2 < B1 −
A1N0

A
, k3 < A2.

Proof. Substituting E∗1 =
(

N0
A , 0, 0

)
into Eq. (10), we have

[λ − (k1 − A1)]
[
λ −

(
k2 − B1 +

A1N0

A

)]
[(λ − (k3 − A2)] = 0. (11)

The roots of Eq. (11) are λ1 = k1−A1, λ2 = k2−B1 + A1N0
A , λ3 = k3−A2. Notice that k1 < A1, k2 < B1−

A1N0
A ,

k3 < A2, one obtains that all roots are real and negative, which means that
∣∣∣arg (λi)

∣∣∣ = π > απ
2 (i = 1, 2, 3).

Then the proof is completed.

In the same way as in Theorem 3.1, we have the following theorem:
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Theorem 3.2. The equilibrium E∗2 =
(
N∗2,P

∗

2, 0
)

is locally asymptotically stable if feedback gains k1, k2, k3 satisfy one
of the following conditions:

(1) E < 0, F > 0, ∆ > 0;

(2) E < 0, F > 0, ∆ < 0 f or all α <
2
π

arctan
( √
−∆

F

)
,

(12)

where

E :=
W1P∗2

D + P∗2
− A2 − C1P∗2 + k3,

F :=
(
−A − BP∗2 + k1

)
+ +k2,

G :=
(
−A − BP∗2 + k1

)
k2 + A1

(
N0 − AN∗2

)
,

∆ := F2
− 4G.

Proof. Substituting E∗2 =
(
N∗2,P

∗

2, 0
)

into Eq. (10), one obtains

(λ − E)
(
λ2
− Fλ + G

)
= 0.

Then we have

λ1 = E, λ2,3 =
1
2

(
−F ±

√

∆
)
.

If (12)1 holds, then λ1 < 0, λ2,3 < 0. Thus, all the eigenvalues with control corresponding to the
equilibrium E2 are real and negative.

If (12)2 holds, then λ1 < 0 and λ2,3 are complex as follows:

λ2,3 =
−F ± i

√
−∆

2
,

where i =
√
−1. Thus from Lemma 2.1, if

∣∣∣arg
(
λ2,3

)∣∣∣ = arctan
( √
−∆
F

)
> απ

2 hold, then the equilibrium E∗2 is

asymptotically stable. Then the proof is completed.

Now, we recall a theorem by fractional-order Routh-Hurwitz stability criterion to determine the local
stability of interior equilibrium points E∗3 and E∗4.

Theorem 3.3. [27] If the discriminant of the eigenvalues of matrix (9) is given as

D(P) = 18σ′1σ
′

2σ
′

3 + (σ′1σ
′

2)2
− 4σ′3(σ′1)3

− 4(σ′2)3
− 27(σ′3)2,

then equilibrium points E∗3 and E∗4 are locally asymptotically stable if they satisfy the following fractional Routh-
Hurwitz conditions:

(i) If D(P) > 0, then the necessary and sufficient condition for equilibrium point E∗3(E∗4), to be locally asymptotically
stable, is σ′1 > 0, σ′3 > 0, σ′1σ

′

2 − σ
′

3 > 0.
(ii) If D(P) < 0, σ′1 ≥ 0, σ′2 ≥ 0, σ′3 > 0, then E∗3(E∗4) is locally asymptotically stable for α < 2

3 . However, if
D(P) < 0, σ′1 < 0, σ′2 < 0, α > 2

3 , then all roots of equation (10) satisfy the condition |ar1(λ)| < απ/2.
(iii) If D(P) < 0, σ′1 > 0, σ′2 > 0, σ′1σ

′

2 − σ
′

3 = 0, then E∗3(E∗4) is locally asymptotically stable for all α ∈ (0, 1).
(iv) The necessary condition for equilibrium point E∗3(E∗4), to be locally asymptotically stable, is σ′3 > 0.

4. Numerical Simulations

In this section, to verify theoretical results obtained before, we will do corresponding numerical simu-
lations by applying a modified Adams-Bashforth-Moulton algorithm proposed by Diethelm et al. [11, 12].
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4.1. Dynamic behaviors in different fractional orders

The parameters of system (8) are chosen as N0 = 1.1,A = 0.2,B = 0.3,C = 0.1,A1 = 0.5,B1 = 0.15,W =
0.2,W1 = 0.26,A2 = 0.05,C1 = 0.01,D = 1. Based on the algorithm above, we can simulate our results of
the fractional-order NPZ system. According to what have been discussed in Section 2, we know that the
system exhibit instabilities when α ≥ 0.7771 as shown in Figure 3(a) and 3(b). And when α < 0.7771, we
find the cases that the system (1) does not show chaotic behavior in Figure 3(c) and 3(d).
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Figure 3: Phase diagrams for system using the fixed values and fractional orders are α = 0.80, α = 0.85, α = 0.70 and α = 0.75.

4.2. Control of the system

Let us now chose α = 0.95 and do the following work to verify whether system (1) can be controlled by
our results or not.

4.2.1. Case 1: Plankton-free point E∗1 (5.5, 0, 0)
Based on Theorem 3.1, let us chose the feedback gain (k1, k2, k3) = (−1,−3,−1) and α = 0.95. By

calculation, eigenvalues are λ1 = −1.2, λ2 = −0.4, λ3 = −1.05, and the maximum lyapunov exponent is
−0.4128, which means that system (8) is asymptotically stable at E∗1 as shown in Figure 4(a) and Figure 5(a).

4.2.2. Case 2: Zooplankton-free point E∗2 (0.3, 13, 0)
Based on Theorem 3.2, let us chose the feedback gain (k1, k2, k3) = (4,−2,−2) and α = 0.95. By calculation,

eigenvalues areλ1 = −0.0664, λ2 = −2.0336, λ3 = −1.9386, and the maximum lyapunov exponent is−1.2715,
which means that system (8) is asymptotically stable at E∗2 as shown in Figure 4(b) and Figure 5(b).
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4.2.3. Case 3: Interior point E∗3 (4.0778, 0.2532, 11.8359)
Let us chose the feedback gain (k1, k2, k3) = (0,−0.5, 0) and α = 0.95. From Theorem 3.3 (iii), we have

D (P) = −0.0276 < 0, σ′1 = 0.3943 > 0, σ′2 = 0.2607 > 0 and σ′1σ
′

2 − σ
′

3 ≈ 0, and the maximum lyapunov
exponent is −0.1116, which means that system (8) is asymptotically stable at E∗3 as shown in Figure 4(c) and
Figure 5(c).

4.2.4. Case 4: Interior point E∗4 (0.5021, 19.7468, 10.4806)
Let us chose the feedback gain (k1, k2, k3) = (1.5,−0.5,−3) and α = 0.95. From Theorem 3.3 (iii), we have

D (P) = −21866 < 0, σ′1 = 8.0279 > 0, σ′2 = 18.3206 > 0 and σ′1σ
′

2 − σ
′

3 ≈ 0, and the maximum lyapunov
exponent is −0.1094, which means that system (8) is asymptotically stable at E∗4 as shown in Figure 4(d) and
Figure 5(d).

From cases above, we know that the control of fractional-order NPZ system is feasible. Therefore,
linear control of the system can be applied when the water ecology is unstable. For example, as shown
in case 3, when the system is unstable, which means that biomass of phytoplankton may increase due to
eutrophication caused by sewage disposal, decision makers can decrease the phytoplankton growth rate
by 0.5 in some approach to make sure the system can return to a dynamical stable state in several days.
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Figure 4: Dynamics of lyapunov exponents for the controlled system.

5. Conclusion

Overall, our study has revealed the stability in equilibrium points of the fractional-order nutrient-
phytoplankton-zooplankton system and applied a simple approach, which is linear feedback controller, to
control the instability. Through the work above, we found that fractional order α = 0.7771 is the critical
value of stability which means that every equilibrium point of system (1) is an unstable saddle point if
α > 0.7771. What’s more, we yielded the sufficient condition of local stability in the equilibrium points of
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the controlled fractional-order system by using Lemma 2.1 and fractional Routh-Hurwitz criterion. Finally,
numerical simulation verified that results obtained above are credible. Thus, linear feedback control is a
feasible way to control the fractional NPZ system in water or marine ecology.
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Figure 5: The time response of the state for stabilizing system (8) to each equilibrium point.
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