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Available at: http://www.pmf.ni.ac.rs/filomat

Multiplicity of Positive Solutions for Critical Fractional Kirchhoff Type
Problem with Concave-convex Nonlinearity

Chang-Mu Chua, Zhi-Peng Caia, Hong-Min Suoa

aSchool of Data Science and Information Engineering, Guizhou Minzu University, Guiyang Guizhou 550025, China

Abstract. This paper is devoted to study a class of Kirchhoff type problem with critical fractional exponent
and concave nonlinearity. By means of variational methods, the multiplicity of the positive solutions to this
problem is obtained.

1. Introduction and Main Results

This paper is concerned with the multiplicity of positive solutions for the following problem:
M

(∫
R2N

|u(x)−u(y)|2

|x−y|N+2s dxdy
)

(−∆)su = λuq−1 + u2∗s−1, in Ω,

u > 0, in Ω,
u = 0, in RN

\Ω,

(1)

where 0 ∈ Ω is a regular bounded domain in RN, M(t) = a + btk and the parameters a, b, λ > 0, 0 < s < 1 <
q < 2, N > 2s, 0 ≤ k < 2s

N−2s , 2∗s = 2N
N−2s is the fractional Sobolev exponent. Here (−∆)s is the fractional Laplace

operator(see [11]) defined, up to a normalization factor, by

−(−∆)su(x) =

∫
RN

u(x + y) + u(x − y) − 2u(x)
|y|N+2s dy, x ∈ RN.

In recent years, more and more attention have been paid to nonlocal diffusion problems, in particular
to the ones driven by the fractional Laplace operator. This type of operator seems to have a dislocations in
mechanical systems or in crystals. In addition, these operators arise in modelling diffusion and transport
in a prevalent role in physical situations such as combustion and highly heterogeneous medium. As to the
concave-convex nonlinearity, this type of problems has been studied by many authors [2, 3, 4, 10, 12, 16] and
the references therein. In the case k = 0, the authors in [3] have investigated the following equation:

(−∆)su = λuq−1 + u2∗s−1, in Ω,
u > 0, in Ω,
u = 0, in RN

\Ω,
(2)
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where λ > 0, 0 < s < 1, N > 2s and 1 < q < 2. They found that there exists Λ > 0 such that the equation
(2) admits at least two positive solutions for 0 < λ < Λ, has a positive solution for λ = Λ and no positive
solution exists for λ > Λ. However, we may not find Λ such that problem (1) have the same result. In fact,
this problem is still unsolved for the semilinear elliptic equation(the case s = 1), see the Remark 6.4 in [9].

The main purpose of this paper is to generalize the partial results of [3]. Using the variational method,
we prove that the equation (1) has at least two positive solutions for λ sufficiently small when the weight
functions satisfy some conditions. The main results of this paper are as follows.

Theorem 1.1 Let 0 < s < 1, N > 2s and 1 < q < 2. Suppose that M(t) = a + btk, a, b > 0, 0 ≤ k <
2s

N − 2s
,

then there exists λ0 > 0 such that problem (1) for all λ ∈ (0, λ0) has at least one positive solution.

Theorem 1.2 Let 0 < s < 1, N > 2s and N
N−2s < q < 2. Suppose that M(t) = a + btk, a > 0, 0 ≤ k <

2s
N − 2s

,
b > 0 is small enough, then there exists λ∗ > 0 such that problem (1) for all λ ∈ (0, λ∗) has at least two
positive solutions.

This paper is organized as follows. In section 2 we give the functional framework necessary to work
with the fractional Laplacian operator and we will give some auxiliary results. The proof of Theorem 1.1
and Theorem 1.2 is provided in section 3.

2. Some Auxiliary Results

We will denote by Hs(RN) the usual fractional Sobolev space endowed with the Gagliardo norm

‖u‖Hs(RN) = ‖u‖L2(RN) +

(∫
RN×RN

|u(x) − u(y)|2

|x − y|N+2s dxdy
) 1

2

.

We consider the function space

X0 =
{
u ∈ Hs(RN) : u = 0 a.e. in RN

\Ω
}
,

with the norm

‖u‖X0 =

(∫
RN×RN

|u(x) − u(y)|2

|x − y|N+2s dxdy
) 1

2

.

We also recall that (X0, ‖ · ‖X0 ) is a Hilbert space(see [3] or [13]), with scalar product

〈u, v〉 =

∫
RN×RN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dxdy.

Let u± = max{±u, 0}, the corresponding functional of problem (1) is

I(u) =
a
2
‖u‖2X0

+
b

2(k + 1)
‖u‖2(k+1)

X0
−
λ
q

∫
Ω

(u+)qdx −
1
2∗s

∫
Ω

(u+)2∗s dx, u ∈ X0.

It is well known that the critical points of the functional I in X0 are positive solutions of problem (1). By the
definition of weak solution u of problem (1), it means that u ∈ X0 satisfies

〈I′(u), v〉 =
(
a + b‖u‖2k

X0

) ∫
RN×RN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dxdy − λ

∫
Ω

(u+)q−1vdx −
∫

Ω

(u+)2∗s−1vdx

for any v ∈ X0.
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Define the best Sobolev constant

S = inf
u∈Hs(RN)\{0}

‖u‖2X0(∫
RN |u|2

∗
s dx

) 2
2∗s

. (3)

From [7], we know that S is attained by functions

vε(x) =
ε

N−2s
2

(ε2 + |x|2)
N−2s

2

.

Now we give some definitions, and show that the corresponding functional of problem (1) satisfies the
(PS)c condition.

Definition 2.1 A sequence {un} ⊂ X0 is called a (PS)c sequence of I if I(un)→ c and I′(un)→ 0 as n→∞.
We say that I satisfies the (PS)c condition if any (PS)c sequence {un} ⊂ X0 of I has a convergent subsequence.

Lemma 2.2 Let 0 < s < 1, N > 2s and 1 < q < 2. Suppose that M(t) = a + btk, a, b > 0, 0 ≤ k <
2s

N − 2s
. If

{un} ⊂ X0 is a (PS)c sequence of I, then {un} is bounded in X0.

Proof. By the Hölder inequality and the Young inequality, it follows from (3) that∣∣∣∣∣λq
∫

Ω

(u+)qdx
∣∣∣∣∣ ≤ λq S−

q
2 |Ω|

2∗s−q
2∗s ‖u‖qX0

≤ η‖u‖2X0
+ C(η)λ

2
2−q (4)

for any u ∈ X0, where C(η) =
2−q

q 2−
2

2−q |Ω|
(2−q)N+2qs

(2−q)N (ηS)
q

q−2 . Let {un} be a (PS)c sequence of I. Note that k < 2s
N−2s ,

it follows from (4) that

2∗sI(un) − 〈I′(un),un〉 =
2as

N − 2s
‖un‖

2
X0

+
2s − (N − 2s)k
(k + 1)(N − 2s)

b‖un‖
2(k+1)
X0

−
(2 − q)N + 2qs

q(N − 2s)
λ

∫
Ω

(u+
n )qdx

≥

(
2as

N − 2s
−

(2 − q)N + 2qs
N − 2s

η

)
‖un‖

2
X0
−

(2 − q)N + 2qs
N − 2s

C(η)λ
2

2−q ,

which implies (
2as

N − 2s
−

(2 − q)N + 2qs
N − 2s

η

)
‖un‖

2
X0
≤ 2∗sc +

(2 − q)N + 2qs
N − 2s

C(η)λ
2

2−q + o(‖un‖X0 ).

Set η < 2as
(2−q)N+2qs , we obtain {un} is bounded in X0.

Lemma 2.3 Let 0 < s < 1, N > 2s and 1 < q < 2. Suppose that M(t) = a + btk, a, b > 0, 0 ≤ k <
2s

N − 2s
,

then there exists a positive constant A depending on N, q, s, S and a such that I satisfies the (PS)c condition
with c < c∗ = s

N (aS)
N
2s − Aλ

2
2−q .

Proof. Let {un} ⊂ X0 be a (PS)c sequence of I with c < c∗. By Lemma 2.2, we know that {un} is bounded. Up to
a subsequence, there exists u ∈ X0 such that un converges u weakly in X0, strongly in Lr(Ω) with 1 ≤ r < 2∗s
and a.e. in Ω. By the Dominated Convergence Theorem, we have

λ

∫
Ω

(u+
n )q−1(un − u)dx +

∫
Ω

(u+
n )2∗s−1(un − u)dx→ 0.

Thus, by using also the fact that 〈I′(un),un − u〉 → 0, we get(
a + b‖u‖2k

X0

) ∫
RN×RN

(un(x) − un(y))((un(x) − un(y)) − (u(x) − u(y)))
|x − y|N+2s dxdy→ 0,
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from which it follows that un → u in X0. Since I is C1, we obtain I′(u) = 0. In particular, we have 〈I′(u),u〉 = 0,
which implies that

a‖u‖2X0
+ b‖u‖2(k+1)

X0
= λ

∫
Ω

(u+)qdx +

∫
Ω

(u+)2∗s dx.

It follows from (4) that

I(u) = I(u) −
1
2∗s
〈I′(u),u〉 ≥

1
2∗s

(
2s

N − 2s
−

(2 − q)N + 2qs
N − 2s

η

)
‖u‖2X0

−
(2 − q)N + 2qs

N − 2s
C(η)λ

2
2−q .

Set η = 2as
(2−q)N+2qs , A =

2−q
qN

( (2−q)N+2qs
4

) 2
2−q
|Ω|

(2−q)N+2qs
(2−q)N (saS)

q
q−2 , we have

I(u) ≥ −Aλ
2

1−q . (5)

By the Dominated Convergence Theorem, we obtain∫
Ω

(u+
n )qdx =

∫
Ω

(u+)qdx + o(1).

Let wn = un − u, by the Brezis-Lieb lemma(see [5]), one has

‖un‖
2
X0

= ‖wn‖
2
X0

+ ‖u‖2X0
+ o(1), ‖un‖

2(k+1)
X0

=
(
‖wn‖

2
X0

+ ‖u‖2X0
+ o(1)

)k+1
,

and ∫
Ω

(u+
n )2∗s dx =

∫
Ω

(w+
n )2∗s dx +

∫
Ω

(u+)2∗s dx + o(1).

Since I(un) = c + o(1), we obtain

a
2
‖wn‖

2
X0

+
b

2(k + 1)

((
‖wn‖

2
X0

+ ‖u‖2X0
+ o(1)

)k+1
− ‖u‖2(k+1)

X0

)
−

1
2∗s

∫
Ω

(w+
n )2∗s dx

= c − I(u) + o(1). (6)

According to I′(un) = o(1) and 〈I′(u),u〉 = 0, we get

a‖wn‖
2
X0

+ b
((
‖wn‖

2
X0

+ ‖u‖2X0
+ o(1)

)k+1
− ‖u‖2(k+1)

X0

)
−

∫
Ω

(w+
n )2∗s dx = o(1). (7)

Assume that ‖wn‖X0 → l1, we have(
‖wn‖

2
X0

+ ‖u‖2X0
+ o(1)

)k+1
− ‖u‖2(k+1)

X0
→

(
l21 + ‖u‖2X0

)k+1
− ‖u‖2(k+1)

X0
� l2 ≥ 0.

it follows from (7) that ∫
Ω

(w+
n )2∗s dx→ al21 + bl2.

From (3), we have

‖wn‖
2∗s
X0
≥ S

2∗s
2

∫
Rn
|wn|

2∗s dx ≥ S
2∗s
2

∫
Ω

(w+
n )2∗s dx.

As n → ∞, we have l2
∗
s

1 ≥ S
2∗s
2 (al21 + bl2) ≥ S

2∗s
2 al21. Therefore, one has l1 ≥ a

N−2s
4s S

N
4s . Note that 2(k + 1) < 2∗s, it

follows from (5), (6) and (7) that

c =
s
N

al21 +

(
1

2(k + 1)
−

1
2∗s

)
bl2 + I(u) ≥

s
N

(aS)
N
2s + I(u) ≥ c∗,

which contradicts the fact c < c∗. Therefore, we have l1 = 0, which implies that un → u in X0. Hence I
satisfies the (PS)c condition with c < c∗.
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3. The Proof of Main Results

In this section, we complete the proof of our Theorems 1.1 and 1.2. Before the proof of Theorem 1.1, we
first recall the following Lemma in [6].

Lemma 3.1 Let r, p > 1, ψ(x) ∈ Lp(Ω) and ψ+ = max{ψ, 0} , 0. Then there exists w0 ∈ C∞0 (Ω) such that∫
Ω
ψ(x)(w+

0 )rdx > 0.

Proof of Theorem 1.1. It follows from (3) and (4) that

I(u) ≥
( a

2
− η

)
‖u‖2X0

− C(η)λ
2

2−q −
1
2∗s

S−
2∗s
2 ‖u‖2

∗
s

X0
.

Let η = a
4 , we can find ρ > 0 and Λ1 > 0 such that for all λ ∈ (0,Λ1)

I(u) > 0 if ‖u‖ = ρ and I(u) > −C1 if ‖u‖ ≤ ρ, (8)

where C1 =
2−q

q

(
Λ1
2

) 2
2−q
|Ω|

(2−q)N+2qs
(2−q)N

(
2

aS

) q
2−q .

From Lemma 3.1, we obtain that there exists ϕ0 ∈ C∞0 (Ω) ⊂ X0 such that∫
Ω

(ϕ+
0 )qdx > 0. (9)

Therefore, one has

I(Kϕ0) ≤
a
2

K2
‖ϕ0‖

2
X0
−
λ
q

Kq
∫

Ω

(ϕ+
0 )qdx −

1
2∗s

K2∗s

∫
Ω

(ϕ+
0 )2∗s dx.

Fix λ ∈ (0,Λ1), noticing that 1 < q < 2, it implies from (9) that there exists K0 = K(λ) > 0 small enough such
that I(K0ϕ0) < 0. Thus we deduce that

cλ = inf
u∈Bρ(0)

I(u) < 0 < inf
u∈∂Bρ(0)

I(u).

By applying the Ekeland’s variational principle in Bρ(0)(see [8]), we obtain that there exists a (PS)cλ sequence
{un} ⊂ Bρ(0) of I.

By the expression of c∗, we can choose 0 < λ0 < Λ1 such that c∗ > 0 for all λ ∈ (0, λ0). It follows from
cλ < 0 and Lemma 2.3 that I satisfies the (PS)cλ condition. Therefore, one has a subsequence still denoted
by {un} and uλ ∈ X0 such that un → uλ in X0 and

I(uλ) = cλ, I′(uλ) = 0,

which implies that uλ is a solution of problem (1). After a direct calculation, we derive that ‖u−λ‖X0 =
〈I′(uλ),−u−λ〉 = 0, which implies uλ ≥ 0. Since I(uλ) = cλ < 0 = I(0), we have uλ , 0. Applying the Strong
Maximum Principle(see [14]), we obtain uλ is a positive solution of problem (1). The proof of Theorem 1.1
is completed. �

Lemma 3.2 Let 0 < s < 1, N > 2s and N
N−2s < q < 2. Suppose that M(t) = a+btk, a > 0, 0 ≤ k <

2s
N − 2s

, b > 0
is small enough, then there exists Λ∗ > 0, for any λ ∈ (0,Λ∗), we can find ūλ ∈ X0 such that sup

t≥0
I(tūλ) < c∗.

Proof. For convenience, we consider the functional Jb : X0 → R defined by

Jb(u) =
a
2
‖u‖2X0

+
b

2(k + 1)
‖u‖2(k+1)

X0
−

1
2∗s

∫
Ω

(u+)2∗s dx, u ∈ X0.
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For the constant δ0 > 0, we can choose such a cut-off function φ(x) ∈ C∞0 (Ω) that φ(x) = 1 for x ∈ B(0, δ0),

φ(x) = 0 for x ∈ Rn
\ B(0, 2δ0) and 0 ≤ φ(x) ≤ 1. Define uε(x) =

φ(x)ε
N−2s

2

(ε2+|x|2)
N−2s

2
. Similar to the calculation of [15],

we have the following estimate(as ε→ 0)

‖uε‖2X0
=

∫
RN×RN

|U(x) −U(y)|2

|x − y|N+2s dxdy + O(εN−2s),∫
Ω

|uε|2
∗
s dx = ‖U‖2

∗
s

L2∗s (RN)
+ O(εN), (10)

‖uε‖2X0(∫
Ω
|uε|2

∗
s dx

) 2
2∗s

= S + O
(
εN−2s

)
,

where U(x) =
(
1 + |x|2

)− N−2s
2 satisfies∫

RN×RN
|U(x)−U(y)|2

|x−y|N+2s dxdy

‖U‖2
L2∗s (RN)

= S = inf
u∈Hs(RN)\{0}

‖u‖2X0(∫
RN |u|2

∗
s dx

) 2
2∗s

.

Define

hb(t) = Jb(tuε) =
a
2

t2
‖uε‖2X0

+
bt2(k+1)

2(k + 1)
‖uε‖

2(k+1)
X0

−
1
2∗s

t2∗s

∫
Ω

|uε|2
∗
s dx

for all t ≥ 0. According to 2(k + 1) < 2∗s and (10), we have lim
t→+∞

h(t) = −∞. Note that hb(0) = 0 and hb(t) > 0

for t→ 0+, so sup
t≥0

hb(t) attains for some tb,ε > 0. By

0 = h′0(t0,ε) = t0,ε

(
a‖uε‖2X0

− t2∗s−2
0,ε

∫
Ω

|uε|2
∗
s dx

)
,

one has

t0,ε =

 a‖uε‖2X0∫
Ω
|uε|2

∗
s dx


1

2∗s−2

.

Therefore, we deduce from (10) that

sup
t≥0

Jb(tuε) = hb(tb,εuε) ≤ h0(tb,εuε) ≤ h0(t0,εuε) =
s
N

(aS)
N
2s + O

(
εN−2s

)
= c∗ + Aλ

2
2−q + O

(
εN−2s

)
. (11)

By the expression of c∗, we can choose Λ2 > 0 such that c∗ > 0 for all λ ∈ (0,Λ2). Using the definitions of I
and uε, we have

I(tuε) ≤
a
2

t2
‖uε‖2X0

+
bt2(k+1)

2(k + 1)
‖uε‖

2(k+1)
X0

for all t ≥ 0 and λ > 0. It follows from (10) that there exist T ∈ (0, 1), b1 > 0 and ε1 > 0 such that

sup
0≤t≤T

I(tuε) < c∗ (12)

for all 0 < λ < Λ2, 0 < b < b1 and 0 < ε < ε1. Moreover, it implies from (11) that

sup
t≥T

I(tuε) = sup
t≥T

(
Jb(tuε) −

λ
q

tq
∫

Ω

|uε|qdx
)

≤ c∗ + Aλ
2

2−q + O
(
εN−2s

)
−
λ
q

Tq
∫

B(0,ε)
|uε|qdx.
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Let ε = λ
2

(2−q)(N−2s) ∈ (0, δ0), It follows that∫
B(0,ε)
|uε|qdx =

∫
B(0,ε)

(
ε

ε2 + |x|2

) (N−2s)q
2

dx ≥
∫

B(0,ε)

1

(2ε)
(N−2s)q

2

dx = C3ε
2N−(N−2s)q

2 .

By the above two inequalities, for any 0 < λ < δ
(2−q)(N−2s)

2
0 , we have

sup
t≥T

I(tuε) ≤ c∗ + O
(
λ

2
2−q

)
−

C3Tq

q
λ

4(N−s)−2(N−2s)q
(2−q)(N−2s) . (13)

Note that N
N−2s < q < 2, we have 4(N−s)−2(N−2s)q

(2−q)(N−2s) < 2
2−q . Hence, we can choose Λ3 > 0 such that

O
(
λ

2
2−q

)
−

C3Tq

q
λ

4(N−s)−2(N−2s)q
(2−q)(N−2s) < 0

for all 0 < λ < Λ3. Therefore, we have

sup
t≥T

I(tuε) < c∗. (14)

Set Λ∗ = min
{
Λ2,Λ3, ε

(2−q)(N−2s)
2

1

}
. Let λ ∈ (0,Λ∗), ε = λ

2
(2−q)(N−2s) and ūλ = uε, we deduce from (12) and (14) that

sup
t≥0

I(tūλ) < c∗ for all 0 < λ < Λ∗ and 0 < b < b1.

Proof of Theorem 1.2. Choose λ∗ = min{λ0,Λ∗}, from the proof of Theorem 1.1, we have already obtained
that problem (1) for any λ ∈ (0, λ∗) has a positive solution uλ with I(uλ) < 0. Now we only need to find that
the second positive solution of problem (1). It follows from Lemma 3.1 that there exists φ0 ∈ C∞0 (Ω) such
that

∫
Ω

(φ+
0 )2∗s dx > 0. According to (4), we have

I(tφ0) ≤
( a

2
+ η

)
t2
‖φ0‖

2
X0
−

1
2∗s

t2∗s

∫
Ω

(φ+
0 )2∗s dx + C(η)λ

2
2−q ,

which implies that I(tφ0) → −∞ as t → +∞. Hence, there exists a positive number t0 such that ‖t0φ0‖ > ρ
and I(t0φ0) < 0 for any λ ∈ (0, λ∗). It implies from (8) that the functional I has the mountain pass geometry.
Define

Γ = {γ ∈ C([0, 1],X0)| γ(0) = 0, γ(1) = t0φ0}, c̃λ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)).

From Lemma 3.2, we have c̃λ < c∗. Applying Lemma 2.3, we know that I satisfies the (PS)c̃λ condition. By
the mountain pass theorem(see [1]), we obtain that problem (1) has the second solution ũλ with I(ũλ) > 0.
After a direct calculation, we derive that ‖ũ−λ‖

2
X0

= 〈I′(ũλ),−ũ−λ〉 = 0, which implies that ũ−λ = 0. Hence,
ũλ ≥ 0. Since I(ũλ) > 0 = I(0), we have ũλ , 0. By the Strong Maximum Principle, we obtain ũλ is the second
positive solution of problem (1). �
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