
Filomat 32:11 (2018), 3799–3814
https://doi.org/10.2298/FIL1811799K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we firstly introduce bijective soft matrix theory and research its operations,
properties and algebraic structures in detail. Also, we present a bijective soft decision system based on
the bijective soft matrix theory. Moreover, we construct a multi-bijective linguistic soft decision system
by employing the matrices corresponding to the bijective soft sets generated from the linguistic variable
parameters. Finally, the system’s decision algorithm and its application for a decision making problem are
given. By using the algorithm, we determine both the linguistic variables according to the parameters and
the parameters affecting the optimal choice according to the highest linguistic decision value.

1. Introduction

In order to describe and overcome the uncertainties meeting in everyday life, many mathematical
theories such as fuzzy set [34], rough set [28], vague set [12], the interval mathematics [16] are developed.
In recent years, soft set theory introduced by Molodtsov [27] has attracted the interest of some scholars,
because there is no limited condition to the description of objects in soft set theory. Also, the convenience
of description of objects provides various benefits for the solution according to the type of problem. The
soft set theory is often used to overcome the uncertainties in various fields such as combined forecast, game
theory, decision making, incomplete information and information systems. Many decision methods were
developed according to the type of uncertainty presented in decision problems [2, 6, 8, 10, 17, 18, 24, 29, 32].
In addition to this, the decision methods based on linguistic variable parameters described in [35] were
attracted interest not only to select the optimum object but also to determine the selection order of the
objects [1, 9, 19–22, 30, 33]. Also, Gong et al. [13] introduced the concept of bijective soft set, and then
constructed a bijective soft decision system. Immediately afterwards, many authors concentrated on this
concept in handling the problems involving uncertainties in various fields [4, 14, 15, 25, 31].

Recently, the representations in the form of binary information table of soft sets [26] and matrix repre-
sentations of soft sets [7] have been used for the solution of various decision making problems. Çag̃man
and Enginog̃lu introduced some products of soft matrices which are matrix representation of soft set, and
they researched algebraic structures of these products for the set of all soft matrix in the same type. Atagün
et al. [3] generalized products defined in [7] for soft matrices in different types and they presented two

2010 Mathematics Subject Classification. Primary 03B52, 03E72; Secondary 62C86
Keywords. soft set, bijective soft set, bijective soft matrix, multi-bijective linguistic soft decision system
Received: 12 October 2017; Revised 29 May 2018; Accepted: 03 June 2018
Communicated by Marko Petković
Email addresses: huseyin.kamaci@hotmail.com (Hüseyin Kamacı), atagunakinosman@gmail.com (Akın Osman Atagün),

toktasemirhan@gmail.com (Emirhan Toktaş)
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monoid for these generalized products. Also, they constructed a decision making method completing some
deficiencies of decision method proposed in [7]. Basu et al. [5] introduced the soft matrices in different
types with a new viewpoint. They emphasize that these matrices are more useful to solve some decision
problems. Feng and Zhou [11] suggested a novel decision algorithm using the discernibility soft matrix
which is a special form of the soft matrix.

In this study, we aim adapt to the computer using the matrix representation of the bijective soft set
defined in [13]. Thus, we want to make the process of computational faster and easier. Also, we purpose
to construct a multi-system that can be used for more than one decision maker by improving the bijective
decision systems obtained by means of some products of the bijective soft sets. Moreover, two terms such
as high sales and low sales are used in [13]. We aim to use more than two terms by using the notion of
linguistic set.

In direction of these purposes, we firstly present the notion of bijective soft matrix and its operations
such as restricted-And product and relaxed-And product. We also investigate the basic properties of these
operations. At the same time, we show that the set of all bijective soft matrices is a monoid according to
the And-product. Afterwards, the bijective soft decision system which forms the basis for future sections is
established by using the concepts of max-row soft matrix and density measurement function. In the rest of
the paper, we introduce the notions of linguistic set and linguistic-valued function. By using these concepts,
we present the multi-bijective linguistic soft decision system and this decision system’s algorithm with its
application.

2. Preliminaries

The concept of the soft set was defined by Molodtsov [27] in the following manner:
Let U, E and P(U) be an initial universe set, a set of parameters and the power set of U, respectively and let
A ⊆ E.

Definition 2.1. ([27]) If there is a mapping given by F : A→ P(U), then the pair (F,A) is said to be a soft set over
U. A soft set (F,A) (or with another notation FA) can be written as a set of ordered pair

(F,A) = {(e j,F(e j))| e j ∈ E,F(e j) ∈ P(U)}

where F(e j) = ∅ if e j < A.

Hence, it is seen that a parameterized family of subset of U is a soft set over U.

Notation: S(U) denotes the set of all soft sets over U.

Definition 2.2. ([7]) Let U = {u1,u2, ...,un}, E = {e1, e2, ..., em}, A ⊆ E and let (F,A) be a soft set over U. If

ai j =

{
1, ui ∈ F(e j)
0, ui < F(e j)

then the matrix

[ai j]n×m =



a11 a12 . . . a1m
a21 a22 . . . a2m
. . . .
. . . .
. . . .

an1 an2 . . . anm


.

is called a soft matrix of the soft set (F,A) over U.

According to the definition of soft matrix, a soft set (F,A) is uniquely characterized by the matrix [ai j]. It
means that a soft set (F,A) is formally equal to its soft matrix [ai j].

Notation: SM(U) denotes the set of all soft matrices corresponding to the soft sets in S(U).



H. Kamacı et al. / Filomat 32:11 (2018), 3799–3814 3801

Example 2.3. Let U = {u1,u2,u3,u4,u5,u6} be a universal set and E = {e1, e2, e3, e4, e5} a set of parameters. If
A = {e1, e3, e5} and F : A→ P(U), F(e1) = {u1,u3,u4,u6}, F(e3) = {u3}, F(e5) = ∅, then we write a soft set

(F,A) = {(e1, {u1,u3,u4,u6}), (e3, {u3}), (e5, ∅)}.

Then, the soft matrix [ai j] ∈ SM6×5 of (F,A) is

[ai j]6×5 =



1 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1 0 0 0 0
0 0 0 0 0
1 0 0 0 0


.

Definition 2.4. ([7]) Let [ai j], [bi j] ∈ SMn×m.

1. If ai j = 0 for all i, j, then the matrix [ai j] is said to be a zero soft matrix and it is denoted by [0].
2. If ai j = 1 for all i, j, then the matrix [ai j] is said to be a universal soft matrix and it is denoted by [1].
3. If ai j ≤ bi j for all i, j, then the matrix [ai j] is said to be a soft submatrix of [bi j] and it is denoted by [ai j]⊆̃[bi j].
4. If ai j = bi j for all i, j, then [ai j] and [bi j] are said to be equal matrices and it is denoted by [ai j]=̃[bi j].
5. If ci j = max{ai j, bi j} for all i, j, then the soft matrix [ci j] is said to be union of [ai j] and [bi j] and it is denoted by

[ci j] = [ai j]∪̃[bi j].
6. If ci j = min{ai j, bi j} for all i, j, then the soft matrix [ci j] is said to be intersection of [ai j] and [bi j] and it is denoted

by [ci j] = [ai j]∩̃[bi j].
7. If ci j = 1−ai j for all i, j, then the soft matrix [ci j] is said to be complement of [ai j] and it is denoted by [ci j] = [ai j]c.

Definition 2.5. ([3]) Let U = {u1,u2, ...,un}, E = {e1, e2, ..., em}, A ⊆ E and let cardinality of A be m1. Consider
(F,A) is a soft set over U. If

ai j =

{
1, if e j ∈ A and ui ∈ F(e j)
0, if e j ∈ A and ui < F(e j)

then the matrix [ai j]n×m1 is called a reduced soft matrix of the soft set (F,A) over U. Here 1 ≤ m1 ≤ m.

In other words, let (F,A) be a soft set over U. Since e j < A implies F(e j) = ∅, by eliminating parameters
from E\A, we can construct the soft matrix corresponding to the soft set (F,A) and then the type of this soft
matrix will be n ×m1.
We remark that if A = E, then the reduced soft matrix corresponding to the soft set (F,A) is equal to the soft
matrix corresponding to the soft set (F,A). Since only the types of soft matrices and reduced soft matrices
are different, we don’t use a different display for the reduced soft matrices.

Example 2.6. Consider the soft set (F,A) in Example 2.3. Then the reduced soft matrix [ai j] ∈ SM6×3 of (F,A) is

[ai j]6×3 =



1 0 0
0 0 0
1 1 0
1 0 0
0 0 0
1 0 0


.

In this paper, from now on the universe U has been taken as |U| = n, i.e. U is a set consisting of n-elements.
Also, all soft matrices will be taken the reduced soft matrices.

Let (F,A), (F,B) ∈ S(U) and let the corresponding (reduced) soft matrices of (F,A) and (F,B) denoted by
[ai j] and [bik], respectively.
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Definition 2.7. ([3]) Generalized And-product of [ai j] and [bik], denoted by f, is defined by

f : SMn×m1 × SMn×m2 −→ SMn×m1m2

[ai j], [bik] −→ [ai j] f [bik] = [cip]

where cip = min{ai j, bik} such that j = α, p = (α−1)m2+k andα is the smallest positive integer which satisfies p ≤ αm2.

Definition 2.8. ([3]) Generalized Or-product of [ai j] and [bik], denoted by g, is defined by

g : SMn×m1 × SMn×m2 −→ SMn×m1m2

[ai j], [bik] −→ [ai j] g [bik] = [cip]

where cip = max{ai j, bik} such that j = α, p = (α − 1)m2 + k and α is the smallest positive integer which satisfies
p ≤ αm2.

Definition 2.9. ([3]) Generalized And-Not-product of [ai j] and [bik], denoted by
−

f, is defined by

−

f : SMn×m1 × SMn×m2 −→ SMn×m1m2

[ai j], [bik] −→ [ai j
−

f [bik] = [cip]

where cip = min{ai j, 1 − bik} such that j = α, p = (α − 1)m2 + k and α is the smallest positive integer which satisfies
p ≤ αm2.

Definition 2.10. ([3]) Generalized Or-Not-product of [ai j] and [bik], denoted by g
−

, is defined by

g
−

: SMn×m1 × SMn×m2 −→ SMn×m1m2

[ai j], [bik] −→ [ai j] g
−

[bik] = [cip]

where cip = max{ai j, 1 − bik} such that j = α, p = (α − 1)m2 + k and α is the smallest positive integer which satisfies
p ≤ αm2.

Example 2.11. Let U = {u1,u2,u3,u4} be a universal set and E = {e1, e2, e3, e4, e5} be the set of all parameters.
Assume that A = {e1, e2, e3, e5} and B = {e1, e2, e4} are two subsets of E. Then we can write the following soft sets.
(F,A) = {(e1, {u1,u2}), (e2, {u1,u2,u3}), (e3,U), (e5, {u1})} and (F,B) = {(e1, {u3}), (e2, {u4}), (e4, {u1,u2,u3})}.
Hence, the soft matrices [ai j] ∈ SM4×4 and [bik] ∈ SM4×3 corresponding to (F,A) and (F,B) are given as follows:

[ai j] =


1 1 1 1
1 1 1 0
0 1 1 0
0 0 1 0

 and [bik] =


0 0 1
0 0 1
1 0 1
0 1 0


Then, we obtain

[cip] = [ai j] f [bik] =


0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

.
Here the type of soft matrix [cip] is 4 × 12.

Theorem 2.12. ([3]) The operation generalized And-product is associative, i.e. if [ai j] ∈ SMn×m1 , [bik] ∈ SMn×m2

and [cil] ∈ SMn×m3 , then

([ai j] f [bik]) f [cil] = [ai j] f ([bik] f [cil]).
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Theorem 2.13. ([3]) The operation generalized Or-product is associative, i.e. if [ai j] ∈ SMn×m1 , [bik] ∈ SMn×m2 and
[cil] ∈ SMn×m3 , then

([ai j] g [bik]) g [cil] = [ai j] g ([bik] g [cil]).

Notation: Let [ai j] ∈ SMn×m be a soft matrix. The sum of values in ith row of [ai j] will be denoted by νi([ai j]).

Lemma 2.14. Let [ai j] ∈ SMn×m1 [bik] ∈ SMn×m2 be two soft matrices. Then, min{ai j, bik} = ai jbik for all i ∈ 1, 2, ...,n.

Proof. Since the components of soft matrices ai j and bik are made up of the numbers 0 and 1, the proof is
seen easily.

Theorem 2.15. Let [ai j] ∈ SMn×m1 and [bik] ∈ SMn×m2 be two soft matrices. If [cip] = [ai j] f [bik], then νi([cip]) =
νi([ai j])νi([bik])

Proof. Let [ai j] ∈ SMn×m1 and [bik] ∈ SMn×m2 be two soft matrices, and let [cip] = [ai j] f [bik]. Since
[cip] ∈ SMn×m1m2 ,

ν1([cip]) =

m1m2∑
p=1

c1p = c11 + c12 + ... + c1(m1m2)

= min{a11, b11} + min{a11, b12} + ... + min{a11, b1m2 } + min{a12, b11}

+min{a12, b12} + ... + min{a12, b1m2 } + ... + min{a1m1 , b11}

+min{a1m1 , b12} + ... + min{a1m1 , b1m2 }

= a11b11 + a11b12 + ... + a11b1m2 + a12b11 + a12b12 + ... + a12b1m2

+... + a1m1 b11 + a1m1 b12 + ... + a1m1 b1m2

= a11(b11 + b12 + ... + b1m2 ) + a12(b11 + b12 + ... + b1m2 )
+... + a1m1 (b11 + b12 + ... + b1m2 )

= (a11 + a12 + ... + a1m1 )(b11 + b12 + ... + b1m2 )

=

m1∑
j=1

a1 j

m2∑
k=1

b1k

= ν1([ai j]).ν1([bik])

Similarly, it is shown that νi([cip]) = νi([ai j])νi([bik]) for i = 2, 3, ...,n. So the proof is complete.

3. Bijective Soft Matrix and Its Operations

In this part, we define bijective soft matrix and give an example of this concept. Also, we introduce
operations of the bijective soft matrices and research algebraic structures for the bijective soft matrices using
some operations.

Definition 3.1. [13] Let (F,B) be a soft set over a common universe U where F is a mapping F : B→ P(U) and B is
nonempty parameter set. We say that (F,B) is a bijective soft set, if
i) ∪e∈BF(e) = U.
ii) For any two parameters ei, e j ∈ B, ei , e j, F(ei) ∩ F(e j) = ∅.

Notation: BS(U) denotes the set of all bijective soft sets over U.

Definition 3.2. Let [ai j] ∈ SMn×m be a soft matrix. [ai j]n×m is called a bijective soft matrix, if νi([ai j]) =
m∑

j=1
ai j = 1

for all i = 1, 2, ...,n.

Example 3.3. Assume that
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[ai j]4×5 =


1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0

.
Then, [ai j]4×5 is a bijective soft matrix since ν1([ai j]) = ν2([ai j]) = ν3([ai j]) = ν4([ai j]) = 1

Notation: BSM(U) denotes the set of all bijective soft matrices corresponding to the bijective soft sets in
BS(U).

Notation: If [F,A] denotes the soft matrix corresponding to the soft set (F,A).

Theorem 3.4. (F,A) is a bijective soft set over U. ⇔ [F,A] is a bijective soft matrix.

Proof. Assume that [F,A] = [ai j]n×m is a soft matrix. By Definitions 2.2 and 2.5, ai j = 1 ⇔ ui ∈ f (e j). Then
by Definitions 2.2, 2.5 and 3.2, νi([ai j]) = 1 for all i = 1, 2, ...,n⇔ ui ∈ f (e j) implies that ui < f (ek) for j , k.
Again, it is seen that νi([ai j]) = 1 for all i = 1, 2, ...,n ⇔ for each ui ∈ U there exist at least e j ∈ A such that
ui ∈ f (e j)⇔

⋃
e∈A

f (e) = U. Therefore the proof is seen by Definition 3.1 and 3.2.

Theorem 3.5. Let [ai j] ∈ BSMn×m be a bijective soft matrix and let [0], [1] ∈ SMn×m. Then,

i) [ai j]∩̃[1] is a bijective soft matrix.
ii) [ai j]∪̃[0] is a bijective soft matrix.

Proof. Proof is clear by Definition 2.4.

Note: In [7], the authors prove that (SM(U), ∩̃) and (SM(U), ∪̃) are monoids (closure, associativity, identity).
If [ai j] , [bi j], then [ai j]∩̃[bi j] and [ai j]∪̃[bi j] are not bijective soft matrices. Therefore, we say that (BSM(U), ∩̃)
and (BSM(U), ∪̃) are not semigroups and monoids.

Theorem 3.6. Let [ai j] ∈ BSMn×m1 and [bik] ∈ BSMn×m2 be two bijective soft matrices. Then [ai j]f [bik] is a bijective
soft matrix.

Proof. Proof is clear by Theorem 2.15.

Lemma 3.7. Let U = {u1,u2, ...,un} be an initial universe set. Then

[ai j] f [1]n×1 = [1]n×1 f [ai j] = [ai j]

for each [ai j] ∈ BSM(U).

Theorem 3.8. According to operation And-product, BSM(U) is a monoid.

Proof. By Theorem 2.12 and Theorem 3.6, (BSM(U),f) is a semigroup. Then (BSM(U),f) is a monoid by
Lemma 3.7.

Note: In [3], the authors put forward that (SM(U),f) and (SM(U),g) are monoids. Since [ai j] g [bik] is
not a bijective soft matrix, we say that (BSM(U),g) is not a semigroup and monoid.

Corollary 3.9. If (BSM(U), ∗) is a semigroup (monoid, group) then (SM(U), ∗) is a semigroup (monoid, group),
where ∗ is a binary operation, but not vice versa.

Before introducing two new soft products, we need to give the following definition. We describe the com-
parison of bijective soft matrices using their columns by this definition.

Notation: Let [ai j] ∈ BSMn×m be a bijective soft matrix. The (1 ≤ q ≤ j) qth column of [ai j] will be
denoted by |ai j|q.
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Definition 3.10. Let [ai j] ∈ BSMn×m1 and [bik] ∈ BSMn×m2 be bijective soft matrices. Then

1. |ai j|q is called a (proper) sub-column of |bik|r, denoted by (|ai j|q<̃|bik|r, if aiq < bir) |ai j|q≤̃|bik|r, if aiq ≤ bir for all
1 ≤ i ≤ n where 1 ≤ q ≤ m1 and 1 ≤ r ≤ m2.

2. [ai j] is a bijective soft (proper) sub-column matrix of [bik], denoted by ([ai j]@̃[bik], if |ai j|q ≤ |bik|r for at least one
term |ai j|q < |bik|r) [ai j]ṽ[bik] if there exist r ∈ {1, 2, ...,m2} providing |ai j|q ≤ |bik|r for each 1 ≤ q ≤ m1.

3. |ai j|q is called a equal-column of |bik|r, denoted by |ai j|q = |bik|r, if aiq = bir for all 1 ≤ i ≤ n, where 1 ≤ q ≤ m1
and 1 ≤ r ≤ m2. Then, [ai j] and [bik] are bijective soft equal-column matrices, denoted by [ai j]=̃[bik], if there
exist r ∈ {1, 2, ...,m2} providing |ai j|q = |bik|r for each 1 ≤ q ≤ m1.

Example 3.11. i) Assume that [ai j] and [bik] are bijective soft matrices given as follows

[ai j]5×3 =


1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

 and [bik]5×2 =


1 0
1 0
1 0
0 1
0 1

.
Then [ai j] is bijective soft proper sub-column matrix of [bik] since |ai j|1<̃|bik|1, |ai j|2<̃|bik|1 and |ai j|3 = |bik|2.
ii) Assume that [ai j] and [bik] are bijective soft matrices given as follows

[ai j]5×2 =


1 0
0 1
0 1
1 0
1 0

 and [bik]5×2 =


0 1
1 0
1 0
0 1
0 1

.
Then [ai j] and [bik] are bijective soft equal-column matrices since |ai j|1 = |bik|2 and |ai j|2 = |bik|1.

Definition 3.12. Let (F,A), (F,B) ∈ BS(U) and let [ai j] and [bik], their bijective soft matrices, respectively. Then,
restricted-And product of [ai j] and [bik] denoted by [ai j]f˜[bik] is defined by

f˜ : BSMn×m1 × BSMn×m2 −→ SMn×m1m2

[ai j], [bik] −→ [ai j]f˜[bik] = [cip]

where the rth column of [cip] is given as

|cip|r =

{
|ai j|s; if |ai j|s ≤ |bik|t
|0|; if |ai j|s � |bik|t

for 1 ≤ r ≤ m1m2, 1 ≤ s ≤ m1 and 1 ≤ t ≤ m2 such that s = α, r = (α− 1)m2 + t and α is the smallest positive integer
which satisfies r ≤ αm2. Here, the type of soft matrix [cip] is n ×m1m2.

Definition 3.13. Let (F,A), (F,B) ∈ BS(U) and let [ai j] and [bik], their corresponding bijective soft matrices,respectively.
Then, relaxed-And product of [ai j] and [bik] denoted by [ai j]f̃[bik] is defined by

f̃ : BSMn×m1 × BSMn×m2 −→ SMn×m1m2

[ai j], [bik] −→ [ai j]f̃[bik] = [cip]

where the rth column of [cip] is given as

|cip|r =

{
|0|; if |ai j|s ≤ (|bik|t)c

|ai j|s; if |ai j|s � (|bik|t)c

for 1 ≤ r ≤ m1m2, 1 ≤ s ≤ m1 and 1 ≤ t ≤ m2 such that s = α, r = (α − 1)m2 + t and α is the smallest positive
integer which satisfies r ≤ αm2, and the complement of |bik|t is denoted by (|bik|t)c. Here, the type of soft matrix [cip]
is n ×m1m2.
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Example 3.14. Assume that [ai j], [bik] ∈ BSM4×5 are bijective soft matrices given as follows

[ai j] =


1 0 0
1 0 0
0 0 1
0 1 0

 and [bik] =


1 0
0 1
1 0
0 1


Then we obtain

[cip] = [ai j]f˜[bik] =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

 and [dip] = [ai j]f̃[bik] =


1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

 .
Here the types of soft matrices [cip] and [dip] are 4 × 6.

Proposition 3.15. Let [ai j] ∈ BSMn×m1 be a bijective soft matrix. Then,

i) [ai j]f˜[1]n×1 = [ai j]
ii) [ai j]f̃[1]n×1 = [ai j]

iii) [ai j]f˜[ai j] = [ai j]f̃[ai j]
iv) [ai j]f˜[ai j]c = [ai j]f̃[ai j]c

Proof. i) Let [ai j] ∈ BSMn×m1 and [cip] = [ai j]f˜[1]n×1. Then |cip|r = |ai j|s by Definition 3.12 since |ai j|s ≤ |1| for all
s ∈ {1, 2, ...,m1}. Also r = s since m2 = 1 and t = 1. Therefore [cip] = [ai j] since |cip|r = |ai j|r for all r ∈ {1, ...,m1}.
ii) Let [ai j] ∈ BSMn×m1 and [cip] = [ai j]f̃[1]n×1. Then |cip|r = |ai j|s since

|cip|r =

{
|0|; if |ai j|s = |0|
|ai j|s; if |ai j|s , |0|

by Definition 3.13. Also r = s since m2 = 1 and t = 1. Therefore [cip] = [ai j] since |cip|r = |ai j|r for all
r ∈ {1, ...,m1}.
iii) Let [ai j] ∈ BSMn×m1 be a bijective soft matrix and let [cip] = [ai j]f˜[ai j] and [diq] = [ai j]f̃[ai j]. If |ai j|s ≤ |ai j|t
for all s, t ∈ {1, 2, ...,m1}, then |ai j|s � (|ai j|t)c since [ai j] is a bijective soft matrix. Hence

|cip|r = |diq|r = |ai j|s. (1)

Also if |ai j|s � |ai j|t for all s, t ∈ {1, 2, ...,m1}, then |ai j|s ≤ (|ai j|t)c since [ai j] is a bijective soft matrix. Hence

|cip|r = |diq|r = |0|. (2)

Then, it is obtained [ai j]f˜[ai j] = [ai j]f̃[ai j] from (1) and (2).
iv) Let [ai j] ∈ BSMn×m1 be a bijective soft matrix and let [cip] = [ai j]f˜[ai j]c and [diq] = [ai j]f̃[ai j]c. If |ai j|s ≤ (|ai j|t)c

for all s, t ∈ {1, 2, ...,m1}, then |ai j|s � |ai j|t since [ai j] is a bijective soft matrix. Hence

|cip|r = |diq|r = |ai j|s. (3)

Also if |ai j|s � (|ai j|t)c for all s, t ∈ {1, 2, ...,m1} then |ai j|s ≤ |ai j|t since [ai j] is a bijective soft matrix. Hence

|cip|r = |diq|r = |0|. (4)

Then, it is obtained [ai j]f˜[ai j]c = [ai j]f̃[ai j]c from (3) and (4).
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4. Bijective Soft Decision System

In this part, we define density measurement function and calculate the density ratio of a bijective soft
matrix on the other one. Also, we give concepts of bijective soft decision system and density of bijective
soft decision system.

Definition 4.1. ([23]) Let [ci j] ∈ SMn×m be a soft matrix. Then soft max-row function Mr is defined as follows

Mr : SMn×m −→ SMn×1, Mr([ci j]) = [di1]

where di1 = max j∈{1,2,...,m} ci j.
The one column soft matrix Mr([ci j]) is called max-row soft matrix.

Example 4.2. For the soft matrix [cip] given in Example 3.14, max-row soft matrix of [cip] is

Mr([cip]) =


0
0
1
1

.
Definition 4.3. Let [F,A],[G,B] be two soft matrices corresponding to bijective soft sets (F,A) and (G,B) and also
let Mr([ci j]) = [di1] be a max-row soft matrix of [ci j] = [F,A]f˜[G,B]. Then density measurement function of the
soft matrix [F,A] on the soft matrix [G,B] is defined by d f ([di1]) such that

d f : SMn×1 −→ Z

[di1] −→ d f ([di1]) =

n∑
i=1

di1

Definition 4.4. Assume that [F,A], [G,B] are two bijective soft matrices corresponding to bijective soft sets (F,A)
and (G,B) over the common universe U, where A ∩ B = ∅. The τ density ratio of [F,A] on [G,B] is a number

τ = δ([F,A]; [G,B]) =
d f (Mr([F,A]f˜[G,B]))

|U| .

Here it is clear that 0 ≤ τ ≤ 1.

The concept of density is to describe effect degree of a bijective soft matrix on the other one.
If τ = 1 we say [F,A] is full density on [G,B].
If τ = 0 we say [F,A] is null density on [G,B].
To illustrate concept, will give following example.

Example 4.5. For the bijective soft matrices [F,A] = [ai j] and [G,B] = [bik] given in Example 3.14,

τ = δ([F,A]; [G,B]) =
d f (Mr([cip]))

|U| = 1
2 .

From now on, [Fi,Ei] are r bijective soft matrices corresponding to bijective soft sets (Fi,Ei) for (i = 1, 2, ..., r)
over a common universe U, where any Ei ∩ E j = ∅ (i, j = 1, 2, ..., r; i , j) and

[F,E] = [F1,E1] f [F2,E2] f ... f [Fr,Er] =
∧r

i=1[Fi,Ei].

Definition 4.6. Let [G,B] be a bijective soft matrix corresponding to soft set (G,B) over the common universe U
such that B∩ Ei = ∅ for (i = 1, 2, ..., r). Then [G,B] is called the decision soft matrix and the triple ([F,E]; [G,B] : U)
is called a bijective soft decision system over a common universe U.

Definition 4.7. The density ratio of [F,E] on [G,B] is called bijective soft decision system density of ([F,E]; [G,B] :
U), formulated by
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τ = δ([F,E]; [G,B]).

Definition 4.8. Let τ be the bijective soft decision density of ([F,E]; [G,B] : U). If m < r and δ(
∧m

i=1[Fi,Ei]; [G,B]) =
τ, then (

∧m
i=1[Fi,Ei]; [G,B]) is called a reduction bijective soft decision system of ([F,E]; [G,B] : U).

By Definition 4.8, the soft matrices having no influence on decision making are obtained. Thus, elimination
of the parameters generating these matrices is provided.

Example 4.9. Assume that [F1,E1], [F2,E2], [F3,E3] and [G,B] are bijective soft matrices given as follows

[F1,E1] =


1 0 0
1 0 0
0 1 0
0 0 1
1 0 0

, [F2,E2] =


1 0
1 0
1 0
0 1
0 1

, [F3,E3] =


1 0
1 0
1 0
1 0
0 1

 and [G,B] =


1 0
0 1
1 0
0 1
1 0

.
Then, we obtain τ = δ([F,E]; [G,B]) = 3

5 and δ([F1,E1]f [F2,E2]; [G,B]) = 3
5 . Hence, [F1,E1]f [F2,E2]; [G,B] : U)

is a reduction bijective soft decision system of ([F,E], [G,B],U).

As seen in Example 4.9, the soft matrix [F3,E3] doesn’t affect the density ratio of system. Thus, it appears
that the parameter set E3 doesn’t affect the decision.

Notation: The tth column of matrix [G,B] and the rth column of matrix [H,C] will be denoted by |G,B|t and
|H,C|r, respectively.

Definition 4.10. Let [H,C] =
∧m

i=1[Fi,Ei] and let ([H,C]; [G,B] : U) be a reduction bijective soft decision system
of ([F,E]; [G,B] : U). If |H,C|r≤̃|G,B|t then d f (|H,C|r)/d f (|G,B|t) is said to be a decision component induced by
[H,C] and denotes the effect ratio of decision component.
Here, t ≤ |B| and r ≤ |C| such that |B| and |C| denote the element numbers of B and C, respectively..

Example 4.11. Consider the bijective soft matrices [F1,E1], [F2,E2], [F3,E3] and [G,B] given in Example 4.9. Let
[H,C] = [F1,E1]f [F2,E2]. We obtain d f (|H,C|2)/d f (|G,B|1) = 1

3 since |H,C|2≤̃|G,B|1, and d f (|H,C|6)/d f (|G,B|2) =
1
2 since |H,C|6≤̃|G,B|2.

5. Multi-Bijective Linguistic Soft Decision System

In this part, we introduce the notions of linguistic set and linguistic-valued function. Also, we built
multi-bijective linguistic soft decision system. Afterwards, we give a formula calculating the decisive effect
ratio of each column of the reduction bijective soft matrix. Finally, we construct a novel decision method
using these concepts.

Definition 5.1. ([21]) Let B = {t0, t1, ..., t`−1, t`, t`+1, ..., t2`} be a finite and fully ordered discrete term set where
` ∈N. Then B is called a linguistic set. The following characteristics are required:

1. ti ≤ t j ⇔ i ≤ j for i, j ∈ {0, 1, ..., 2`}.
2. The negation of element ti for i ∈ {0, 1, ..., 2`} is the element t2`−i.
3. max(ti, t j) = ti if ti ≥ t j.
4. min(ti, t j) = ti if ti ≤ t j.

Here the term t` is called a middle term of the set B.

Definition 5.2. Let B = {t0, t1, ..., t`−1, t`, t`+1, ..., t2`} be a linguistic set. Then

fL : [0, 1] −→ B

x −→ fL(x) =


t[|2`x|], if 0 ≤ x < 0, 5

t`, if x = 0, 5
t(−[|−2`x|]), if 0, 5 < x ≤ 1

is called a linguistic-valued function related to B.
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Example 5.3. Let B = {t0 = very bad, t1 = bad, t2 = normal, t3 = 1ood, t4 = very 1ood} for ` = 2. Then B is a
linguistic set. Also, t2 = normal is middle term of B. If we consider linguistic-valued function fL for the set B, then
we obtain fL(0) = t0, fL(0, 2) = t0, fL(0, 43) = t1, fL(0, 5) = t2, fL(0, 625) = t3, fL(0, 75) = t3 and fL(1) = t4.

Remark: From now on, the set B denotes a linguistic set.

Definition 5.4. Let [G1,B], [G2,B], ..., [Gκ,B] be bijective soft matrices corresponding to the bijective soft sets
(G1,B), (G2,B), ..., (Gκ,B) over the common universe U, respectively. Also let B ∩ Ei = ∅ for i = 1, 2, ..., r and
let ([F,E]; [G1,B] : U), ([F,E]; [G2,B] : U), ..., ([F,E]; [Gκ,B] : U) be bijective linguistic soft decision systems over
a common universe set. Then [G1,B], [G2,B], ..., [Gκ,B] are called the linguistic multi-decision soft matrices and
([F,E]; [G1,B], [G2,B], ..., [Gκ,B] : U) is called a multi-bijective linguistic soft decision system over a common
universe U.

Definition 5.5. Let τ1 = δ([F,E], [G1,B]), τ2 = δ([F,E], [G2,B]),...,τκ = δ([F,E], [Gκ,B]) be bijective linguistic
soft decision system densities of [F,E] on [G1,B], [F,E] on [G2,B],...,[F,E] on [Gκ,B], respectively. Then density
of [F,E] on [G1,B], [G2,B], ..., [Gκ,B] is said to be multi-bijective linguistic soft decision system density of
([F,E]; [G1,B], [G2,B], ..., [Gκ,B] : U) and formulated by

< = δ([F,E]; [G1,B], [G2,B], ..., [Gκ,B]) = τ1+τ2+...+τκ
κ .

Definition 5.6. Let ([F,E]; [G1,B], [G2,B], ..., [Gκ,B] : U) be a multi-bijective linguistic soft decision system. If m ≤
r and δ([F,E]; [G1,B]) = δ(

∧m
i=1[Fi,Ei]; [G1,B]), δ([F,E]; [G2,B]) = δ(

∧m
i=1[Fi,Ei]; [G2,B]),...,δ([F,E]; [Gκ,B]) =

δ(
∧m

i=1[Fi,Ei]; [Gκ,B]) then (
∧m

i=1[Fi,Ei]; [G1,B], [G2,B], ..., [Gκ,B] : U) is called a reduction multi-bijective lin-
guistic soft decision system of ([F,E]; [G1,B], [G2,B], ..., [Gκ,B] : U).

Example 5.7. Consider the bijective soft matrices [F1,E1], [F2,E2] and [F3,E3] given in Example 4.9. Let B = {t0 =
small, t1 = medium, t2 = lar1e} be a linguistic set and let [G1,B], [G2,B] be bijective soft matrices given as follows

[G1,B] =


1 0 0
0 1 0
1 0 0
0 0 1
1 0 0

 and [G2,B] =


1 0 0
1 0 0
0 1 0
1 0 0
0 0 1

.
Then, we obtain ([F1,E1] f [F2,E2]; [G1,B], [G2,B]; U) is a reduction multi-bijective linguistic soft decision system
of ([F,E]; [G1,B], [G2,B]; U) since δ([F,E]; [G1,B]) = δ([F1,E1] f [F2,E2]; [G1,B]) = 3

5 and δ([F,E]; [G2,B]) =
δ([F1,E1] f [F2,E2]; [G2,B]) = 1.

Notation: The tεth column of [Gλ,B] for λ ∈ {1, 2, ..., κ} is denoted by |Gλ,B|tε .

Definition 5.8. Let [H,C] =
∧m

i=1[Fi,Ei] and let ([H,C]; [G1,B], [G2,B], ..., [Gκ,B] : U) be a reduction multi-
bijective linguistic soft decision system of
([F,E]; [G1,B], [G2,B], ..., [Gκ,B] : U).
For I = {1 ≤ λ ≤ κ : |H,C|r≤̃|Gλ,B|tε f or any 0 ≤ ε < `},

ηr =
∑
λ∈I

(` − ε)d f (|H,C|r)/d f (|Gλ,B|tε )

(where ε is a variable depending on λ) is called negative decision component induced by [H,C] and denotes the
negative effect ratio of decision component for rth column.
For J = {1 ≤ λ ≤ κ : |H,C|r≤̃|Gλ,B|tε f or any ` ≤ ε ≤ 2`},

σr =
∑
λ∈J

(ε − `)d f (|H,C|r)/d f (|Gλ,B|tε )

(where ε is a variable depending on λ) is called positive decision component induced by [H,C] and denotes the
positive effect ratio of decision component for rth column.
Here, tε ≤ |B| and r ≤ |C| such that |B| and |C| denote the element numbers of B and C, respectively.
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Definition 5.9. Consider ([F,E]; [G1,B], [G2,B], ..., [Gκ,B] : U), ηr and σr given in Definition 5.8. Then,

Pr =
σr−ηr

2`(|I|r+|J|r)

is called a decisive effect ratio for rth column of [H,C] where |I|r and |J|r denote the element numbers of I and J for
rth column, respectively.
Here, it means that for the linguistic decision value x = 1

2 +Pr

• if Pr > 0, then the parameters generating rth column of [H,C] affect the linguistic parameter corresponding to
fL(x) = t(−[|−2`x|]).

• if Pr = 0, then the parameters generating rth column of [H,C] affect the linguistic parameter corresponding to
fL(x) = t`.

• if Pr < 0, then the parameters generating rth column of [H,C] affect the linguistic parameter corresponding to
fL(x) = t[|2`x|].

Example 5.10. Consider the bijective soft matrices [F1,E1], [F2,E2], [F3,E3] given in Example 4.9 and [G1,B], [G2,B]
given in Example 5.7. We know that ([F1,E1] f [F2,E2]; [G1,B], [G2,B] : U) is a reduction multi-bijective linguistic
soft decision system of ([F,E]; [G1,B], [G2,B] : U) by Example 5.7. Let [H,C] = [F1,E1]f [F2,E2]. Then, the negative
decision component is η2 = d f (|H,C|2)/d f (|G1,B|1) = 1

3 since |H,C|2≤̃|G1,B|1 for r = 2 and the positive decision
component is σ2 = d f (|H,C|2)/d f (|G2,B|3) = 1 since |H,C|2≤̃|G2,B|3 for r = 2. Therefore,

P2 =
σ2−η2

2.1.2 =
1.1−1. 1

3
4 = 1

6 .

By Definition 5.9, we can say that the parameters generating 2. column of [H,C] effect the linguistic parameter (large)
corresponding to t(−[|−2.1. 2

3 |])
= t2 for the linguistic decision value x = 2

3 since P2 > 0.

Now, we can construct a novel decision method by the following algorithm.

Algorithm

Step 1. Construct the bijective soft sets (Fi,Ei), (G1,B), (G2,B),...,(Gκ,B).

Step 2. Construct the bijective soft matrices [F,E], [G1,B], [G2,B],...,[Gκ,B].

Step 3. Calculate each bijective linguistic soft decision system density of
([F,E]; [G1,B] : U), ([F,E]; [G2,B] : U), ..., ([F,E]; [Gκ,B] : U).

Step 4. Find a reduction multi-bijective linguistic soft decision system of ([F,E]; [G1,B], [G2,B], ..., [Gκ,B] :
U), if possible.

Step 5. Obtain positive and negative decision components and calculate the decisive effect ratios and the
linguistic decision values.

Step 6. Determine the linguistic parameters with linguistic decision value.

6. An Application of Multi-Bijective Linguistic Soft Decision System

Assume that a company wants to export cell phones to the countries K, L and M. For this aim, the
company examines the features and customer satisfaction rates of the latest version of cell phones of seven
companies which already exports cell phones to these countries. After this examination, the company
wants to produce cell phones after taking these satisfaction rates into account.
U = {u1,u2,u3,u4,u5,u6,u7} denotes the alternative set which describes the latest version of cell phones that
seven companies export to these countries. E denotes the parameter set, E = E1 × E2 × E3. E1 describes
the cell phone’s camera quality, E2 describes the weight and thickness of the cell phone and E3 describes
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the cell phone’s processor speed. These parameter sets are E1 = {x1 = normal, x2 = 1ood, x3 = very 1ood},
E2 = {y1 = li1ht − thin, y2 = heavy − thick} and E3 = {z1 = speedy, z2 = extremely speedy}, respectively. Also,
the linguistic set B denotes customer satisfaction rates of the cell phones such that B = {t0 = very low, t1 =
low, t2 = sli1htly low, t3 = moderate, t4 = sli1htly hi1h, t5 = hi1h, t6 = very hi1h}.
Step 1. The company has the following bijective soft sets
(F1,E1) = {(x1, {u4,u7}), (x2, {u3,u6}), (x3, {u1,u2,u5})},
(F2,E2) = {(y1, {u1,u4,u5,u6}), (y2, {u2,u3,u7})},
(F3,E3) = {(z1, {u1,u2,u5}), (z2, {u3,u4,u6,u7})},
(G1,B) = {(t1, {u4}), (t3, {u3,u7}), (t4, {u2,u6}), (t5, {u1,u5})} for the country K,
(G2,B) = {(t1, {u7}), (t2, {u3,u4}), (t3, {u2}), (t4, {u5}), (t5, {u6}), (t6, {u1})} for the country L,
(G3,B) = {(t0, {u7}), (t3, {u4}), (t4, {u3,u6}), (t6, {u1,u2,u5})} for the country M.
Step 2. The company construct the bijective soft matrices as follows

[F,E] =



0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0


, [G1,B] =



0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0


,

[G2,B] =



0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0


and [G3,B] =



0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
1 0 0 0 0 0 0


.

Step 3. The company obtains each bijective linguistic soft decision system density as

τ1 = δ([F,E]; [G1,B]) =
d f (Mr([F,E]f˜[G1,B]))

|U| = 1,

τ2 = δ([F,E]; [G2,B]) =
d f (Mr([F,E]f˜[G2,B]))

|U| = 5
7 ,

τ3 = δ([F,E]; [G3,B]) =
d f (Mr([F,E]f˜[G3,B]))

|U| = 1.
Step 4. It is seen that ([F1,E1]∧ [F2,E2]; [G1,B], [G2,B], ..., [Gν,B] : U) is a reduction multi-bijective linguistic
soft decision system since
δ([F1,E1] ∧ [F2,E2]; [G1,B]) = 1, δ([F1,E1] ∧ [F2,E2]; [G2,B]) = 5

7 and δ([F1,E1] ∧ [F2,E2]; [G3,B]) = 1.
Step 5. It is obtained
P1 = − 5

36 , then x = 13
36 and t[|2.3. 13

36 |]
= t2. P2 = − 5

18 , then x = 2
9 and t[|2.3. 2

9 |]
= t1.

P3 = 1
6 , then x = 2

3 and t(−[|−2.3. 2
3 |])

= t4. P4 = 0, then x = 1
2 and t` = t3.

P5 = 1
3 , then x = 5

6 and t(−[|−2.3. 5
6 |])

= t5. P6 = 1
12 , then x = 7

12 and t(−[|−2.3. 7
12 |])

= t4.
Step 6. The company can determine the features of the cell phones which will be produced in the near
future using the following:

1. If the cell phone’s camera quality is normal and the weight-thickness is light-thin, then slightly low
customer satisfaction( 13

36 ).
2. If the cell phone’s camera quality is normal and the weight-thickness is heavy-thick, then low customer

satisfaction( 2
9 ).

3. If the cell phone’s camera quality is good and the weight-thickness is light-thin, then slightly high
customer satisfaction( 2

3 ).
4. If the cell phone’s camera quality is good and the weight-thickness is heavy-thick, then moderate

customer satisfaction( 1
2 ).
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5. If the cell phone’s camera quality is very good and the weight-thickness is light-thin, then high
customer satisfaction( 5

6 ).
6. If the cell phone’s camera quality is very good and the weight-thickness is heavy-thick, then slightly

high customer satisfaction( 7
12 ).

For instance, ( 5
6 ) means that five of six customers can be satisfied if the company produces cell phone whose

camera quality is very good and the weight-thickness is light-thin.

7. Conclusion

Decision making problems can have some alternatives that do not correspond to the parameters of
the decision makers, in general. If there is exactly one parameter for every alternative then the presented
methods to solve this kind of problems is not sufficient. A new solution method which employs bijective
soft sets was given in [13]. However, since this method was built upon the soft set structure, the calculations
take very long time. In addition, it is not efficient when the number of alternatives and parameters are
too many. Relatedly, we introduced the bijective soft matrix theory in this study. Thus, we increased the
computation speed by ensuring transfer to the computer via matrix. Also, we created a new decision
method, which employs the bijective soft matrix, by improving the method presented in [13].

Appendix

Scilab Algorithms:
We give Scilab codes of f-product, f˜-product and f̃-product. We can use the following algorithms in
terms of convenience for multi-bijective linguistic decision system involving a large number of bijective
soft matrices.

for f-product and Multi-f-product for f˜-product for f̃-product

function c=andprod(a,b)

[n,m1]=size(a);

[n,m2]=size(b);

c=zeros(n,m1*m2);

for i=1:n

for j=1:m1

for k=1:m2

p=(j-1)*m2+k;

c(i,p)=a(i,j)*b(i,k);

end

end

end

endfunction

function f=andprodmulti(varargin)

r=argn(2);

X=varargin(1);

for i=2:r

X=andprod(X,varargin(i));

end

f=X

endfunction

function R=restand(f,g)

[n,m1]=size(f);

[n,m2]=size(g);

R=zeros(n,m1*m2);

for j=1:m1

for k=1:m2

p=(j-1)*m2+k;

if f(:,j)<=g(:,k)

R(:,p)=f(:,j);

else

R(:,p)=zeros(‘c’)

end

end

end

endfunction

function Rl=reland(f,g)

[n,m1]=size(f);

[n,m2]=size(g);

Rl=zeros(n,m1*m2);

for j=1:m1

for k=1:m2

p=(j-1)*m2+k;

if f(:,j)<=1-g(:,k)

Rl(:,p)=zeros(‘c’);

else

Rl(:,p)=f(:,j)

end

end

end

endfunction

Note that a, b, f, g in this table represent bijective soft matrices.
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