On Extensions of Singular Fourth Order Dynamic Operators on Time Scales

Hüseyin Tuna ${ }^{\text {a }}$, Songül Bayrak ${ }^{\text {b }}$
${ }^{a}$ Mehmet Akif Ersoy University Faculty of Arts and Sciences, Department of Mathematics, 15030 Burdur/TURKEY
${ }^{b}$ Mehmet Akif Ersoy University Institute of Science and Technology, Department of Mathematics, 15030 Burdur/TURKEY

Abstract

In this work, we consider a singular fourth order dynamic operator on time scales. We construct a space of boundary values. Later, we give a description of all maximal dissipative, self-adjoint and other extensions of singular fourth order differential operators on unbounded time scales.

1. Introduction

By the time scale calculus, we mean a unification of continuous and discrete analysis. In the early 1990s, the time scale calculus was introduced in [30] and since then, it has received a lot of attention. The theory of dynamic equations on time scales unifies the theories of differential equations and difference equations. The dynamic equations on time scales have several important applications, e.g. in the study of heat transfer, insect population models, epidemic models, stock market and neural networks, etc. (see [30]-[34]). On the other hand, we encounter the extensions of symmetric operators in many areas of mathematical physics, e.g. in solvable models of quantum mechanics and quantization problems. The extension theory was developed originally by J. von Neumann [19]. In [2], Calkin gave the description of all self-adjoint extensions of a symmetric operator, in terms of abstract boundary conditions. Later, Rofe- Beketov [20] described self-adjoint extensions of a symmetric operator, in terms of abstract boundary conditions with the aid of linear relations. The notion of a space of boundary values were introduced by Bruk [1] and Kochubei [7]. Using this notion, they described all maximal dissipative, accretive, self-adjoint extensions of symmetric operators. This problem has been investigated by many mathematicians (see [5],[6],[8]-[17]). For a more comprehensive discussion of extension theory of symmetric operators, the reader is referred to [3]. In this paper, a space of boundary values is constructed for singular fourth-order dynamic operators. We describe all maximal dissipative, accretive, self-adjoint and other extensions, in terms of boundary conditions. The organization of this paper is as follows. In Section 2, certain essential properties of time scales are included for the convenience of the reader. In Section 3, we construct a space of boundary values for singular fourth order dynamic operators in Lim-2 Case. We describe all maximal dissipative, accretive, self-adjoint and other extensions, in terms of boundary conditions. Finally, in Section 4, we give a description of all extensions of singular fourth order dynamic operators in Lim-4 Case.

[^0]
2. Preliminaries

First, we recall some necessary fundamental concepts related to time scales, and we refer to [23]-[30] for more details.

Definition 2.1. Let \mathbb{T} be a time scale. The forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ is defined by

$$
\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}, t \in \mathbb{T}
$$

and the backward jump operator $\rho: \mathbb{T} \rightarrow \mathbb{T}$ is defined by

$$
\rho(t)=\sup \{s \in \mathbb{T}: s<t\}, t \in \mathbb{T}
$$

It is convenient to have graininess operators $\mu_{\sigma}: \mathbb{T} \rightarrow[0, \infty)$ and $\mu_{\rho}: \mathbb{T} \rightarrow(-\infty, 0]$ defined by $\mu_{\sigma}(t)=\sigma(t)-t$ and $\mu_{\rho}(t)=\rho(t)-t$, respectively. A point $t \in \mathbb{T}$ is left-scattered if $\mu_{\rho}(t) \neq 0$ and left-dense if $\mu_{\rho}(t)=0$. A point $t \in \mathbb{T}$ is right-scattered if $\mu_{\sigma}(t) \neq 0$ and right-dense if $\mu_{\sigma}(t)=0$. We introduce the sets $\mathbb{T}^{k}, \mathbb{T}_{k}, \mathbb{T}^{*}$ which are derived from the time scale \mathbb{T} as follows. If \mathbb{T} has a left-scattered maximum t_{1}, then $\mathbb{T}^{k}=\mathbb{T}-\left\{t_{1}\right\}$, otherwise $\mathbb{T}^{k}=\mathbb{T}$. If \mathbb{T} has a right-scattered minimum t_{2}, then $\mathbb{T}_{k}=\mathbb{T}-\left\{t_{2}\right\}$, otherwise $\mathbb{T}_{k}=\mathbb{T}$. Finally, $\mathbb{T}^{*}=\mathbb{T}^{k} \cap \mathbb{T}_{k}$.

Definition 2.2. A function f on \mathbb{T} is said to be Δ-differentiable at some point $t \in \mathbb{T}^{k}$ if there is a number $f^{\Delta}(t)$ such that for every $\varepsilon>0$ there is a neighborhood $U \subset \mathbb{T}$ of t such that

$$
\left|f(\sigma(t))-f(s)-f^{\Delta}(t)(\sigma(t)-s)\right| \leq \varepsilon|\sigma(t)-s|, \quad s \in U .
$$

Analogously, one may define the notion of ∇-differentiability of some function using the backward jump ρ. One can show that

$$
f^{\Delta}(t)=f^{\nabla}(\sigma(t)), \quad f^{\nabla}(t)=f^{\Delta}(\rho(t))
$$

for continuously differentiable functions (see [23]).
Example 2.3. If $\mathbb{T}=\mathbb{R}$, then we have

$$
\sigma(t)=t, f^{\Delta}(t)=f^{\prime}(t)
$$

If $\mathbb{T}=\mathbb{Z}$, then we have

$$
\sigma(t)=t+1, f^{\Delta}(t)=\Delta f(t)=f(t+1)-f(t)
$$

If $\mathbb{T}=q^{\mathbb{N}_{0}}=\left\{q^{k}: q>1, k \in \mathbb{N}_{0}\right\}$, then we have

$$
\sigma(t)=q t, f^{\Delta}(t)=\frac{f(q t)-f(t)}{q t-t}
$$

Definition 2.4. Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a function, and $a, b \in \mathbb{T}$. If there exists a function $F: \mathbb{T} \rightarrow \mathbb{R}$, such that $F^{\Delta}(t)=f(t)$ for all $t \in \mathbb{T}^{k}$, then F is a Δ-antiderivative of f. In this case the integral is given by the formula

$$
\int_{a}^{b} f(t) \Delta t=F(b)-F(a) \text { for } a, b \in \mathbb{T}
$$

Analogously, one may define the notion of ∇-antiderivative of some function.
Let $L_{\Delta}^{2}\left(\mathbb{T}^{*}\right)$ be the space of all functions defined on \mathbb{T}^{*} such that

$$
\|f\|:=\left(\int_{a}^{b}|f(t)|^{2} \Delta t\right)^{1 / 2}<\infty
$$

Let \mathbb{T} be a time scale which is bounded from below and unbounded from above such that inf $\mathbb{T}=a>-\infty$ and $\sup \mathbb{T}=\infty$. We will denote \mathbb{T} also as $[a, \infty)_{\mathbb{T}}$. The space $L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}$ is a Hilbert space with the inner product

$$
\langle f, g\rangle:=\int_{a}^{\infty} f(t) \overline{g(t)} \Delta t, \quad f, g \in L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}
$$

(see [21]). We consider the fourth order dynamic equation

$$
\begin{equation*}
\Upsilon x(t):=\left(p_{0} x^{\Delta \nabla}\right)^{\nabla \Delta}(t)-\left(p_{1} x^{\nabla}\right)^{\Delta}+p_{2}(t) x(t)=\lambda x(t), t \in[a, \infty)_{\mathbb{T}}, \tag{1}
\end{equation*}
$$

and assume that p_{0}, p_{1} and p_{2} are real-valued, p_{0}^{-1}, p_{1} and p_{2} are locally Δ-integrable functions on $[a, \infty)_{\mathbb{T}}$, and $p_{0}>0$ on $[a, \infty)_{\mathbb{T}}$. For simplicity of notations, we write

$$
\begin{gathered}
x^{[0]}=x \\
x^{[1]}=x^{\Delta} \\
x^{[2]}=p_{0} x^{\Delta \nabla} \\
x^{[3]}=p_{1} x^{\nabla}-\left(x^{[2]}\right)^{\nabla} \\
x^{[4]}=p_{2} x-\left(x^{[3]}\right)^{\Delta}
\end{gathered}
$$

Now, we will convert (1) to the Hamiltonian system form. Thus we put

$$
X=\left[\begin{array}{c}
x \\
x^{\Delta} \\
-\left(p_{0} x^{\Delta \nabla}\right)^{\Delta}+p_{1} x^{\Delta} \\
p_{0} x^{\Delta \Delta}
\end{array}\right], \widehat{X}=\left[\begin{array}{c}
x \\
x^{\Delta} \\
-\left(p_{0} x^{\Delta \nabla}\right)^{\nabla}+p_{1} x^{\nabla} \\
p_{0} x^{\Delta \nabla}
\end{array}\right]
$$

which brings (1) to the form

$$
\begin{equation*}
J \widehat{X}^{\Delta}=(\lambda A+B) X \tag{2}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], B=\left[\begin{array}{cccc}
-p_{2} & 0 & 0 & 0 \\
0 & -p_{1} & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / p_{0}
\end{array}\right]
$$

and

$$
J=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Note that A and B are real and symmetric. Green's formula for solutions $x(t, \lambda)$ and $z(t, \lambda)$ is

$$
\begin{equation*}
\int_{a}^{\infty}(\Upsilon x)(t) \overline{z(t)} \Delta t-\int_{a}^{\infty} x(t) \overline{(\Upsilon z)(t)} \Delta t=[x, z]_{\infty}-[x, z]_{a} \tag{3}
\end{equation*}
$$

where $\left.[x, z]_{t}:=x^{[0]}(t)\right)^{[3]}(t)-x^{[3]}(t) \bar{z}^{[0]}(t)+x^{[1]}(t) \bar{z}^{[2]}(t)-x^{[2]}(t) \bar{z}^{[1]}(t)$ and $[x, z]_{\infty}:=\lim _{t \rightarrow \infty}[x, z]_{t}$ (see [22]). It is clear that $[x, z]_{\infty}$ exists and is finite. Letting $X(t, \lambda)$ and $Z(t, \lambda)$ be the corresponding vectors from (2), we get

$$
X^{T} J Z(t)=[x, z]_{t}
$$

Let $y_{i}, 1 \leq i \leq 4$, be the solutions of Eq. (1) subject to the following normalization conditions:

$$
p_{0}^{2}(t) W\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=1
$$

and

$$
\left[\begin{array}{cccc}
{\left[y_{1}, y_{1}\right]} & {\left[y_{2}, y_{1}\right]} & {\left[y_{3}, y_{1}\right]} & {\left[y_{4}, y_{1}\right]} \\
{\left[y_{1}, y_{2}\right]} & {\left[y_{2}, y_{2}\right]} & {\left[y_{3}, y_{2}\right]} & {\left[y_{4}, y_{2}\right]} \\
{\left[y_{1}, y_{3}\right]} & {\left[y_{2}, y_{3}\right]} & {\left[y_{3}, y_{3}\right]} & {\left[y_{4}, y_{3}\right]} \\
{\left[y_{1}, y_{4}\right]} & {\left[y_{2}, y_{4}\right]} & {\left[y_{3}, y_{4}\right]} & {\left[y_{4}, y_{4}\right]}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],
$$

where the Wronskian of y_{1}, y_{2}, y_{3} and y_{4} is defined by (see [22])

$$
W\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{[1]} & y_{2}^{[1]} & y_{3}^{[1]} & y_{4}^{[1]} \\
y_{1}^{[2]} & y_{2}^{[2]} & y_{3}^{[2]} & y_{4}^{[2]} \\
y_{1}^{[3]} & y_{2}^{[3]} & y_{3}^{3]} & y_{4}^{[3]}
\end{array}\right|
$$

Then, we have a
Lemma 2.5. For every $f, g \in L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}$, we have the Plücker identity

$$
[f, g]_{t}=\left|\begin{array}{cc}
{\left[y_{2}, g\right]_{t}} & {\left[g_{1}, y_{4}\right]_{t}} \tag{4}\\
{\left[y_{2}, f\right]_{t}} & {\left[f, y_{4}\right]_{t}}
\end{array}\right|+\left|\begin{array}{cc}
{\left[y_{1}, g\right]_{t}} & {\left[g, y_{3}\right]_{t}} \\
{\left[y_{1}, f\right]_{t}} & {\left[f, y_{3}\right]_{t}}
\end{array}\right| .
$$

Proof. The proof is similar to that of Lemma 1 in [35], thus we skip it.

We will denote by $D_{\max }$ the set of all functions x in $L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}$ such that the first three Δ derivatives are locally Δ - absolutely continuous in $[a, \infty)_{\mathbb{T}}$, and $\Upsilon(x) \in L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}$. We define the maximal operator $\Gamma_{\max }$ on $D_{\max }$ by the equality $\Gamma_{\max } x=\Upsilon x$. Let $D_{\min }$ denote the linear set of all vectors $x \in D_{\max }$ satisfying the conditions

$$
\begin{equation*}
x^{[0]}(a)=x^{[1]}(a)=x^{[2]}(a)=x^{[3]}(a)=[x, z]_{\infty}=0, \forall z \in D_{\max } . \tag{5}
\end{equation*}
$$

If we restrict the operator $\Gamma_{\max }$ to the set $D_{\min }$, then we obtain the minimal operator $\Gamma_{\min }$. It is clear that $\Gamma_{\min }^{*}=\Gamma_{\max }$, and $\Gamma_{\min }$ is a closed symmetric operator with deficiency indices $(2,2),(3,3),(4,4)$ (see [18], [35]). Now we recall the following.

Definition 2.6. A linear operator M (with dense domain $D(M)$) acting on some Hilbert space H is called dissipative (accumulative) if $\operatorname{Im}(\mathrm{Mf}, \mathrm{f}) \geq 0(\operatorname{Im}(\mathrm{Mf}, \mathrm{f}) \leq 0)$ for all $f \in D(M)$ and maximal dissipative (maximal accumulative) if it does not have a proper dissipative (accumulative) extension (see [9]-[13]).

Definition 2.7. A triplet $\left(H, \Phi_{1}, \Phi_{2}\right)$ is called a space of boundary values of a closed symmetric operator M on a Hilbert space H if Φ_{1} and Φ_{2} are linear maps from $D\left(M^{*}\right)$ to H, with equal deficiency numbers and such that:
i) For every $f, g \in D\left(M^{*}\right)$ we have

$$
\left\langle M^{*} f, g\right\rangle_{H}-\left\langle f, M^{*} g\right\rangle_{H}=\left\langle\Phi_{1} f, \Phi_{2} g\right\rangle_{\mathbb{H}}-\left\langle\Phi_{2} f, \Phi_{1} g\right\rangle_{\mathbb{H}} ;
$$

ii) For any $F_{1}, F_{2} \in H$ there is a vector $f \in D\left(M^{*}\right)$ such that $\Phi_{1} f=F_{1}$ and $\Phi_{2} f=F_{2}$ (see [4]).

3. Lim-2 Case

In this section, we will consider singular fourth order dynamic operators in the Lim-2 Case. Using the concept of boundary value space, we will describe all maximal dissipative, accretive, self-adjoint and other extensions, in terms of boundary conditions. Let the symmetric operator $\Gamma_{\text {min }}$ has deficiency indices (2,2), i.e., the Lim-2 Case. Then $[y, z]_{\infty}=0$ for all $y, z \in D_{\min }$ (see [18]). The domain $D_{\min }$ of the symmetric operator $\Gamma_{\min }$ consists of precisely those vectors $x \in D_{\text {min }}$ satisfying the conditions: $x^{[0]}(a)=x^{[1]}(a)=x^{[2]}(a)=x^{[3]}(a)=0$. Let us define the linear maps S_{1} and S_{2} from $D_{\max }$ to \mathbb{C}^{2} by the formulae

$$
\begin{equation*}
S_{1} f=\binom{-x^{[0]}(a)}{x^{[1]}(a)}, S_{2} f=\binom{x^{[3]}(a)}{x^{[2]}(a)} . \tag{6}
\end{equation*}
$$

Now, we will state and prove some lemmas.
Lemma 3.1. For arbitrary $y, z \in \mathrm{D}_{\max }$ we have

$$
\begin{equation*}
\left\langle\Gamma_{\max } x, z\right\rangle_{L_{\Delta}^{2}}-\left\langle x, \Gamma_{\max } z\right\rangle_{L_{\Delta}^{2}}=\left\langle S_{1} x, S_{2} z\right\rangle_{\mathbb{C}^{2}}-\left\langle S_{2} x, S_{1} z\right\rangle_{\mathbb{C}^{2}} . \tag{7}
\end{equation*}
$$

Proof. For every $x, z \in D_{\max }$, we have the Green's formula

$$
\begin{equation*}
\left\langle\Gamma_{\max } x, z\right\rangle_{L_{\Delta}^{2}}-\left\langle x, \Gamma_{\max } z\right\rangle_{L_{\Delta}^{2}}=-[x, z]_{a} \tag{8}
\end{equation*}
$$

Then,

$$
\begin{aligned}
\left\langle S_{1} x, S_{2} z\right\rangle_{\mathbb{C}^{2}}-\left\langle S_{2} x, S_{1} z\right\rangle_{\mathbb{C}^{2}} & \left.=-x^{[0]}(a) \bar{z}^{[3]}(a)-x^{[1]}(a) \bar{z}^{[2]}(a)+x^{[3]}(a)\right)^{[0]}(a)+x^{[2]}(a) \bar{z}^{[1]}(a) \\
& =-[x, z]_{a} .
\end{aligned}
$$

Using the equality (8), we obtain the equality (7).
Lemma 3.2. For any complex numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} there is a function $x \in \mathrm{D}_{\max }$ satisfying

$$
x^{[0]}(a)=\alpha_{1}, x^{[1]}(a)=\alpha_{2}, x^{[2]}(a)=\alpha_{3}, x^{[3]}(a)=\alpha_{4} .
$$

Proof. Let $u=\binom{u_{1}}{u_{2}}, v=\binom{v_{1}}{v_{2}} \in \mathbb{C}^{2}$. Then the vector-valued function

$$
x(t)=\alpha_{1}(t) u_{1}+\alpha_{2}(t) v_{1}+\alpha_{3}(t) u_{2}+\alpha_{4}(t) v_{2}
$$

where $\alpha_{i}(t) \in L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}(i=1, \ldots, 4)$, satisfying the conditions

$$
\begin{array}{lccc}
\alpha_{1}^{[0]}(a)=1 & \alpha_{1}^{[1]}(a)=0 & \alpha_{1}^{[2]}(a)=0 & \alpha_{1}^{[3]}(a)=0 \\
\alpha_{2}^{[0]}(a)=0 & \alpha_{2}^{[1]}(a)=0 & \alpha_{2}^{[2]}(a)=0 & \alpha_{2}^{[3]}(a)=1 \\
\alpha_{3}^{[0]}(a)=0 & \alpha_{3}^{[1]}(a)=-1 & \alpha_{3}^{[2]}(a)=0 & \alpha_{3]}^{[3]}(a)=0 \\
\alpha_{4}^{[0]}(a)=0 & \alpha_{4}^{[1]}(a)=0 & \alpha_{4}^{[2]}(a)=1 & \alpha_{4}^{[3]}(a)=0
\end{array}
$$

belongs to the set $D_{\text {max }}$ and $S_{1} x=u, S_{2} x=v$.
Thus, the following hold.
Theorem 3.3. The triple $\left\langle\mathbb{C}^{2}, S_{1}, S_{2}\right\rangle$ defined by (6) is a boundary value space of the operator $\Gamma_{\min }$.
Corollary 3.4. For any contraction K in \mathbb{C}^{2} the restriction of the operator $\Gamma_{\min }$ to the set of functions $x \in D_{\max }$ satisfying either

$$
\begin{equation*}
(K-I) S_{1} x+i(K+I) S_{2} x=0 \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
(K-I) S_{1} x-i(K+I) S_{2} x=0 \tag{10}
\end{equation*}
$$

is respectively the maximal dissipative and accretive extension of the operator $\Gamma_{\min }$. Conversely, every maximal dissipative (accretive) extension of the operator $\Gamma_{\min }$ is the restriction of $\Gamma_{\max }$ to the set of functions $x \in \mathrm{D}_{\max }$ satisfying (9) ((10)), and the extension uniquely determines the contraction K. Conditions (9) ((10)), in which K is an isometry describe the maximal symmetric extensions of $\Gamma_{\min }$ in $L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}$. If K is unitary, these conditions define self-adjoint extensions.
In particular, the boundary conditions

$$
\begin{aligned}
& x^{[3]}(a)-h_{1} x^{[0]}(a)=0 \\
& x^{[1]}(a)-h_{2} x^{[2]}(a)=0
\end{aligned}
$$

with $\operatorname{Imh_{1}} \geq 0$ or $h_{1}=\infty, \operatorname{Imh_{2}} \geq 0$ or $h_{2}=\infty,\left(\operatorname{Im} h_{1}=0\right.$ or $h_{1}=\infty, I m h_{2}=0$ or $\left.h_{2}=\infty, I m h_{3}=0\right)$ describe the maximal dissipative (self-adjoint) extensions of $\Gamma_{\min }$ with separated boundary conditions.

4. Lim-4 Case

In this section, we will consider singular fourth order dynamic operators in the Lim-4 Case. We will describe all maximal dissipative, accretive, self-adjoint and other extensions, in terms of boundary conditions. Now we assume that $\Gamma_{\min }$ has deficiency indices (4,4). Then $y_{i} \in L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}, 1 \leq i \leq 4$, and $y_{i} \in D_{\max }, 1 \leq i \leq 4$.
Theorem 4.1. The domain $\mathrm{D}_{\min }$ of the operator $\Gamma_{\min }$ consists of precisely those functions $x \in \mathrm{D}_{\max }$ satisfying the following conditions:

$$
\begin{align*}
x^{[0]}(a) & =x^{[1]}(a)=x^{[2]}(a)=x^{[3]}(a)=0 \\
{\left[x, y_{1}\right]_{\infty} } & =\left[x, y_{2}\right]_{\infty}=\left[x, y_{3}\right]_{\infty}=\left[x, y_{4}\right]_{\infty}=0 \tag{11}
\end{align*}
$$

Proof. From (5) and (4), we get the desired result.
Let us denote by Ω_{1} and Ω_{2} the linear mappings of $D_{\max }$ to \mathbb{C}^{4} defined by

$$
\Omega_{1} x=\left(\begin{array}{c}
-x^{[0]}(a) \tag{12}\\
-x^{[1]}(a) \\
{\left[x, y_{2}\right]_{\infty}} \\
{\left[x, y_{1}\right]_{\infty}}
\end{array}\right), \Omega_{2} y=\left(\begin{array}{c}
x^{[3]}(a) \\
x^{[2]}(a) \\
{\left[x, y_{4}\right]_{\infty}} \\
{\left[x, y_{3}\right]_{\infty}}
\end{array}\right) .
$$

Then we have the following
Theorem 4.2. The triple $\left\langle\mathbb{C}^{4}, \Omega_{1}, \Omega_{2}\right\rangle$ defined by (12) is a boundary space of the operator $\Gamma_{\min }$.
Proof. For every $x, z \in D_{\max }$, we have

$$
\begin{aligned}
\left\langle\Omega_{1} x, \Omega_{2} z\right\rangle-\left(\left\langle\Omega_{2} x, \Omega_{1} z\right\rangle=\right. & -x^{[0]}(a) \bar{z}^{[3]}(a)-x^{[1]}(a) \bar{z}^{[2]}(a)+\left[x, y_{2}\right]_{\infty}\left[z, y_{4}\right]_{\infty}+\left[x, y_{1}\right]_{\infty}\left[z, y_{3}\right]_{\infty} \\
& +x^{[3]}(a) \bar{z}^{[0]}(a)+x^{[2]}(a) \bar{z}^{[1]}(a)-\left[x, y_{4}\right]_{\infty}\left[z, y_{2}\right]_{\infty}-\left[x, y_{3}\right]_{\infty}\left[z, y_{1}\right]_{\infty} \\
= & -x^{[0]}(a) \bar{z}^{[3]}(a)-x^{[1]}(a) \bar{z}^{[2]}(a)+x^{[3]}(a) \bar{z}^{[0]}(a)+x^{[2]}(a) \bar{z}^{[1]}(a) \\
& +\left[x, y_{4}\right]_{\infty}\left[y_{2}, z\right]_{\infty}-\left[x, y_{2}\right]_{\infty}\left[y_{4}, z\right]_{\infty}+\left[x, y_{3}\right]_{\infty}\left[y_{1}, z\right]_{\infty}-\left[y_{1}, x\right]_{\infty}\left[z, y_{3}\right]_{\infty} .
\end{aligned}
$$

From the Plucker identity (4), we have

$$
\left\langle\Omega_{1} x, \Omega_{2} z\right\rangle-\left(\left\langle\Omega_{2} x, \Omega_{1} z\right\rangle=[x, z]_{\infty}-[x, z]_{a}\right.
$$

By the Green formula (3), we get

$$
\left\langle\Omega_{1} x, \Omega_{2} z\right\rangle-\left(\left\langle\Omega_{2} x, \Omega_{1} z\right\rangle=\left\langle\Gamma_{\max } x, z\right\rangle_{L_{\Delta}^{2}}-\left\langle x, \Gamma_{\max } z\right\rangle_{L_{\Delta}^{2}}\right.
$$

i.e., the first condition of the definition of a space of boundary values holds.

The second condition will prove the following lemma.
Lemma 4.3. For any complex numbers $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{0}, \beta_{1}, \beta_{2}$, and β_{3} there is a function $x \in D_{\max }$ satisfying

$$
\begin{aligned}
x^{[0]}(a) & =\alpha_{0}, x^{[1]}(a)=\alpha_{1}, x^{[2]}(a)=\alpha_{2}, x^{[3]}(a)=\alpha_{3} \\
{\left[x, y_{1}\right]_{\infty} } & =\beta_{0},\left[x, y_{2}\right]_{\infty}=\beta_{1},\left[x, y_{3}\right]_{\infty}=\beta_{2},\left[x, y_{4}\right]_{\infty}=\beta_{3}
\end{aligned}
$$

Proof. Let f be an arbitrary element of $L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}$ satisfying

$$
\begin{align*}
\left\langle f, y_{1}\right\rangle_{L_{\Delta}^{2}} & =\beta_{0}+\alpha_{3},\left\langle f, y_{2}\right\rangle_{L_{\Delta}^{2}}=\beta_{1}-\alpha_{1} \tag{13}\\
\left\langle f, y_{3}\right\rangle_{L_{\Delta}^{2}} & =\beta_{2}-\alpha_{0},\left\langle f, y_{4}\right\rangle_{L_{\Delta}^{2}}=\beta_{3}+\alpha_{2} .
\end{align*}
$$

There is such an f, even among the linear combinations of y_{1}, y_{2}, y_{3} and y_{4}. Indeed, if we set

$$
f=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}+c_{4} y_{4}
$$

then the conditions in (13) constitute a system of equations in the constants $c_{1}, c_{2}, c_{3}, c_{4}$, whose determinant is the Gram determinant of the linearly independent functions $y_{1}, y_{2}, y_{3} y_{4}$, and is therefore nonzero. Let $x(t)$ denote the solution of the equation $\Upsilon(x)=f$ satisfying the initial conditions

$$
x^{[0]}(a)=\alpha_{0}, x^{[1]}(a)=\alpha_{1}, x^{[2]}(a)=\alpha_{2}, x^{[3]}(a)=\alpha_{3} .
$$

Assume that $x(t)$ is the desired element. If we apply Green's formula (3) to $x(t)$ and y_{j}, we obtain

$$
\left\langle f, y_{j}\right\rangle_{L_{\Delta}^{2}}=\left\langle\Upsilon(x), y_{j}\right\rangle_{L_{\Delta}^{2}}=\left[x, y_{j}\right]_{\infty}-\left[x, y_{j}\right]_{0}, j=1,2,3,4 .
$$

But $\Upsilon\left(y_{j}\right)=0(j=1,2,3,4)$. Since $x^{[0]}(a)=\alpha_{0}, x^{[1]}(a)=\alpha_{1}, x^{[2]}(a)=\alpha_{2}, x^{[3]}(a)=\alpha_{3}$, we have

$$
\left[x, y_{j}\right]_{a}=\left\{\begin{array}{cc}
-\alpha_{3}, & \text { for } j=1 \\
\alpha_{1}, & \text { for } j=2 \\
\alpha_{0}, & \text { for } j=3 \\
-\alpha_{2}, & \text { for } j=4
\end{array} .\right.
$$

Hence we get

$$
\begin{aligned}
\left\langle f, y_{1}\right\rangle_{L_{\Delta}^{2}} & =\left[x, y_{1}\right]_{\infty}-\left[x, y_{1}\right]_{a} \\
& =\left[x, y_{1}\right]_{\infty}+\alpha_{3}, \\
\left\langle f, y_{2}\right\rangle_{L_{\Delta}^{2}} & =\left[x, y_{2}\right]_{\infty}-\left[x, y_{2}\right]_{a} \\
& =\left[x, y_{2}\right]_{\infty}-\alpha_{1}, \\
\left\langle f, y_{3}\right\rangle_{L_{\Delta}^{2}} & =\left[x, y_{3}\right]_{\infty}-\left[x, y_{3}\right]_{a} \\
& =\left[x, y_{3}\right]_{\infty}-\alpha_{0}, \\
\left\langle f, y_{4}\right\rangle_{L_{\Delta}^{2}} & =\left[x, y_{4}\right]_{\infty}-\left[x, y_{4}\right]_{a} \\
& =\left[x, y_{4}\right]_{\infty}+\alpha_{2} .
\end{aligned}
$$

According to (13), we have

$$
\left[x, y_{1}\right]_{\infty}=\beta_{0},\left[x, y_{2}\right]_{\infty}=\beta_{1},\left[x, y_{3}\right]_{\infty}=\beta_{2},\left[x, y_{4}\right]_{\infty}=\beta_{3} .
$$

Corollary 4.4. For any contraction K in \mathbb{C}^{4} the restriction of the operator $\Gamma_{\min }$ to the set of functions $x \in D_{\max }$ satisfying either

$$
\begin{equation*}
(K-I) \Omega_{1} x+i(K+I) \Omega_{2} x=0 \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
(K-I) \Omega_{1} x-i(K+I) \Omega_{2} x=0 \tag{15}
\end{equation*}
$$

is respectively the maximal dissipative and accretive extension of the operator $\Gamma_{\min }$. Conversely, every maximal dissipative (accretive) extension of the operator $\Gamma_{\min }$ is the restriction of $\Gamma_{\max }$ to the set of functions $x \in D_{\max }$ satisfying (14) ((15)), and the extension uniquely determines the contraction K. Conditions (14) ((15)), in which K is an isometry describe the maximal symmetric extensions of $\Gamma_{\min }$ in $L_{\Delta}^{2}[a, \infty)_{\mathbb{T}}$. If K is unitary, these conditions define self-adjoint extensions.

In particular, the boundary conditions

$$
\begin{aligned}
& x^{[3]}(a)-h_{1} x^{[0]}(a)=0 \\
& x^{[2]}(a)-h_{2} x^{[1]}(a)=0 \\
& {\left[x, y_{4}\right]_{\infty}-h_{3}\left[x, y_{2}\right]_{\infty}=0} \\
& {\left[x, y_{3}\right]_{\infty}-h_{4}\left[x, y_{1}\right]_{\infty}=0}
\end{aligned}
$$

with $\operatorname{Imh}_{1} \geq 0$ or $h_{1}=\infty, \operatorname{Imh}_{2} \geq 0$ or $h_{2}=\infty, \operatorname{Imh}_{3} \geq 0$ or $h_{3}=\infty$ and $\operatorname{Imh}_{4} \geq 0$ or $h_{4}=\infty\left(\operatorname{Imh} h_{1}=0\right.$ or $h_{1}=\infty, \operatorname{Imh}_{2}=0$ or $h_{2}=\infty, \operatorname{Imh}_{3}=0$ or $h_{3}=\infty$ and $I m h_{4}=0$ or $h_{4}=\infty$) describe the maximal dissipative (self-adjoint) extensions of $\Gamma_{\min }$ with separated boundary conditions.

References

[1] V.M. Bruk, On a class of boundary -value problemswith a spectral parameter in the boundary conditions, Mat. Sb.,100,(1976) , $210-216$.
[2] J. W. Calkin, Abstract boundary conditions, Trans. Amer. Math. Soc.,Vol 45,No. 3, (1939) , $369-442$.
[3] M.L. Gorbachuk, V.I. Gorbachuk and A.N. Kochubei, 1989. The theory of extensions of symmetric operators and boundary-value problems for differential equations', Ukrain. Mat. Zh. 41, (1989) , 1299-1312; English transl. in Ukrainian Math. J. 41(1989), 11171129.
[4] M.L. Gorbachuk and V.I. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Naukova Dumka, Kiev, 1984; English transl. 1991,Birkhauser Verlag.
[5] I. M. Guseh̆nov and R. T. Pashaev, Description of selfadjoint extensions of a class of differential operators of order 2 n with defect indices $(n+k, n+k), 0<k<n$,Izv.Akad.Nauk Azerb. Ser. Fiz. Tekh. Mat. Nauk, No.2, (1983) , $15-19$ (in Russian).
[6] A. M. Khol'kin, Self-adjoint boundary conditions at-infinity for a quasiregular system of even-order differential equations (1981) pp. $174-183$ in: Theory of operators in function spaces and its applications, Naukova Dumka, Kiev.
[7] A. N. Kochubei, Extensions of symmetric operators and symmetric binary relations, Mat. Zametki 17, (1975), 41-48; English transl. in Math. Notes 17(1975), $25-28$.
[8] B. P. Allahverdiev, On extensions of symmetric Schrödinger operators with a matrix potential, Izvest. Ross. Akad. Nauk. Ser . Math. 59, (1995), 19 - 54; English transl. Izv. Math. 59, (1995), 45 - 62.
[9] B.P. Allahverdiev, Extensions of symmetric singular second-order dynamic operators on time scales. Filomat 30 (2016), no. 6, 1475-1484.
[10] B.P. Allahverdiev, Extensions of symmetric infinite Jacobi operator. Linear Multilinear Algebra 62 (2014), no. 9, 1146-1152.
[11] B.P. Allahverdiev, Extensions of symmetric second-order difference operators with matrix coefficients. J. Difference Equ. Appl. 19 (2013), no. 5, 839-849.
[12] A. Canoğlu and B.P. Allahverdiev, Selfadjoint and dissipative extensions of a symmetric Schrödinger operator. Math. Balkanica (N.S.) 17 (2003), no. 1-2, 113-120.
[13] F.G. Maksudov and B.P. Allahverdiev, On the extensions of Schrödinger operators with a matrix potentials, Dokl. Akad. Nauk 332, no.1, (1993) , 18 - 20;English transl. Russian Acad. Sci. Dokl. Math. 48 (1994), no.2, $240-243$.
[14] M. M. Malamud and V. I. Mogilevskiy, On extensions of dual pairs of operators, Dopov. Nats Akad. Nauk. Ukr. (1997) ,no. 1,30-37.
[15] G. A. Mirzoev, Fourth order quasi regular differential operator, Dokl. Akad. Nauk SSSR 251, (1980), no.3,550 - 553; English transl. Soviet Math. Dpkl. 21, (1980) , 480-483.
[16] V. I. Mogilevskiy, On proper extensions of a singular differential operator in a space of vector functions, Dopov. Akad. Nauk. Ukraini, no.9, (1994), 29 - 33 (in Russian).
[17] H. Tuna and B. P. Allahverdiev, Dissipative Extensions of Fourth Order Differential Operators, Thai Journal of Mathematics, V 16 (1), 275-285, 2018.
[18] M.A. Naimark, Linear Differential Operators, 2nd edn.,1968, Nauka, Moscow, English transl. of 1st. edn., 1, 2, 1969, New York.
[19] J. von Neumann, Allgemeine Eigenwertheorie Hermitischer Functionaloperatoren, Math. Ann. 102, (1929) , 49 - 131.
[20] F.S. Rofe-Beketov, Self-adjoint extensions of differential operators in a space of vector valued functions', Dokl. Akad. Nauk SSSR 184, (1969) , 1034-1037;English transl. in Soviet Math. Dokl. 10(1969), 188 - 192.
[21] B. P. Rynne, L^{2} spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328(2007), 1217 - 1236.
[22] D. R. Anderson, G. Sh. Guseinov, and J. Hoffacker, Higher-order self-adjoint boundary-value problems on time scales, J. Comput. Appl. Math., 194 , 2 (2006) , $309-342$.
[23] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston, 2001.
[24] M. Bohner and A. Peterson, (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[25] G. Sh. Guseinov, Self-adjoint boundary value problems on time scales and symmetric Green's functions, Turkish J. Math., 29, 4 (2005), 365 - 380.
[26] G. Sh. Guseinov, An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales, Advances in Dynamical Systems and Applications 3, 147-160, 2008.
[27] A. Huseynov, Weyl's limit point and limit circle for a dynamic systems. Dynamical systems and methods, 215-225, Springer, New York, 2012.
[28] V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996.
[29] F. M. Atici and G. Sh. Guseinov, On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141, 1 - 2 (2002), 75 - 99.
[30] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results in Math., (1990), 1818 1856.
[31] R. P. Agarwal, M. Bohner, and W.-T. Li, Nonoscillation and Oscillation Theory for Functional Differential Equations, vol. 267 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2004.
[32] M. A. Jones, B. Song and D. M. Thomas, Controlling wound healing through debridement, Mathematical and Computer Modelling, vol. 40, no. 9-10, pp. 1057-1064, 2004.
[33] V. Spedding, Taming nature's numbers, New Scientist, vol. 179, no. 2404, pp. 28-31, 2003.
[34] D. M.Thomas, L. Vandemuelebroeke and K. Yamaguchi, "A mathematical evolution model for phytoremediation of metals," Discrete and Continuous Dynamical Systems. Series B, vol. 5, no. 2, pp. 411-422, 2005.ker, Florida, 2004.
[35] C.T. Fulton, The Bessel-squared equation in the lim-2, lim-3, and lim-4 cases, Quart. J. Math. Oxford (2), 40, (1989), $423-456$.

[^0]: 2010 Mathematics Subject Classification. Primary 34N05, 47A20, 47B25
 Keywords. Fourth order differential operators; singular point; dissipative extensions; time scales;self adjoint extensions; a boundary value space; boundary condition.

 Received: 16 October 2017; Accepted: 22 May 2018
 Communicated by Dijana Mosić
 Research supported by MAKUBAP
 Email addresses: hustuna@gmail.com (Hüseyin Tuna), snglbyrk92@gmail.com (Songül Bayrak)

