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Abstract. We present new Tauberian conditions in terms of the general logarithmic control modulo of the
oscillatory behavior of a real sequence (sn) to obtain

lim
n→∞

sn = ξ from st − lim
n→∞

sn = ξ,

where ξ is a finite number. We also introduce the statistical (`,m) summability method and extend some
Tauberian theorems to this method. The main results improve some well-known Tauberian theorems
obtained for the statistical convergence.

1. Introduction and Background

LetN denote the set of all natural numbers. The natural (or asymptotic) density of E ⊆N is defined by

δ(E) = lim
N→∞

1
N + 1

|{n ≤ N : n ∈ E}|

if the limit exists. Note that the vertical bars indicate the number of elements in the enclosed set.
The idea of the statistical convergence, which is closely related to the concept of natural density, was

introduced by Fast [1].
A real sequence (sn) is called statistically convergent toξ if for every ε > 0, the set Eε = {n ≤ N : |sn − ξ| ≥ ε}

has natural density zero, i.e.

lim
N→∞

1
N + 1

|{n ≤ N : |sn − ξ| ≥ ε}| = 0.

In symbol, we write st − lim sn = ξ. Obviously, ξ is uniquely determined.
Although the term “statistical convergence” first appeared in Fast [1], it was first used by Zygmund

who gave a relation between this concept and strong summability in ([15], page 181) where he used the
term “almost convergence” in place of the statistical convergence.
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S. A. Sezer et al. / Filomat 32:11 (2018), 3853–3865 3854

Note that ordinary convergence implies the statistical convergence to the same limit, so statistical
convergence may be considered as a regular summability method. Hovewer, the converse is not necessarily
true. For example,

sn =

1, n = m2, m = 0, 1, ...
0, n , m2, m = 0, 1, ...

is statistically convergent to 0. However it is not convergent in the ordinary sense. Additionally, notice that
a statistically convergent sequence may not be bounded. Consider the sequence

sn =


√

n, n = m2, m = 0, 1, ...
1, n , m2, m = 0, 1, ... .

Then, st − lim sn = 1, but (sn) is not bounded.
In the present paper we use the common notation for matrix summability methods: LetA = [ank] be an

infinite real matrix, then the matrix transformation (As)n of (sn) is given by

(As)n =

∞∑
k=0

anksk, n = 0, 1, 2, ... (1)

Thus, “(sn) isA-summable to ξ” means that lim(As)n = ξ.A is called a “regular” summability method if it
transforms convergent sequences into other convergent sequences and preserves limits.

In the matrix summability method defined in (1), if we choose

ank =


1

n + 1
, k ≤ n

0, otherwise,

we get a well-known regular summability method called (C, 1) summability. Given a sequence (sn), the
transformation defined by

σ(1)
n (s) =

1
n + 1

n∑
k=0

sk

is said to be the arithmetic mean of (sn). A sequence (sn) is called (C, 1) summable to ξ and written
lim sn = ξ(C, 1) if

lim
n→∞

σ(1)
n (s) = ξ.

In ([9], Lemma 4), Schoenberg obtained that a bounded and statistically convergent sequence is
summable (C, 1). Then, the question arises whether or not the (C, 1) summability includes the statisti-
cal convergence regardless of boundedness. Fridy [2] gave a negative answer to this question and proved
that statistical convergence can not be included by any matrix method.

Later, Fridy and Miller [3] established a connection between statistical convergence and a certain class
of matrix summability methods and generalized the result of Schoenberg.

Lemma 1.1. Let T be a collection of lower triangular non-negative summability matrices T which are regular. The
bounded sequence (sn) is statistically convergent to ξ if and only if it is T summable to ξ for all T ∈ T .

It is obvious that (C, 1) ∈ T . As a different example of a matrix method in T we may give (`, 1)
summability which have the matrix representation

ank =


1

(k + 1)`n
, k ≤ n

0, k > n



S. A. Sezer et al. / Filomat 32:11 (2018), 3853–3865 3855

where

`n =

n∑
k=0

1
k + 1

∼ log n.

The transformation of (sn) defined by

t(1)
n (s) =

1
`n

n∑
k=0

sk

k + 1

is said to be the logarithmic mean of (sn). A sequence (sn) is called (`, 1) summable to ξ and written
lim sn = ξ(`, 1) if

lim
n→∞

t(1)
n (s) = ξ.

Besides, a given sequence (sn) may not be summable (`, 1), but the sequence (t(1)
n ) may be summable (`, 1),

in other saying, the repetition of the (`, 1) method may generate a convergent sequence. Hence, m-fold
application of the (`, 1) method is defined by

t(m)
n (s) =


1
`n

n∑
k=0

t(m−1)
k (s)

k + 1
,m ≥ 1

sn ,m = 0.

If
lim
n→∞

t(m)
n (s) = ξ,

we say that (sn) is summable to ξ by the (`,m) method. Trivially, if (sn) is (`,m) summable, then it is (`,m + 1)
summable to the same number. However, the converse is not valid, in general, provided by the example
(see [12])

sn =
(
(−1)n (

n log n + (n + 1) log(n + 1)
))
.

Here, (sn) is (`, 2) summable to 0. Nevertheless, (sn) is neither convergent nor (`, 1) summable.
On the other hand, if

st − lim
n→∞

t(m)
n (s) = ξ,

we say that (sn) is statistically (`,m) summable to ξ.
Taking Lemma 1.1 into account together with the fact that ordinary convergence implies statistical

convergence, we get the following result.

Lemma 1.2. Let (sn) be a bounded sequence. If

st − lim
n→∞

sn = ξ, (2)

then for every m ≥ 1

st − lim
n→∞

t(m)
n (s) = ξ. (3)

Consider the sequence
sn = (2(−1)nn + (−1)n)) .

The sequence (sn) is statistically (`, 1) summable to 0, but not statistically convergent. More precisely, the
limit (3) may not imply (2).

If a sequence is convergent, then it is summable to the same limit by a regular method. The converse case
is not always true. However, it may be true under certain supplementary conditions. Such condition is said
to be a Tauberian condition with respect to the summability method in question and the resulting theorem
is said to be a Tauberian theorem, honoring Austrian mathematician Alfred Tauber, who first obtained a
converse theorem for the Abel method. One may consult Korevaar’s book “Tauberian Theory: A Century of
Developments” [5] for further results on Tauberian type theorems.

In this study, we deal with Tauberian theorems for the statistical convergence and the logarithmic (`,m)
summability.
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2. Auxilary Results

In this section, we introduce some fundamental identities and lemmas which will be needed in the
sequel.

In this work, H represents a positive constant, possibly different at every occurrence and notations
sn = O(1) and sn = o(1) refer that (sn) is bounded for sufficiently large n and limn→∞ sn = 0, respectively.

The classical logarithmic control modulo of the oscillatory behavior of (sn) is given by

ω(0)
n (s) = αn∆sn ∼ n log n∆sn, (4)

where

αn = (n + 1)`n−1 and ∆sn =

{
sn − sn−1 ,n ≥ 1
s0 ,n = 0 .

(4) has a significant role when determining Tauberian conditions (see [4] and [11] for numerical sequences,
[12] for improper integrals, [10] and [14] for sequences of fuzzy numbers).

A sequence (sn) is called slowly decreasing in the (`, 1) sense if

lim
λ→1+

lim inf
n→∞

min
n<k≤[nλ]

(sk − sn) ≥ 0 (5)

or equivalently

lim
λ→1−

lim inf
n→∞

min
[nλ]≤k<n

(sn − sk) ≥ 0, (6)

where [.] denotes the integer part. This definition was presented by Móricz [8]. Actually, it was Kwee [6]
who first used slowly decreasing sequences while proving the following Tauberian type result.

Theorem 2.1. If (sn) is (`, 1) summable to ξ and

lim inf(sm − sn) ≥ 0 whenever m > n→∞ and
log m
log n

→ 1, (7)

then lim sn = ξ.

Notice that (7) is equivalent to (5). Besides, if ω(0)
n (s) ≥ −H, then slow decrease condition (5) is satisfied.

Eventually, we attain the next result as a corollary of the last theorem.

Theorem 2.2. Let (sn) be (`, 1) summable to ξ and

ω(0)
n (s) ≥ −H,

then lim sn = ξ.

Later, Móricz [8] established the statistical analogues of Theorem 2.1 and Theorem 2.2 as follows.

Theorem 2.3. Let (sn) be statistically convergent to ξ. If (sn) is slowly decreasing in the (`, 1) sense, then lim sn = ξ.

Theorem 2.4. Let (sn) be statistically convergent to ξ. If

ω(0)
n (s) ≥ −H,

then lim sn = ξ.
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The difference of a sequence and its logarithmic mean is represented by

sn − t(1)
n (s) = v(0)

n (∆s) (8)

where

v(0)
n (∆s) =

1
`n

n∑
k=1

`k−1∆sk.

The identity (8) is called the Kronecker identity in the (`, 1) sense and it will be used in the several steps of
proofs.

Kwee [7] sets a restriction on the sequence (v(0)
n (∆s)) and get the following Tauberian type result.

Theorem 2.5. Let (sn) be (`, 1) summable to ξ. If

v(0)
n (∆s) = o(1),

then lim sn = ξ.

The next theorem is the statistical version of Theorem 2.5.

Theorem 2.6. Let (sn) be statistically convergent to ξ. If

v(0)
n (∆s) = o(1),

then lim sn = ξ.

Proof. Suppose lim v(0)
n (∆s) = 0, then st − lim v(0)

n (∆s) = 0. Hence, via the logarithmic Kronecker identity

sn − t(1)
n (s) = v(0)

n (∆s),

we get st − lim t(1)
n (s) = ξ. Also, from the hypothesis

v(0)
n (∆s) = αn∆t(1)

n (s) ≥ −H.

Now, by applying Theorem 2.4 to (t(1)
n (s)), we obtain

lim
n→∞

sn = ξ(`, 1).

Therefore, lim sn = ξ follows from Theorem 2.5.

For every integer m > 0, we introduce m-th order iterated logarithmic means of v(0)
n (∆s) by

v(m)
n (∆s) =


1
`n

n∑
k=0

v(m−1)
k (∆s)

k + 1
,m ≥ 1

v(0)
n (∆s) ,m = 0.

Lemma 2.7. ([11]) For every integer m ≥ 1,

(i)αn∆v(m)
n (∆s) = v(m−1)

n (∆s) − v(m)
n (∆s),

(ii)αn∆t(m)
n (s) = v(m−1)

n (∆s).

For each integers m ≥ 0 and r ≥ 0 we have(
αn∆

)
r
sn =

(
αn∆

)
r−1

(
αn∆sn

)
= αn∆

((
αn∆

)
r−1

sn

)
,

where
(
αn∆

)
0
sn = sn and

(
αn∆

)
1
sn = αn∆sn.

The general logarithmic control modulo of integer order m ≥ 1 of (sn) is recursively defined in [11] by

ω(m)
n (s) = ω(m−1)

n (s) − t(1)
n (ω(m−1)(s)). (9)

The next lemmas show two different representations of (ω(m)
n (s)).
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Lemma 2.8. ([11]) For every integer m ≥ 1,

ω(m)
n (s) =

(
αn∆

)
m

v(m−1)
n (∆s).

Lemma 2.9. For every integer m ≥ 1,

ω(m)
n (s) = ω(0)

n (s) +

m∑
j=1

(−1) j
(
m
j

)
v( j−1)

n (∆s), (10)

where
(
m
j

)
=

m(m − 1)...(m − j + 1)
j!

.

Proof. We will prove with induction. If m = 1, the assertion is

ω(1)
n (s) = ω(0)

n (s) − t(1)
n (ω(0)(s))

= ω(0)
n (s) − v(0)

n (∆s)

= ω(0)
n (s) +

1∑
j=1

(−1) j
(
1
j

)
v( j−1)

n (∆s),

which is obviously valid. Let k ∈N be given and suppose (10) is true for m = k. Namely,

ω(k)
n (s) = ω(0)

n (s) +

k∑
j=1

(−1) j
(
k
j

)
v( j−1)

n (∆s). (11)

We should now demonstrate that the lemma is valid for m = k + 1. More precisely,

ω(k+1)
n (s) = ω(0)

n (s) +

k+1∑
j=1

(−1) j
(
k + 1

j

)
v( j−1)

n (∆s).

Then, considering (11) we obtain

ω(k+1)
n (s) = ω(k)

n (s) − t(1)
n (ω(k)(s))

= ω(0)
n (s) +

k∑
j=1

(−1) j
(
k
j

)
v( j−1)

n (∆s) −

v(0)
n (∆s) +

k∑
j=1

(−1) j
(
k
j

)
v( j)

n (∆s)


= ω(0)

n (s) +

k∑
j=1

(−1) j
(
k
j

)
v( j−1)

n (∆s) +

k∑
j=0

(−1) j+1

(
k
j

)
v( j)

n (∆s)

= ω(0)
n (s) +

k∑
j=1

(−1) j
(
k
j

)
v( j−1)

n (∆s) +

k+1∑
j=1

(−1) j
(

k
j − 1

)
v( j−1)

n (∆s)

= ω(0)
n (s) +

k∑
j=1

(−1) j
[(

k
j

)
+

(
k

j − 1

)]
v( j−1)

n (∆s) + (−1)k+1

(
k
k

)
v(k)

n (∆s).

Since
(
k + 1

j

)
=

(
k
j

)
+

(
k

j − 1

)
, the last identity may be written as

ω(k+1)
n (s) = ω(0)

n (s) +

k∑
j=1

(−1) j
(
k + 1

j

)
v( j−1)

n (∆s) + (−1)k+1
(
k
k

)
v(k)

n (∆s)

= ω(0)
n (s) +

k+1∑
j=1

(−1) j
(
k + 1

j

)
v( j−1)

n (∆s).
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The lemma therefore is valid for all m ∈N.

Also, the following lemmas are quite important and repeatedly used in the proofs.

Lemma 2.10. ([8]) Let (sn) be slowly decreasing in the (`, 1) sense, then so is (t(1)
n (s)).

Lemma 2.11. ([8]) Let (sn) be slowly decreasing in the (`, 1) sense, then

v(0)
n (∆s) ≥ −H.

Lemma 2.12. ([11]) For a real sequence (sn)
(i) If λ > 1,

sn − t(1)
n (s) =

`[nλ]

`[nλ] − `n

(
t(1)
[nλ]

(s) − t(1)
n (s)

)
−

1
`[nλ] − `n

[nλ]∑
k=n+1

sk − sn

k + 1
.

(ii) If 0 < λ < 1,

sn − t(1)
n (s) =

`[nλ]

`n − `[nλ]

(
t(1)
n (s) − t(1)

[nλ]
(s)

)
+

1
`n − `[nλ]

n∑
k=[nλ]+1

sn − sk

k + 1
.

Here, [nλ] denotes the integer part of nλ.

3. Tauberian Theorems for Statistical Convergence

In this section we recover ordinary convergence of (sn) from its statistical convergence by imposing
certain restrictions on the sequence (ω(r)

n (s)).

Theorem 3.1. Let (sn) be a bounded sequence which is statistically convergent to ξ. If for any nonnegative integer r

ω(r)
n (s) ≥ −H, (12)

then (sn) converges to ξ.

Proof. Since st − lim sn = ξ and (sn) is bounded, we have st − lim t(1)
n (s) = ξ. Then, by (8), for every integer

m ≥ 0,

st − lim
n→∞

v(m)
n (∆s) = 0. (13)

Taking the logarithmic mean of both sides of the identity (10) gives

t(1)
n (ω(m)(s)) =

m∑
j=0

(−1) j
(
m
j

)
v( j)

n (∆s). (14)

Combining (13) and (14), we easily get

st − lim
n→∞

t(1)
n (ω(m)(s)) = 0 (15)

for all integer m ≥ 0. On the other hand, by the assumption

ω(r)
n (s) = αn∆t(1)

n (ω(r−1)(s)) ≥ −H. (16)
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Taking (15) into account for m = r − 1, (16) and Theorem 2.4, it follows

lim
n→∞

t(1)
n (ω(r−1)(s)) = 0. (17)

Hence, using (16) and (17), we obtain via

ω(r)
n (s) = ω(r−1)

n (s) − t(1)
n (ω(r−1)(s))

that

ω(r−1)
n (s) = αn∆t(1)

n (ω(r−2)(s)) ≥ −H. (18)

Considering (15) for m = r − 2 together with (18) and Theorem 2.4 yields

lim
n→∞

t(1)
n (ω(r−2)(s)) = 0. (19)

Now, by using (18) and (19), we obtain from the identity

ω(r−1)
n (s) = ω(r−2)

n (s) − t(1)
n (ω(r−2)(s))

that

ω(r−2)
n (s) = αn∆t(1)

n (ω(r−3)(s)) ≥ −H (20)

In the light of (12), (18) and (20), if we continue in the same fashion, then we find

ω(0)
n (s) ≥ −H.

Consequently, the proof follows from Theorem 2.4.

Corollary 3.2. Let (sn) be a bounded sequence which is statistically convergent to ξ. If for any nonnegative integer r

ω(r)
n (s) = O(1),

then (sn) converges to ξ.

Corollary 3.3. Let (sn) be a bounded sequence which is statistically convergent to ξ. If for any nonnegative integer r

ω(r)
n (s) = o(1),

then (sn) converges to ξ.

Theorem 3.4. Let (sn) be a bounded sequence which is statistically convergent to ξ. If for any nonnegative integer r

(t(1)
n (ω(r)(s))) is slowly decreasing in the (`, 1) sense, (21)

then (sn) converges to ξ.

Proof. Let (sn) be bounded and statistically convergent to ξ, then (t(1)
n (s)) is also statistically convergent to

the same limit. So, by (8), (v(0)
n (∆s)) is statistically convergent to zero. If we replace (sn) by (v(0)

n (∆s)) in (8),
we may write

v(0)
n (∆s) − v(1)

n (∆s) = αn∆v(1)
n (∆s) = t(1)

n (ω(1)(s)). (22)
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It follows from the identity (22) that

st − lim
n→∞

t(1)
n (ω(1)(s)) = 0.

Now, applying (8) to (αn∆v(1)
n (∆s)), we have

αn∆v(1)
n (∆s) − αn∆v(2)

n (∆s) = (αn∆)2v(2)
n (∆s) = t(1)

n (ω(2)(s)). (23)

Hence, by (23)

st − lim
n→∞

t(1)
n (ω(2)(s)) = 0.

If we continue in the same fashion, then for each integer r ≥ 0

st − lim
n→∞

t(1)
n (ω(r)(s)) = 0. (24)

So, Lemma 1.2 implies that for each integer r ≥ 0

st − lim
n→∞

t(2)
n (ω(r)(s)) = 0. (25)

Taking (t(1)
n (ω(r)(s))) instead of (sn) in (8), we may write the following identity

t(1)
n (ω(r)(s)) − t(2)

n (ω(r)(s)) = v(0)
n (∆t(1)(ω(r)(s))) = αn∆t(2)

n (ω(r)(s)). (26)

We obtain from (21), (26) and Lemma 2.11 that

αn∆t(2)
n (ω(r)(s)) ≥ −H. (27)

In that case, considering (25) and (27) and applying Theorem 2.4 to (t(2)
n (ω(r)(s))) yields

lim
n→∞

t(2)
n (ω(r)(s)) = 0. (28)

Now, handling the Lemma 2.12 (i) in terms of (t(1)
n (ω(r)(s))), we have

t(1)
n (ω(r)(s))−t(2)

n (ω(r)(s)) =
`[nλ]

`[nλ] − `n

(
t(2)
[nλ]

(ω(r)(s)) − t(2)
n (ω(r)(s))

)
−

1
`[nλ] − `n

[nλ]∑
k=n+1

t(1)
k (ω(r)(s)) − t(1)

n (ω(r)(s))

k + 1
. (29)

If λ > 1,

λ
2(λ − 1)

≤
`[nλ]

`[nλ] − `n
≤

3λ
2(λ − 1)

. (30)

So, from (29) and (30)

t(1)
n (ω(r)(s)) − t(2)

n (ω(r)(s)) ≤
3λ

2(λ − 1)

(
t(2)
[nλ]

(ω(r)(s)) − t(2)
n (ω(r)(s))

)
− min

n<k≤[nλ]

(
t(1)
k (ω(r)(s)) − t(1)

n (ω(r)(s))
)
. (31)

Taking the supremum limit as n→∞ and letting λ→ 1+, respectively, of both sides of (31), we get

lim sup
n→∞

(
t(1)
n (ω(r)(s)) − t(2)

n (ω(r)(s))
)
≤ 0. (32)
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This time, applying the Lemma 2.12 (ii) to (t(1)
n (ω(r)(s))), we get

t(1)
n (ω(r)(s))−t(2)

n (ω(r)(s)) =
`[nλ]

`n − `[nλ]

(
t(2)
n (ω(r)(s)) − t(2)

[nλ]
(ω(r)(s))

)
+

1
`n − `[nλ]

n∑
k=[nλ]+1

t(1)
n (ω(r)(s)) − t(1)

k (ω(r)(s))

k + 1
. (33)

If 0 < λ < 1,

λ
2(1 − λ)

≤
`[nλ]

`n − `[nλ]
≤

3λ
2(1 − λ)

. (34)

Then, from (33) and (34)

t(1)
n (ω(r)(s)) − t(2)

n (ω(r)(s)) ≥
λ

2(1 − λ)

(
t(2)
n (ω(r)(s)) − t(2)

[nλ]
(ω(r)(s))

)
+ min

[nλ]≤k<n

(
t(1)
n (ω(r)(s)) − t(1)

k (ω(r)(s))
)
. (35)

Taking the infimum limit as n→∞ and letting λ→ 1−, respectively, of both sides of (35), we have

lim inf
n→∞

(
t(1)
n (ω(r)(s)) − t(2)

n (ω(r)(s))
)
≥ 0. (36)

Combining (32) and (36),

lim
n→∞

(
t(1)
n (ω(r)(s)) − t(2)

n (ω(r)(s))
)

= 0.

Last limit and (28) necessiate that

lim
n→∞

t(1)
n (ω(r)(s)) = 0. (37)

From (24), st − lim t(1)
n (ω(r−1)(s)) = 0 and so

lim
n→∞

t(1)
n (ω(r−1)(s) = 0 (38)

by Theorem 2.6. Also, from (24), st − lim t(1)
n (ω(r−2)(s)) = 0. Then, once again from Theorem 2.6, we have

lim
n→∞

t(1)
n (ω(r−2)(s)) = 0. (39)

Taking (37), (38) and (39) into consideration and proceeding likewise, we accomplish

lim
n→∞

t(1)
n (ω(0)(s)) = lim

n→∞
v(0)

n (∆s) = 0.

The proof therefore follows from Theorem 2.6.

Corollary 3.5. Let (sn) be a bounded sequence which is statistically convergent to ξ. If for any nonnegative integer
r, (ω(r)(s)) is slowly decreasing in the (`, 1) sense, then (sn) converges to ξ.

Corollary 3.6. Let (sn) be a bounded sequence which is statistically convergent to ξ. If (v(0)
n (∆s)) is slowly decreasing

in the (`, 1) sense, then (sn) converges to ξ.

Corollary 3.7. Let (sn) be a bounded sequence which is statistically convergent to ξ. If

αn∆v(0)
n (∆s) ≥ −H,

then (sn) converges to ξ.
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4. Tauberian Theorems for Statistical (`,m) Summability

In this section we give extensions of some Tauberian theorems to statistical (`,m) summability.
The next result generalize the Theorem 2.3 due to Móricz.

Theorem 4.1. Let (sn) be statistically (`,m) summable to ξ. If

(sn) is slowly decreasing in the (`, 1) sense, (40)

then (sn) converges to ξ.

Proof. Since (sn) is slowly decreasing, by Lemma 2.10

(t(k)
n (s)) is slowly decreasing for each integer k ≥ 1. (41)

From the assumption, we have st − lim t(m)
n (s) = ξ. Choosing k = m in (41), Theorem 2.3 implies

lim
n→∞

t(m)
n (s) = ξ.

This means that

lim
n→∞

t(m−1)
n (s) = ξ(`, 1).

Now, taking k = m − 1 in (41), by Theorem 2.1

lim
n→∞

t(m−1)
n (s) = ξ,

which is equivalent to

lim
n→∞

t(m−2)
n (s) = ξ(`, 1).

Repeating the same reasoning m − 2 more times we obtain

lim
n→∞

sn = ξ(`, 1).

By the hypothesis and Theorem 2.1 we conclude

lim
n→∞

sn = ξ.

The following two theorems are the extensions of Theorem 3.1 and Theorem 3.4 to statistical (`,m)
summability.

Theorem 4.2. Let (sn) be a bounded sequence which is statistically (`,m) summable to ξ. If for any integer r ≥ 0

ω(r)
n (s) ≥ −H, (42)

then (sn) converges to ξ.

Proof. Let take k-fold logarithmic mean of (ω(r)
n (s)), then the identity

t(k)
n (ω(r)(s)) = ω(r)

n (t(k)(s))
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holds. Hence, from the hypothesis for each integer k ≥ 0

ω(r)
n (t(k)(s)) ≥ −H. (43)

From the assumption we have

st − lim
n→∞

t(m)
n (s) = ξ.

Then, using (43) for k = m together with Theorem 3.1 yields

lim
n→∞

t(m)
n (s) = ξ or equivalently lim

n→∞
t(m−1)
n (s) = ξ(`, 1). (44)

Taking (44) and Lemma 1.1 into account, it follows

st − lim
n→∞

t(m−1)
n (s) = ξ.

Now, considering (43) for k = m − 1 together with Theorem 3.1, we obtain

lim
n→∞

t(m−1)
n (s) = ξ or equivalently lim

n→∞
t(m−2)
n (s) = ξ(`, 1),

which also implies by Lemma 1.1 that

st − lim
n→∞

t(m−2)
n (s) = ξ.

Thus, continuing the proof in the same manner we deduce

st − lim
n→∞

sn = ξ.

Therefore, since ω(r)
n (s) ≥ −H, the proof follows from Theorem 3.1.

Theorem 4.3. Let (sn) be a bounded sequence which is statistically (`,m) summable to ξ. If for any integer r ≥ 0

(t(1)
n (ω(r)(s))) is slowly decreasing in the (`, 1) sense, (45)

then (sn) converges to ξ.

Proof. Suppose (45) holds, then the sequence

(t(k)
n (t(1)(ω(r)(s)))) = (t(1)

n (t(k)(ω(r)(s))))

is slowly decreasing in the (`, 1) sense for every integer k ≥ 0. Now, considering the identity

t(k)
n (ω(r)(s)) = ω(r)

n (t(k)(s)),

we further obtain that

(t(1)
n (ω(r)

n (t(k)(s)))) is slowly decreasing in the (`, 1) sense, (46)

for all integer k ≥ 0. After taking k = m in (46) it follows from Theorem 3.4 that

lim
n→∞

t(m−1)
n (s) = ξ(`, 1),

which implies by Lemma 1.1,

st − lim
n→∞

t(m−1)
n (s) = ξ. (47)
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Then, by using (46) for k = m − 1 together with Theorem 3.4 we get

lim
n→∞

t(m−2)
n (s) = ξ(`, 1).

This also implies by Lemma 1.1 that

st − lim
n→∞

t(m−2)
n (s) = ξ. (48)

Considering (47) and (48) and applying the same reasoning m − 2 more times we find

st − lim
n→∞

sn = ξ.

Therefore, by the hypothesis and Theorem 3.4 the proof is completed.
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