A New Characterization of Browder’s Theorem

Mohammed Karmounia, Abdelaziz Tajmouatib

aCadi Ayyad University, Multidisciplinary Faculty, Safi, Morocco.
bSidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications Fez, Morocco.

Abstract. We give a new characterization of Browder’s theorem using spectra originated from Drazin-Fredholm theory.

1. Introduction and Preliminaries

Throughout, \(X\) denotes a complex Banach space, \(B(X)\) the Banach algebra of all bounded linear operators on \(X\), let \(I\) be the identity operator, and for \(T \in B(X)\) we denote by \(T^*, N(T), R(T), R_\infty(T) = \bigcap_{n \geq 0} R(T^n), \rho(T), \sigma(T)\) respectively the adjoint, the null space, the range, the hyper-range, the resolvent set and the spectrum of \(T\).

Let \(E\) be a subset of \(X\). \(E\) is said \(T\)-invariant if \(T(E) \subseteq E\). We say that \(T\) is completely reduced by the pair \((E,F)\) if \(E\) and \(F\) are two closed \(T\)-invariant subspaces of \(X\) such that \(X = E \oplus F\). In this case we write \(T = T_{|E} \oplus T_{|F}\) and we say that \(T\) is the direct sum of \(T_{|E}\) and \(T_{|F}\). An operator \(T \in B(X)\) is said to be semi-regular, if \(R(T)\) is closed and \(N(T) \subseteq R_\infty(T)\) ([1]).

In the other hand, recall that an operator \(T \in B(X)\) admits a generalized Kato decomposition, (GKD for short), if there exists \((X_1, X_2) \in \text{Red}(T)\) such that \(T_{|X_1}\) is semi-regular and \(T_{|X_2}\) is quasi-nilpotent, in this case \(T\) is said a pseudo Fredholm operator. If we assume in the definition above that \(T_{|X_1}\) is nilpotent, then \(T\) is said to be of Kato type. Clearly, every semi-regular operator is of Kato type and a quasi-nilpotent operator has a GKD, see [17, 20] for more information about generalized Kato decomposition.

A bounded linear operator is called an upper semi-Fredholm (resp, lower semi Fredholm) if \(\dim N(T) < \infty\) and \(R(T)\) is closed (resp, \(\text{codim}R(T) < \infty\)). \(T\) is semi-Fredholm if it is a lower or upper semi-Fredholm operator. The index of a semi-Fredholm operator \(T\) is defined by \(\text{ind}(T) := \text{dim}N(T) - \text{codim}R(T)\). Also, \(T\) is a Fredholm operator if it is a lower and upper semi-Fredholm operator, and \(T\) is called a Weyl operator if it is a Fredholm of index zero.

The essential and Weyl spectra of \(T\) are closed and defined by:

\[
\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not a Fredholm operator} \};
\]

\[
\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not a Weyl operator} \}.
\]
Recall that an operator $R \in \mathcal{B}(X)$ is said to be Riesz if $R - \mu I$ is Fredholm for every non-zero complex number μ ([1]). Of course compact and quasi-nilpotent operators are particular cases of Riesz operators.

In [26], Živković-Zlatanović SC and M D. Cvetković introduced and studied a new concept of Kato decomposition to extend the Mbekhta concept to “generalized Kato-Riesz decomposition”. In fact, an operator $T \in \mathcal{B}(X)$ admits a generalized Kato-Riesz decomposition, (GKRD for short), if there exists $(X_1, X_2) \in \text{Red}(T)$ such that T_{X_1} is semi-regular and T_{X_2} is Riesz. The generalized Kato-Riesz spectrum is defined by

$$\sigma_{\text{GRD}}(T) := \{ \lambda \in \mathbb{C} : T - \lambda I \text{ does not admit a generalized Kato-Riesz decomposition} \}.$$

Let $T \in \mathcal{B}(X)$, the ascent of T is defined by $a(T) = \min\{p \in \mathbb{N} : N(T^p) = N(T^{p+1})\}$, if such p does not exist we let $a(T) = \infty$. Analogously the descent of T is defined by $d(T) = \min\{q \in \mathbb{N} : R(T^q) = R(T^{q+1})\}$, if such q does not exist we let $d(T) = \infty$ [19]. It is well known that if both $a(T)$ and $d(T)$ are finite then $a(T) = d(T)$ and we have the decomposition $X = R(T^p) \oplus N(T^p)$ where $p = a(T) = d(T)$.

An operator $T \in \mathcal{B}(X)$ is upper semi-Browder if T is upper semi-Fredholm and $a(T) < \infty$. If $T \in \mathcal{B}(X)$ is lower semi-Fredholm and $d(T) < \infty$ then T is lower semi-Browder. T is called Browder operator if it is a lower and an upper Browder operator.

An operator $T \in \mathcal{B}(X)$ is said to be B-Fredholm, if for some integer $n \geq 0$ the range $R(T^n)$ is closed and T_n, the restriction of T to $R(T^n)$ is a Fredholm operator. This class of operators, introduced and studied by Berkani et al. in a series of papers extends the class of semi-Fredholm operators ([11], [12]). T is said to be a B-Weyl operator if T_n is a Fredholm operator of index zero. The B-Fredholm and B-Weyl spectra are defined by

$$\sigma_{\text{BF}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Fredholm}\};$$

$$\sigma_{\text{BW}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Weyl}\}.$$

Note that T is a B-Fredholm operator if there exists $(X_1, X_2) \in \text{Red}(T)$ such that T_{X_1} is Fredholm and T_{X_2} is nilpotent, see [11, Theorem 2.7]. Also, T is a B-Weyl operator if and only if T_{X_1} is a Weyl operator and T_{X_2} is a nilpotent operator.

More recently, B-Fredholm and B-Weyl operators were generalized to pseudo B-Fredholm and pseudo B-Weyl, see [13] [22][23] [25], precisely, T is a pseudo B-Fredholm operator, if there exists $(X_1, X_2) \in \text{Red}(T)$ such that T_{X_1} is a Fredholm operator and T_{X_2} is a quasi-nilpotent operator. T is said to be pseudo B-Weyl operator if there exists $(X_1, X_2) \in \text{Red}(T)$ such that T_{X_1} is a Weyl operator and T_{X_2} is a quasi-nilpotent operator. The pseudo B-Fredholm and pseudo B-Weyl spectra are defined by:

$$\sigma_{\text{pBF}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Fredholm}\};$$

$$\sigma_{\text{pBW}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Weyl}\}.$$

Let $T \in \mathcal{B}(X)$, T is said to be Drazin invertible if there exist a positive integer k and an operator $S \in \mathcal{B}(X)$ such that

$$ST = TS, \ T^{k+1}S = T^k \text{ and } S^2T = S.$$

Which is also equivalent to the fact that $T = T_1 \oplus T_2$; where T_1 is invertible and T_2 is nilpotent. The Drazin spectrum is defined by

$$\sigma_{\text{D}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Drazin invertible}\}.$$

The concept of Drazin invertible operators has been generalized by Koliha [16]. In fact, $T \in \mathcal{B}(X)$ is generalized Drazin invertible if and only if $0 \notin \text{acc}(\sigma(T))$, where $\text{acc}(\sigma(T))$ is the set of accumulation points of $\sigma(T)$. This is also equivalent to the fact that there exists $(X_1, X_2) \in \text{Red}(T)$ such that T_{X_1} is invertible and T_{X_2} is quasi-nilpotent. The generalized Drazin spectrum is defined by

$$\sigma_{\text{GD}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not generalized Drazin invertible}\}.$$

The concept of analytical core for an operator has been introduced by Vrbova in [24] and study by Mbekhta [20, 21], that is the following set:
The quasi-nilpotent part of T, $H_0(T)$ is given by:

$$H_0(T) := \{x \in X; r_T(x) = 0\} \text{ where } r_T(x) = \lim_{n \to +\infty} \|T^n x\|^\frac{1}{n}.$$

In [14], M. D. Cvetković and SC. Živković-Zlatanović introduced and studied a new concept of generalized Drazin invertibility of bounded operators as a generalization of generalized Drazin invertible operators. In fact, an operator $T \in B(X)$ is said to be generalized Drazin bounded below if $H_0(T)$ is closed and complemented with a subspace M in X such that $(M, H_0(T)) \in \text{Red}(T)$ and $T(M)$ is closed which is equivalent to there exists $(M, N) \in \text{Red}(T)$ such that T_M is bounded below and T_N is quasi-nilpotent, see [14, Theorem 3.6]. An operator $T \in B(X)$ is said to be generalized Drazin surjective if $K(T)$ is closed and complemented with a subspace N in X such that $N \subseteq H_0(T)$ and $(K(T), N) \in \text{Red}(T)$ which is equivalent to there exists $(M, N) \in \text{Red}(T)$ such that T_M is surjective and T_N is quasi-nilpotent, see [14, Theorem 3.7].

The generalized Drazin bounded below and surjective spectra of $T \in B(X)$ are defined respectively by:

$$\sigma_{gDM}(T) = \{\lambda \in \mathbb{C}, \ T - \lambda I \text{ is not generalized Drazin bounded below}\};$$

$$\sigma_{gDQ}(T) = \{\lambda \in \mathbb{C}, \ T - \lambda I \text{ is not generalized Drazin surjective}\}.$$

From [14], we have:

$$\sigma_{gD}(T) = \sigma_{gDM}(T) \cup \sigma_{gDQ}(T).$$

Recently, Živković-Zlatanović SC and M D. Cvetković [26] introduced and studied a new concept of pseudo-inverse to extend the Koliha concept, generalized Drazin bounded below, and generalized Drazin surjective to “generalized Drazin-Riesz invertible”, “generalized Drazin-Riesz bounded below” and “generalized Drazin-Riesz surjective” respectively. In fact, an operator $T \in B(X)$ is said to be generalized Drazin-Riesz invertible, if there exists $S \in B(X)$ such that

$$TS = ST, \quad STS = S \quad \text{and} \quad TST - T \text{ is Riesz}.$$
These classes of operators motivate the definition of several spectra. The generalized Drazin-Riesz lower(upper) semi-Weyl and generalized Drazin-Riesz Weyl spectra of $T \in \mathcal{B}(X)$ are defined respectively by:

\[
\sigma_{gDRW-}(T) = \{ \lambda \in \mathbb{C}, \; T - \lambda I \text{ is not generalized Drazin-Riesz lower semi-Weyl} \};
\]

\[
\sigma_{gDRW+}(T) = \{ \lambda \in \mathbb{C}, \; T - \lambda I \text{ is not generalized Drazin-Riesz upper semi-Weyl} \};
\]

\[
\sigma_{gDRW}(T) = \{ \lambda \in \mathbb{C}, \; T - \lambda I \text{ is not generalized Drazin-Riesz Weyl} \}.
\]

From [26], we have:

\[
\sigma_{gDRW}(T) = \sigma_{gDRW+}(T) \cup \sigma_{gDRW-}(T);
\]

The generalized Drazin-Riesz upper (lower) semi-Fredholm and generalized Drazin-Riesz Fredholm spectra of $T \in \mathcal{B}(X)$ are defined respectively by:

\[
\sigma_{gDFR+}(T) = \{ \lambda \in \mathbb{C}, \; T - \lambda I \text{ is not generalized Drazin-Riesz upper semi-Fredholm} \};
\]

\[
\sigma_{gDFR-}(T) = \{ \lambda \in \mathbb{C}, \; T - \lambda I \text{ is not generalized Drazin-Riesz lower semi-Fredholm} \};
\]

\[
\sigma_{gDFR}(T) = \{ \lambda \in \mathbb{C}, \; T - \lambda I \text{ is not generalized Drazin-Riesz Fredholm} \}.
\]

Also, from [26], we have:

\[
\sigma_{gDFR}(T) = \sigma_{gDFR+}(T) \cup \sigma_{gDFR-}(T).
\]

\[
\sigma_{gKR}(T) \subset \sigma_{gDFR+}(T) \subset \sigma_{gDFR-}(T) \subset \sigma_{gDR}(T);
\]

\[
\sigma_{gKR}(T) \subset \sigma_{gDFR}(T) \subset \sigma_{gDRW-}(T) \subset \sigma_{gDR}(T) \subset \sigma_{gDR}(T)
\]

A Banach space operator satisfies “Browder’s theorem” if the Browder spectrum coincides with the Weyl spectrum. Browder’s theorem has been studied by several authors (see [4], [3], [5], [6]). In this paper we shall give some characterizations of operators satisfying Browder’s theorem. In particular, we shall see that Browder’s theorem for a bounded linear operator is equivalent to the equality between the generalized Drazin-Riesz Weyl spectrum and generalized Drazin-Riesz spectrum. Also, we will give several necessary and sufficient conditions for T to have equality between the spectra originated from Drazin-Fredholm theory.

2. Main Results

Recall that $T \in \mathcal{B}(X)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP for short) if for every open neighbourhood $U \subseteq \mathbb{C}$ of λ_0, the only analytic function $f : U \rightarrow X$ which satisfies the equation $(T - zI)f(z) = 0$ for all $z \in U$ is the function $f \equiv 0$. An operator T is said to have the SVEP if T has the SVEP for every $\lambda \in \mathbb{C}$. Obviously, every operator $T \in \mathcal{B}(X)$ has the SVEP at every $\lambda \in \rho(T) = \mathbb{C} \setminus \sigma(T)$, hence T and T^* have the SVEP at every point of the boundary $\partial(\sigma(T))$ of the spectrum. Also, we have the implication

\[
a(T) < \infty \implies T \text{ has SVEP at } 0.
\]

\[
d(T) < \infty \implies T^* \text{ has SVEP at } 0.
\]

In [26], the authors gave some examples showing that $\sigma_{gDRW-}(T) \subset \sigma_{gDR}(T)$, $\sigma_{gDRW+}(T) \subset \sigma_{gDR}(T)$ and $\sigma_{gDRW}(T) \subset \sigma_{gDR}(T)$ can be proper. In the following results we give several necessary and sufficient conditions for T to have equality.

Proposition 2.1. Let $T \in \mathcal{B}(X)$, then $\sigma_{gDR}(T) = \sigma_{gDRW+}(T)$ if and only if T has SVEP at every $\lambda \notin \sigma_{gDRW+}(T)$.
Proof. Assume that T has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$. If $\lambda \notin \sigma_{\text{gDRW}}(T)$, then $T - \lambda I$ is generalized Drazin Riesz upper semi-Weyl, then there exists $(M,N) \in \text{Red}(T - \lambda I)$ such that $(T - \lambda I)_{M}$ is semi-regular and $(T - \lambda I)_{N}$ is Riesz. T has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$, it follows that $(T - \lambda I)_{M}$ has the SVEP at 0, then $(T - \lambda I)_{M}$ is bounded below, see [18, Corollary 3.1.7]. Hence $T - \lambda I$ is generalized Drazin Riesz bounded below, $\lambda \notin \sigma_{\text{gDR}}(T)$, and since the reverse implication holds for every operator we conclude that $\sigma_{\text{gDRW}}(T) = \sigma_{\text{gDRW}}(T)$. Conversely, suppose that $\sigma_{\text{gDRW}}(T) = \sigma_{\text{gDRW}}(T)$. If $\lambda \notin \sigma_{\text{gDRW}}(T)$ then $T - \lambda I$ is generalized Drazin Riesz bounded below so, T has SVEP at λ, by [26, Theorem 2.4]. □

We denote by $\sigma_{b}(T)$ and $\sigma_{w}(T)$ respectively the lower Browder and lower Weyl spectra. In the same way we have the following result.

Proposition 2.2. Let $T \in \mathcal{B}(X)$, then $\sigma_{\text{gDR}}(T) = \sigma_{\text{gDRW}}(T)$ if and only if T^{\ast} has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$.

Proof. Suppose that T^{\ast} has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$. If $\lambda \notin \sigma_{\text{gDRW}}(T)$, then by [26, Theorem 2.6], $T - \lambda I$ admits GKRD and $\lambda \notin \text{acc}_{\text{gDRW}}(T)$. T^{\ast} has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$, then T^{\ast} has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$, and so $\sigma_{b}(T) = \sigma_{w}(T)$. Then $\lambda \notin \text{acc}_{b}(T)$. Therefore, $T - \lambda I$ is generalized Drazin Riesz surjective according to [26, Theorem 2.5], $\lambda \notin \sigma_{\text{gDRW}}(T)$ and since the reverse implication holds for every operator we conclude that $\sigma_{\text{gDRW}}(T) = \sigma_{\text{gDRW}}(T)$. Conversely, suppose that $\sigma_{\text{gDRW}}(T) = \sigma_{\text{gDRW}}(T)$. If $\lambda \notin \sigma_{\text{gDRW}}(T)$, then $T - \lambda I$ is generalized Riesz Drazin surjective so, T has SVEP at λ, by [26, Theorem 2.5]. □

As a consequence of the two previous results we have the following corollary.

Corollary 2.3. Let $T \in \mathcal{B}(X)$, then $\sigma_{\text{gDR}}(T) = \sigma_{\text{gDRW}}(T)$ if and only if T and T^{\ast} have the SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$.

Proof. Suppose that $\sigma_{\text{gDR}}(T) = \sigma_{\text{gDRW}}(T)$. If $\lambda \notin \sigma_{\text{gDRW}}(T)$, then $T - \lambda I$ is generalized Riesz Drazin invertible so, T and T^{\ast} have SVEP at λ, by [26, Theorem 2.3]. The “if” is an immediate consequence of Proposition 2.1 and Proposition 2.2. □

Moreover, we have the following result.

Proposition 2.4. Let $T \in \mathcal{B}(X)$, the following statements are equivalent:

1) $\sigma_{\text{gDR}}(T) = \sigma_{\text{gDRW}}(T)$;
2) T or T^{\ast} has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$.

Proof. -If T has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$. If $\lambda \notin \sigma_{\text{gDRW}}(T)$, then by [26, Theorem 2.6], $T - \lambda I$ admits GKRD and $\lambda \notin \text{acc}_{\text{gDRW}}(T)$. T has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$, then T has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$, and so $\sigma_{b}(T) = \sigma_{w}(T)$ [1, Theorem 4.23]. Thus $\lambda \notin \text{acc}_{b}(T)$. Therefore, $T - \lambda I$ is generalized Drazin Riesz invertible by [26, Theorem 2.3], $\lambda \notin \sigma_{\text{gDR}}(T)$ and since the reverse implication holds for every operator we conclude that $\sigma_{\text{gDR}}(T) = \sigma_{\text{gDRW}}(T)$.

-If T^{\ast} has SVEP at every $\lambda \notin \sigma_{\text{gDRW}}(T)$. Since $\sigma_{b}(T) = \sigma_{b}(T^{\ast})$ and $\sigma_{w}(T) = \sigma_{w}(T^{\ast})$, we have $\sigma_{\text{gDR}}(T) = \sigma_{\text{gDRW}}(T)$.

Conversely, suppose that $\sigma_{\text{gDR}}(T) = \sigma_{\text{gDRW}}(T)$. If $\lambda \notin \sigma_{\text{gDRW}}(T)$, then $T - \lambda I$ is generalized Riesz Drazin invertible so, T and T^{\ast} have SVEP at λ, by [26, Theorem 2.3]. □

We shall say that T satisfies Browder’s theorem if $\sigma_{w}(T) = \sigma_{b}(T)$, or equivalently $\text{acc}(T) \subseteq \sigma_{w}(T)$, where $\sigma_{b}(T)$ is the Browder spectrum of T ([15]).

It is known from [2] that a-Browder’s theorem holds for T if $\sigma_{w}(T) = \sigma_{ab}(T)$, or equivalently $\text{acc}_{ab}(T) \subseteq \sigma_{w}(T)$, where $\sigma_{ab}(T)$ and $\sigma_{w}(T)$ are the upper semi-Browder and upper semi-Weyl spectra of T.

In the sequel, we characterize the equality between the generalized Drazin-Riesz invertible(surjective, bounded below) spectrum and generalized Drazin-Riesz Weyl(upper-lower Weyl) spectrum by means of the Browder’s theorem(a-Browder’s theorems), which give new characterizations for Browder’s and a-Browder’s theorems.
Theorem 2.5. Let $T \in \mathcal{B}(X)$, then
1) a-Browder’s theorem holds for T if and only if $\sigma_{gD}(T) = \sigma_{gDRW^+}(T)$.
2) a-Browder’s theorem holds for T^* if and only if $\sigma_{gD}(T) = \sigma_{gDRW^-}(T)$.
3) Browder’s theorem holds for T if and only if $\sigma_{gD}(T) = \sigma_{gDRW}(T)$.

Proof. 1) Suppose that a-Browder’s theorem holds for T implies $\sigma_{ub}(T) = \sigma_{uw}(T)$. Using [26, Theorems 2.4 and 2.6], we conclude that

$$
\lambda \notin \sigma_{gD}(T) \iff T - \lambda I \text{ is generalized Drazin Riesz bounded below}
\iff T - \lambda I \text{ admits a GKRD and } \lambda \notin acc_{ub}(T)
\iff T - \lambda I \text{ admits a GKRD and } \lambda \notin acc_{uw}(T)
\iff T - \lambda I \text{ is generalized Drazin Riesz upper semi-Weyl}
\iff \lambda \notin \sigma_{gDRW^+}(T).
$$

Hence $\sigma_{gD}(T) = \sigma_{gDRW^+}(T)$. Conversely, if $\sigma_{gD}(T) = \sigma_{gDRW^+}(T)$, from Proposition 2.1, T has SVEP at every $\lambda \notin \sigma_{gDRW^+}(T)$. Since $\sigma_{gDRW^+}(T) \subseteq \sigma_{uw}(T)$, T has SVEP at every $\lambda \notin \sigma_{uw}(T)$, so a-Browder’s theorem holds for T, see [2, Theorem 4.34].

2) Suppose that a-Browder’s theorem holds for T^* then $\sigma_{ub}(T) = \sigma_{uw}(T)$. Using [26, Theorems 2.5 and 2.6] we have

$$
\lambda \notin \sigma_{gD}(T) \iff T - \lambda I \text{ is generalized Drazin Riesz surjective}
\iff T - \lambda I \text{ admits a GKRD and } \lambda \notin acc_{ub}(T)
\iff T - \lambda I \text{ admits a GKRD and } \lambda \notin acc_{uw}(T)
\iff T - \lambda I \text{ is generalized Drazin Riesz lower semi-Weyl}
\iff \lambda \notin \sigma_{gDRW^-}(T).
$$

Hence $\sigma_{gD}(T) = \sigma_{gDRW^-}(T)$. Conversely, if $\sigma_{gD}(T) = \sigma_{gDRW^-}(T)$, from Proposition 2.2, T^* has SVEP at every $\lambda \notin \sigma_{gDRW^-}(T)$. Since $\sigma_{gDRW^-}(T) \subseteq \sigma_{lw}(T)$, T^* has SVEP at every $\lambda \notin \sigma_{lw}(T)$, so a-Browder’s theorem holds for T^*, see [2, Theorem 4.34].

3) Suppose that Browder’s theorem holds for T then $\sigma_{ub}(T) = \sigma_{uw}(T)$. Using [26, Theorems 2.6 and 2.3] we have

$$
\lambda \notin \sigma_{gD}(T) \iff T - \lambda I \text{ is generalized Drazin Riesz invertible}
\iff T - \lambda I \text{ admits a GKRD and } \lambda \notin acc_{ub}(T)
\iff T - \lambda I \text{ admits a GKRD and } \lambda \notin acc_{uw}(T)
\iff T - \lambda I \text{ is generalized Drazin Riesz Weyl}
\iff \lambda \notin \sigma_{gDRW}(T).
$$

Hence $\sigma_{gD}(T) = \sigma_{gDRW}(T)$. Conversely, if $\sigma_{gD}(T) = \sigma_{gDRW}(T)$, from Corollary 2.3, T and T^* has SVEP at every $\lambda \notin \sigma_{gDRW}(T)$. Since $\sigma_{gDRW}(T) \subseteq \sigma_{w}(T)$, T has SVEP at every $\lambda \notin \sigma_{w}(T)$, so Browder’s theorem holds for T, see [2, Theorem 4.23].

\[]

It will be said that generalized Browder’s theorem holds for $T \in \mathcal{B}(X)$ if $\sigma_{by}(T) = \sigma(T) \setminus \Pi(T)$, equivalently, $\sigma_{by}(T) = \sigma_{w}(T)$, where $\Pi(T)$ is the set of all poles of the resolvent of T ([4]). A classical result of M. Amouch and H. Zguitti [9, Theorem 2.1] shows that Browder’s theorem and generalized Browder’s theorem are equivalent. According to the previous results, [6, Theorem 2.2], [3, Theorem 2.3] an the equivalent between Browder’s theorem and generalized Browder’s theorem [9, Theorem 2.1] [10][Proposition 2.2] we have the following theorem.
Theorem 2.6. Let $T \in \mathcal{B}(X)$. The statements are equivalent:
1) Browder’s theorem holds for T;
2) Browder’s theorem holds for T^*;
3) T has SVEP at every $\lambda \notin \sigma_d(T)$;
4) T^* has SVEP at every $\lambda \notin \sigma_d(T)$;
5) T has SVEP at every $\lambda \notin \sigma_{BW}(T)$;
6) generalized Browder’s theorem holds for T;
7) T or T^* has SVEP at every $\lambda \notin \sigma_{aBW}(T)$;
8) $\sigma_{aDR}(T) = \sigma_{aDRW}(T)$;
9) T or T^* has SVEP at every $\lambda \notin \sigma_{aDRW}(T)$;
10) $\sigma_d(T) = \sigma_{BW}(T)$.

In the same way we have the following result.

Theorem 2.7. Let $T \in \mathcal{B}(X)$. The statements are equivalent:
1) a-Browder’s theorem holds for T;
2) generalized a-Browder’s theorem holds for T;
3) T has SVEP at every $\lambda \notin \sigma_{aDR}(T)$;
4) $\sigma_{aDR}(T) = \sigma_{aDRW}(T)$;
5) T has SVEP at every $\lambda \notin \sigma_{aDRW}(T)$;
6) $\sigma_{aDM}(T) = \sigma_{aDRW}(T)$.

We denote by $\sigma_{uf}(T)$ and $\sigma_{uf}(T)$, $T \in \mathcal{B}(X)$, respectively the lower and upper semi-Fredholm spectra. Note that $\sigma_{aDR\Phi_+}(T) \subset \sigma_{aDM}(T)$, $\sigma_{aDR\Phi_-}(T) \subset \sigma_{aDRQ}(T)$ and $\sigma_{aDR\Phi}(T) \subset \sigma_{aDR}(T)$ are strict [26]. In this case we have the following theorems:

Theorem 2.8. Let $T \in \mathcal{B}(X)$. The statements are equivalent:
1) $\sigma_{uf}(T) = \sigma_{ab}(T)$;
2) T has SVEP at every $\lambda \notin \sigma_{uf}(T)$;
3) T has SVEP at every $\lambda \notin \sigma_{aDR\Phi}(T)$;
4) $\sigma_{aDR}(T) = \sigma_{aDR\Phi}(T)$.

Proof. 1) \iff 2): Suppose that T has SVEP at every $\lambda \notin \sigma_{uf}(T)$. $\lambda \notin \sigma_{uf}(T)$, $T - \lambda I$ is upper semi-Fredholm. T has SVEP at λ, then $a(T - \lambda I) < \infty$, see [1, Theorem 3.16]. So $\lambda \notin \sigma_{ab}(T)$. Now, Suppose that $\sigma_{uf}(T) = \sigma_{ab}(T)$. Let $\lambda \notin \sigma_{uf}(T)$, $\lambda \notin \sigma_{ab}(T)$ then $a(T - \lambda I) < \infty$, hence T has SVEP at λ by [1].

3) \iff 4): Suppose that T has SVEP at every $\lambda \notin \sigma_{aDR\Phi}(T)$. If $\lambda \notin \sigma_{aDR\Phi}(T)$, $T - \lambda I$ is generalized Drazin Riesz upper Fredholm, then there exists $(M, N) \in \text{Red}(T)$ such that $(T - \lambda I)_M$ is semi-regular and $(T - \lambda I)_N$ is Riesz. T has SVEP at every $\lambda \notin \sigma_{aDR\Phi}(T)$ implies $(T - \lambda I)_M$ has the SVEP at 0, it follows that $(T - \lambda I)_M$ is bounded below, see [18, Corollary 3.1.7]. Hence $T - \lambda I$ is generalized Drazin Riesz bounded below, $\lambda \notin \sigma_{aDR}(T)$, and since the reverse implication holds for every operator we conclude that $\sigma_{aDR}(T) = \sigma_{aDR\Phi}(T)$. Conversely, assume that $\sigma_{aDR}(T) = \sigma_{aDR\Phi}(T)$. If $\lambda \notin \sigma_{aDR\Phi}(T)$ then $T - \lambda I$ is generalized Drazin Riesz bounded below so T has the SVEP at λ, by [26, Theorem 2.4].

1) \iff 4): Suppose that $\sigma_{uf}(T) = \sigma_{ab}(T)$.

According to [26, Theorems 2.4 and 2.6] we have

\[
\lambda \notin \sigma_{aDM}(T) \iff T - \lambda I \text{ is generalized Drazin Riesz bounded below} \\
\iff T - \lambda I \text{ admits a GKRD and } \lambda \notin acc \sigma_{ab}(T) \\
\iff T - \lambda I \text{ admits a GKRD and } \lambda \notin acc(\sigma_{uf}(T)) \\
\iff T - \lambda I \text{ is generalized Drazin Riesz Fredholm} \\
\iff \lambda \notin \sigma_{aDR\Phi}(T).
\]

Hence $\sigma_{aDR}(T) = \sigma_{aDR\Phi}(T)$. Conversely, if $\sigma_{aDR}(T) = \sigma_{aDR\Phi}(T)$, then by 3) \iff 4), T has SVEP at every $\lambda \notin \sigma_{aDR\Phi}(T)$. Since $\sigma_{aDR\Phi}(T) \subseteq \sigma_{uf}(T)$, T has SVEP at every $\lambda \notin \sigma_{uf}(T)$, 1) \iff 2) gives the result.

\[\Box\]
Theorem 2.9. Let \(T \in \mathcal{B}(X) \). The statements are equivalent:

1) \(\sigma_f(T) = \sigma_{\text{R}}(T); \)
2) \(T^* \) has SVEP at every \(\lambda \notin \sigma_f(T); \)
3) \(T^* \) has SVEP at every \(\lambda \notin \sigma_{\text{gD}}(T); \)
4) \(\sigma_{\text{gD}}(T) = \sigma_{\text{gDRB}}(T). \)

Proof. 1) \(\iff \) 2): Suppose that \(T^* \) has SVEP at every \(\lambda \notin \sigma_f(T). \) \(\lambda \notin \sigma_f(T) \) implies that \(T - \lambda I \) is lower semi-Fredholm. \(T^* \) has SVEP at \(\lambda \), then \(d(T - \lambda I) < \infty \), see [1, Theorem 3.17]. So \(\lambda \notin \sigma_{\text{R}}(T). \) Now, Suppose that \(\sigma_f(T) = \sigma_{\text{R}}(T). \) Let \(\lambda \notin \sigma_f(T), \lambda \notin \sigma_{\text{R}}(T) \) then \(d(T - \lambda I) < \infty \), hence \(T^* \) has SVEP at \(\lambda \) by [1].

3) \(\iff \) 4): Suppose that \(T^* \) has SVEP at every \(\lambda \notin \sigma_{\text{gD}}(T). \) If \(\lambda \notin \sigma_{\text{gD}}(T), \) \(T - \lambda I \) admits GKRD and \(\lambda \notin \text{acc}_{\text{bf}}(T) \) by [26, Theorem 2.6]. \(T^* \) has SVEP at every \(\lambda \notin \sigma_{\text{gD}}(T), \) so \(\lambda \notin \text{acc}_{\text{bf}}(T). \) Therefore, \(T - \lambda I \) is generalized Drazin Riesz surjective [26, Theorem 2.5], \(\lambda \notin \sigma_{\text{gD}}(T) \) and since the reverse implication holds for every operator we conclude that \(\sigma_{\text{gD}}(T) = \sigma_{\text{gDRB}}(T). \) Conversely, suppose that \(\sigma_{\text{gD}}(T) = \sigma_{\text{gDRB}}(T), \) if \(\lambda \notin \sigma_{\text{gDRB}}(T) \) then \(T^* \) has SVEP at every \(\lambda \notin \sigma_f(T), \) \(T \) has SVEP at every \(\lambda \notin \sigma_f(T), \) according to 1) \(\iff \) 2) we obtain the result. \(\square \)

As a direct consequence of the Theorems 2.8, 2.9 and [6, Corollary 2.1] we have the following corollary.

Corollary 2.10. Let \(T \in \mathcal{B}(X) \). The statements are equivalent:

1) \(\sigma_f(T) = \sigma_{\text{R}}(T); \)
2) \(T \) and \(T^* \) have SVEP at every \(\lambda \notin \sigma_f(T); \)
3) \(\sigma_{\text{bf}}(T) = \sigma_{\text{D}}(T); \)
4) \(T \) and \(T^* \) have SVEP at every \(\lambda \notin \sigma_{\text{bf}}(T); \)
5) \(\sigma_{\text{gD}}(T) = \sigma_{\text{bf}}(T). \)
6) \(T \) and \(T^* \) have SVEP at every \(\lambda \notin \sigma_{\text{bf}}(T); \)
7) \(\sigma_{\text{gD}}(T) = \sigma_{\text{gDRB}}(T). \)
8) \(T \) and \(T^* \) have SVEP at every \(\lambda \notin \sigma_{\text{gDRB}}(T); \)

Acknowledgement: The authors thank the referee for his suggestions, remarks and comments thorough reading of the manuscript.

References