Generalized Drazin Inverses in a Ring

Huanyin Chen ${ }^{\text {a }}$, Marjan Sheibani ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Hangzhou Normal University, Hangzhou, China
${ }^{b}$ Women's University of Semnan (Farzanegan), Semnan, Iran

Abstract

An element a in a ring R has generalized Drazin inverse if and only if there exists $b \in \operatorname{comm}^{2}(a)$ such that $b=b^{2} a, a-a^{2} b \in R^{q n i l}$. We prove that $a \in R$ has generalized Drazin inverse if and only if there inverse if and only if there exists $b \in \operatorname{comm}^{2}(a)$ such that $b=b^{2} a, a^{k}-a^{k+1} b \in J(R)$ for some $k \in \mathbb{N}$. We also characterize pseudo inverses by means of tripotents in a ring. Moreover, we prove that $a \in R$ has pseudo Drazin inverse if and only if there exists $b \in \operatorname{comm}^{2}(a)$ and $m, k \in \mathbb{N}$ such that $b^{m}=b^{m+1} a, a^{k}-a^{k+1} b \in J(R)$.

1. Introduction

Let R be an associative ring with an identity. The commutant of $a \in R$ is defined by $\operatorname{comm}(a)=\{x \in$ $R \mid x a=a x\}$. The double commutant of $a \in R$ is defined by $\operatorname{comm}^{2}(a)=\left\{x \in R \mid x y=y x\right.$ for all $\left.y \in \operatorname{comm}^{2}(a)\right\}$. We use $U(R)$ to denote the set of all units in R. Set $R^{\text {qnil }}=\{a \in R \mid 1+a x \in U(R)$ for every $x \in \operatorname{comm}(a)\}$. We say $a \in R$ is quasinilpotent if $a \in R^{\text {qnil }}$. The generalized Drazin inverse of $a \in R$ is the unique element $b \in R$ which satisfies

$$
b \in \operatorname{comm}^{2}(a), b=b^{2} a, a-a^{2} b \in R^{q n i l} .
$$

The set of all generalized Drazin invertible elements of R will be denoted by $R^{g D}$. Generalized Drazin inverse is extensively studied in matrix theory and Banach algebra (see [2,3,6, 7, 9] and [10]).

An element a in a ring R is quasipolar if there exists $e^{2}=e \in \operatorname{comm}^{2}(a)$ such that $a+e \in U(R)$ and ae $\in R^{\text {qnil }}$. As is well known, an element $a \in R$ has generalized Drazin inverse if and only if it is quasipolar (see [7, Theorem 4.2]). In Section 2, we shall characterize generalized Drazin inverse by means of tripotents p, i.e., $p^{3}=p$. We prove that $a \in R$ has generalized Drazin inverse if and only if there exists $p^{3}=p \in \operatorname{comm}^{2}(a)$ such that $a+p \in U(R)$ and $a p \in R^{\text {qnil }}$.

Following [8], an element a in a ring R has pseudo Drazin inverse if and only if there exists $b \in R$ such that

$$
b \in \operatorname{comm}^{2}(a), b=b^{2} a, a^{k}-a^{k+1} b \in J(R)
$$

for some $k \in \mathbb{N}$. We may replace the double commutator by the commutator in the preceding definition for a Banach algebra (see [8, Remark 5.1]). If $a \in R$ has pseudo Drazin inverse, then it has a generalized

[^0]Drazin inverse, but the converse is not true (see [8, Example 3.5]). Recently, many properties of pseudo inverses of matrices over a ring are explored (see [4, 8] and [11]). We also characterize pseudo inverses by means of tripotents in a ring. In Section 3, we prove that $a \in R$ has pseudo Drazin inverse if and only if there exists $p^{3}=p \in \operatorname{comm}^{2}(a)$ such that $a+p \in U(R)$ and $a^{k} p \in R^{q n i l}$ for some $k \in \mathbb{N}$. Moreover, we prove that $a \in R$ has pseudo Drrazin inverse if and only if there exists $b \in \operatorname{comm}^{2}(a)$ and $m, k \in \mathbb{N}$ such that $b^{m}-b^{m+1} a, a^{k}-a^{k+1} b \in J(R)$.

Throughout the paper, all rings are associative with an identity and all Banach algebras of bounded linear operators are complex. We use $J(R)$ and $N(R)$ to denote the Jacobson radical of R and the set of all nilpotent elements in R, respectively. $R^{g D}$ and $R^{p D}$ denote the sets of all elements having generalized Drazin inverses and pesudo Drazin inverses in R, respectively. \mathbb{N} stands for the set of all natural numbers.

2. Polar-like Characterizations

As is well known, generalized Drazin inverses in a ring can be characterized by quasipolar property. The aim of this section is to characterize such generalized inverses in terms of tripotents in a ring. We begin with

Lemma 2.1. Let R be a ring, and let $a \in R, p^{3}=p \in \operatorname{comm}^{2}(a)$. If ap $\in R^{\text {qnil }}$, then ap p^{2} gnil.
Proof. Let $x \in \operatorname{comm}\left(a p^{2}\right)$. Then $(p x p) a=p x\left(a p^{2}\right) p=p\left(a p^{2}\right) x p=a(p x p)$, and so $p x p \in \operatorname{comm}(a)$. As $p \in \operatorname{comm}{ }^{2}(a)$, we have $p x p^{2}=p^{2} x p$. Since $(a p)\left(p^{2} x p\right)=a(p x p)=(p x p) a=\left(p x p^{2}\right)(a p)$, we see that $p x p^{2} \in \operatorname{comm}(a p)$. By hypothesis, $a p \in R^{q n i l}$, and so $1-(a p)\left(p x p^{2}\right) \in U(R)$. In light of Jacobson's Lemma, $1-p^{2}\left(a p^{2}\right) x \in U(R)$. That is, $1-\left(a p^{2}\right) x \in U(R)$. Therefore $a p^{2} \in R^{\text {qnil }}$, as asserted.

Theorem 2.2. Let R be a ring, and let $a \in R$. Then the following are equivalent:
(1) $a \in R^{g D}$.
(2) There exists $p^{3}=p \in \operatorname{comm}^{2}(a)$ such that $a+p \in U(R)$ and ap $\in R^{\text {qnil }}$.

Proof. (1) \Rightarrow (2) Obviously, we have $a^{d} \in \operatorname{comm}^{2}(a), a^{d}=a^{d} a a^{d}, a-a^{2} a^{d} \in R^{\text {qnil. }}$. Set $p=1-a a^{d}$. As in the proof of [6, Lemma 2.4], one easily checks that $p=p^{2} \in \operatorname{comm}^{2}(a)$ and $a+p \in U(R)$ and $a p \in R^{\text {qnil }}$, and so $p=p^{3}$, as desired.
(2) \Rightarrow (1) By hypothesis, there exists $p^{3}=p \in \operatorname{comm}^{2}(a)$ such that $a+p \in U(R)$ and $a p \in R^{\text {qnil }}$. Set $b=\left(1-p^{2}\right)(a+p)^{-1}$. Then $b \in \operatorname{comm}^{2}(a)$ and

$$
\begin{aligned}
b^{2} a-b & =-\left(1-p^{2}\right)(a+p)^{-2} p \\
& =\left(p^{3}-p\right)(a+p)^{-2} \\
& =0
\end{aligned}
$$

hence, $b^{2} a=b$. Further,

$$
\begin{aligned}
a-a^{2} b & =a-a^{2}\left(1-p^{2}\right)(a+p)^{-1} \\
& =a(a+p)^{-1}\left((a+p)-a\left(1-p^{2}\right)\right) \\
& =a(a+p)^{-1}\left(a p^{2}+p\right) \\
& =a(a+p)^{-1}(a+p) p^{2} \\
& =a p^{2} .
\end{aligned}
$$

In light of Lemma 2.1, $a-a^{2} b \in R^{q n i l}$. Therefore $a \in R$ has generalized Drazin inverse.
Corollary 2.3. Let R be a ring, let $a \in R$ and let $x \in \operatorname{comm}(a) \cap U(R)$. Then the following are equivalent:
(1) $a \in R^{g D}$.
(2) There exists $p=p^{3} \in \operatorname{comm}^{2}(a)$ such that $a+x p \in U(R)$ and $a p \in R^{\text {qnil }}$.

Proof. (1) $\Rightarrow(2)$ This is obvious by [7, Proposition 4.7].
$(2) \Rightarrow$ (1) Since $a p \in R^{\text {qnil }}$, we see that $1+a p \in U(R)$. It is easy to check that

$$
\begin{aligned}
a+p & =(a+p) p^{2}+(a+x p)\left(1-p^{2}\right) \\
& =(1+a p) p+(a+x p)\left(1-p^{2}\right)
\end{aligned}
$$

Hence,

$$
(a+p)^{-1}=(1+a p)^{-1} p+(a+x p)^{-1}\left(1-p^{2}\right)
$$

This completes the proof.
As an immediate consequence of Corollary 2.3, we prove that $a \in R^{g D}$ if and only if there exists $p=p^{3} \in \operatorname{comm}^{2}(a)$ such that $a+p$ or $a-p$ is invertible and $a p \in R^{\text {qnil }}$.

We now turn to consider generalized Drazin inverses in a Banach algebra of bounded linear operators. The following lemma is crucial.

Lemma 2.4. Let A be a Banach algebra, $a, b \in A$ and $a b=b a$.
(1) If $a, b \in A^{\text {qnil }}$, then $a+b \in A^{\text {qnil }}$.
(2) If a or $b \in A^{\text {qnil }}$, then $a b \in A^{\text {qnil }}$.

Proof. In a Banach algebra A, the preceding definition of quasinilpotent coincides with the usual definition of $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}=0$, which is equivalent to $\lambda \cdot 1_{A}-a \in U(A)$ for all complex $\lambda \neq 0$ (see [6]). Then we complete the proof by [5, Theorem 7.4.3].

Theorem 2.5. Let A be a Banach algebra, and let $a \in A$. Then the following are equivalent:
(1) $a \in A^{g D}$.
(2) There exists $e^{3}=e \in \operatorname{comm}^{2}(a)$ such that $a+e \in U(A)$ and $\lim _{n \rightarrow \infty}\left\|(a e)^{n}\right\|^{\frac{1}{n}}=0$.
(3) There exist idempotents $e, f \in \operatorname{comm}^{2}(a)$ such that

$$
a-e+f \in U(A), \lim _{n \rightarrow \infty}\left\|(a e)^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|(a f)^{n}\right\|^{\frac{1}{n}}=0
$$

Proof. (1) $\Leftrightarrow(2)$ This is obvious by Theorem 2.2 and [5, Page 251].
$(1) \Rightarrow(3)$ By hypothesis, there exists an idempotents $f \in \operatorname{comm}^{2}(a)$ such that $a+f \in U(A)$ and $a f \in A^{\text {quil }}$. Choose $e=0$, thus proving (2).
$(3) \Rightarrow(1)$ Let $a \in R$ and suppose that there exist idempotents $e, f \in \operatorname{comm}^{2}(a)$ such that

$$
a-e+f \in U(R), \lim _{n \rightarrow \infty}\left\|(a e)^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|(a f)^{n}\right\|^{\frac{1}{n}}=0
$$

Set $g=e-f$. Since $e \in \operatorname{comm}^{2}(a)$, we see that $e a=a e$. As $f \in \operatorname{comm}^{2}(a)$, we get $e f=f e$. It follows from $a e, a f \in A^{\text {qnil }}$ that $a(e-f)=a e-a f \in A^{\text {qnil }}$ by Lemma 2.4. One easily checks that $(e-f)^{3}=e-f$. Therefore we complete by Theorem 2.2.

Corollary 2.6. Let A be a Banach algebra, and let $a \in A$. Then the following are equivalent:
(1) $a \in A^{g D}$.
(2) There exist two orthogonal idempotents $e \in \operatorname{comm}(a), f \in \operatorname{comm}^{2}(a)$ such that

$$
a-e+f \in U(A), \lim _{n \rightarrow \infty}\left\|(a e)^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|(a f)^{n}\right\|^{\frac{1}{n}}=0
$$

Proof. (1) \Rightarrow (2) Let $a \in A$. By Theorem 2.5 it follows that there exist idempotents $g, h \in \operatorname{comm}^{2}(a)$ such that $a-g+h \in U(A), a g, a h \in A^{\text {qnil }}$. Clearly, $g h=h g$. Let $e=g(1-h)$ and $f=h(1-g)$. Then $e, f \in A$ are orthogonal idempotents. Obviously, $a-e+f=a-g+h \in U(A)$. By using Lemma 2.4, $a e=(a g)(1-h) \in A^{\text {qnil }}$. In view of [5, Page 251], we see that $\lim _{n \rightarrow \infty}\left\|(a e)^{n}\right\|^{\frac{1}{n}}=0$. Likewise, $\lim _{n \rightarrow \infty}\left\|(a f)^{n}\right\|^{\frac{1}{n}}=0$, as desired.
$(2) \Rightarrow(1)$ Let $a \in A$. Then there exist orthogonal idempotents $e \in \operatorname{comm}(a), f \in \operatorname{comm}^{2}(a)$ such that

$$
u:=a-e+f \in U(A), \lim _{n \rightarrow \infty}\left\|(a e)^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|(a f)^{n}\right\|^{\frac{1}{n}}=0 .
$$

Let $g=f-e$. Then $g=g^{3} \in \operatorname{comm}(a)$. In view of Lemma 2.4, we see that $a g \in A^{\text {quil }}$, and so $a^{2} g^{2} \in A^{\text {qnil }}$. Moreover, $v:=a^{2}+g^{2}=u^{2}-2 a g=u^{2}\left(1-2 u^{-2} a g\right) \in U(A)$. It follows from $g a=a g$ that $\left(1-g^{2}\right) a^{2}=v\left(1-g^{2}\right)$. Hence $1-g^{2}=b a^{2}=a^{2} b$ where $b=v^{-1}\left(1-g^{2}\right)$. Let $h=g^{2}$ and $x \in \operatorname{comm}(a)$. Then

$$
x h-h x h=(1-h) x h=(1-h)^{n} x h=b^{n} a^{2 n} x h=b^{n} x\left(a^{2} h\right)^{n}
$$

for all $n \in \mathbb{N}$. Hence

$$
\|x h-h x h\|^{\frac{1}{n}} \leq\|b\|\|x\|^{\frac{1}{n}}\left\|\left(a^{2} h\right)^{n}\right\|^{\frac{1}{n}}
$$

Since $a^{2} h \in A^{\text {qnil }}$, we see that

$$
\lim _{n \rightarrow \infty}\left\|\left(a^{2} h\right)^{n}\right\|^{\frac{1}{n}}=0
$$

and so

$$
\lim _{n \rightarrow \infty}\|x h-h x h\|^{\frac{1}{n}}=0
$$

Therefore $\|x h-h x h\|=0$ giving $x h=h x h$ and similarly $h x h=h x$. Hence $x h=h x$, and so $h \in \operatorname{comm}^{2}(a)$. Then $f+e=(f-e)^{2}=g^{2} \in \operatorname{comm}^{2}(a)$. If $y a=a y$, then $y f=f y$ and $(f+e) y=y(f+e)$. It follows that $y e=e y$; hence, $e \in \operatorname{comm}^{2}(a)$. Therefore we complete the proof by Theorem 2.5.

3. p-Drazin Inverse

The goal of this section is to characterize p-Drazin inverse in a ring by means of tripotents and we thereby obtain new characterizations of such generalized inverse. We now derive

Theorem 3.1. Let R be a ring, and let $a \in R$. Then the following are equivalent:
(1) $a \in R^{p D}$.
(2) There exists $p^{3}=p \in \operatorname{comm}^{2}(a)$ such that $a+p \in U(R)$ and $a^{k} p \in J(R)$ for some $k \in \mathbb{N}$.

Proof. (1) \Rightarrow (2) follows by [8, Theorem 3.2].
(2) \Rightarrow (1) By hypothesis, there exists $p^{3}=p \in \operatorname{comm}^{2}(a)$ such that $a+p \in U(R)$ and $a^{k} p \in J(R)$ for some $k \in \mathbb{N}$. Set $b=\left(1-p^{2}\right)(a+p)^{-1}$. As in the proof of Theorem 2.2, we see that $b \in \operatorname{comm}^{2}(a), b^{2} a=b$ and $a-a^{2} b=a p^{2}$. Moreover, we check that

$$
\begin{aligned}
a^{k}-a^{k+1} b & =a^{k}(1-a b) \\
& =a^{k}(1-a b)^{k} \\
& =\left(a-a^{2} b\right)^{k} \\
& =\left(a^{k} p\right) p \in J(R)
\end{aligned}
$$

Therefore $a \in R$ has pseudo Drazin inverse.
A ring R is a pseudopolar ring if every element in R is pseudopolar (see [8]). We now record the following.

Corollary 3.2. A ring R is a pseudopolar ring if and only if for any $a \in R$ there exists $p=p^{3} \in \operatorname{comm}^{2}(a)$ such that $a+p \in U(R)$ and $a^{k} p \in J(R)$ for some $k \in \mathbb{N}$.

Proof. This is obvious by Theorem 3.1.
Recall that a ring R is polar (or strongly π-regular) if every element in R has Drazin inverse, i.e., for any $a \in R$, there exists $b \in \operatorname{comm}^{2}(a)$ such that $b=b^{2} a$ and $a-a^{2} b \in N(R)$. For instances, every finite ring and every algebraic algebra over a field are polar.

Corollary 3.3. Let R be a ring. Then the following are equivalent:
(1) R is polar.
(2) For any $a \in R$ there exists $e^{3}=e \in \operatorname{comm}^{2}(a)$ such that $a+e \in U(R)$ and ae $\in N(R)$.

Proof. $(1) \Rightarrow(2)$ This is clear, by $[8$, Theorem 2.1].
$(2) \Rightarrow(1)$ In view of Theorem $3.1, R$ is pseudopolar. Let $a \in R^{\text {qnil }}$. Then there exists $e^{3}=e \in \operatorname{comm}^{2}(a)$ such that $u:=a+e \in U(R)$ and $a e \in N(R)$. Hence, $e=u-a=u\left(1-u^{-1} a\right) \in U(R)$. This implies that $e^{2}=1$. It follows from ae $\in N(R)$ that $a e^{2} \in N(R)$, and so $a \in N(R)$. Thus $R^{\text {qnil }} \subseteq N(R) \subseteq R^{\text {qnil }}$, i.e., $R^{\text {qnil }}=N(R)$. Therefore R is polar, by [8, Theorem 2.1].

Theorem 3.4. Let A be a Banach algebra, and let $a \in A$. Then the following are equivalent:
(1) $a \in A^{p D}$.
(2) There exist idempotents $e, f \in \operatorname{comm}^{2}(a)$ such that

$$
a-e+f \in U(A), a^{k} e, a^{k} f \in J(A)
$$

for some $k \in \mathbb{N}$.
Proof. (1) \Rightarrow (2) This is obvious, by [8, Theorem 3.2].
$(2) \Rightarrow(1)$ Let $a \in A$. Then there exist idempotents $e, f \in \operatorname{comm}^{2}(a)$ such that

$$
a-e+f \in U(A), a^{k} e, a^{k} f \in J(A)
$$

for some $k \in \mathbb{N}$. Set $g=f-e$. Since $e \in \operatorname{comm}^{2}(a)$, we see that $e a=a e$. It follows from $f \in \operatorname{comm}^{2}(a)$ that $e f=f e$. Moreover, $a^{k}(f-e)=a^{k} f-a^{k} e \in J(A)$. One easily checks that $(f-e)^{3}=f-e$. Therefore we complete by Theorem 3.1.

As in the proof of Corollary 2.6, by using Corollary 3.4, we derive
Corollary 3.5. Let A be a Banach algebra, and let $a \in A$. Then the following are equivalent:
(1) $a \in A^{p D}$.
(2) There exist two orthogonal idempotents $e \in \operatorname{comm}(a), f \in \operatorname{comm}^{2}(a)$ such that

$$
a-e+f \in U(A), a^{k} e, a^{k} f \in J(A)
$$

for some $k \in \mathbb{N}$.
We are now ready to prove:
Theorem 3.6. Let R be a ring, and let $a \in R$. Then the following are equivalent:
(1) $a \in R^{p D}$.
(2) There exists $b \in \operatorname{comm}^{2}(a)$ and $m, k \in \mathbb{N}$ such that

$$
b^{m}=b^{m+1} a, a^{k}-a^{k+1} b \in J(R)
$$

Proof. \Longrightarrow This is obvious by choosing $m=1$.
\Longleftarrow Let $a \in A$. Then there exists $b \in \operatorname{comm}^{2}(a)$ and $m, k \in \mathbb{N}$ such that

$$
b^{m}=b^{m+1} a, a^{k}-a^{k+1} b \in J(R)
$$

Then

$$
\begin{aligned}
\left(b a-b^{2} a^{2}\right)^{m} & =\left(b-b^{2} a\right)^{m} a^{m} \\
& =\left(b-b^{2} a\right)^{m-1}\left(b-b^{2} a\right) a^{m} \\
& =(1-b a)^{m-1} b^{m-1}\left(b-b^{2} a\right) a^{m} \\
& =(1-b a)^{m-1}\left(b^{m}-b^{m+1} a\right) a^{m} \\
& =0 .
\end{aligned}
$$

Set $p=b a$. Then $p^{m}(1-p)^{m}=0$. It is easy to verify that

$$
\begin{aligned}
1 & =(p+(1-p))^{2 m} \\
& =\sum_{i=0}^{m}\binom{2 m}{i} p^{2 m-i}(1-p)^{i}+\sum_{i=m+1}^{2 m}\binom{2 m}{i} p^{2 m-i}(1-p)^{i} .
\end{aligned}
$$

Take $e=\sum_{i=0}^{m}\binom{2 m}{i} p^{2 m-i}(1-p)^{i}$ and $f=1-e$. Then $e+f=1$ and $e f=f e=0$. Thus $e \in \operatorname{comm}^{2}(p)$ and $e-e^{2}=e f=0$. As $p \in \operatorname{comm}^{2}(a)$, we have $e^{2}=e \in \operatorname{comm}^{2}(a)$, and so $f^{2}=f \in \operatorname{comm}^{2}(a)$. Since $a^{k}(1-p)=a^{k}-a^{k+1} b \in J(R)$, we have

$$
a^{k} f=\left(\sum_{i=m+1}^{2 m}\binom{2 m}{i} p^{2 m-i}(1-p)^{i-1}\right)\left(a^{k}(1-p)\right) \in J(R) .
$$

Clearly, $(a+1-a b)(b+1-a b)=1+(1-a)\left(b-a b^{2}\right)+\left(a-a^{2} b\right)$. We easily check that $\left(b-a b^{2}\right)^{m}=(1-b a)^{m-1}\left(b^{m-1}(b-\right.$ $\left.\left.b^{2} a\right)\right)=0$; hence, $1+(1-a)\left(b-a b^{2}\right) \in U(R)$. Since $a^{k}-a^{k+1} b \in J(R)$, we have $a^{k-1}\left(a-a^{2} b\right) \in J(R)$, and then $\left(a-a^{2} b\right)^{2 k+1}=a^{k-1}\left(a-a^{2} b\right)(1-a b)^{k-1}\left(a-a^{2} b\right)^{k+1} \in J(R)$. Let $x=1+(1-a)\left(b-a b^{2}\right)$. Then $\left(x^{-1}\left(a-a^{2} b\right)\right)^{2 k+1}=$ $x^{-(2 k+1)}\left(a-a^{2} b\right)^{2 k+1} \in J(R)$. It follows that $1+\left(x^{-1}\left(a-a^{2} b\right)\right)^{2 k+1} \in U(R)$, so $1+x^{-1}\left(a-a^{2} b\right) \in U(R)$. Therefore

$$
1+(1-a)\left(b-a b^{2}\right)+\left(a-a^{2} b\right)=x\left(1+x^{-1}\left(a-a^{2} b\right)\right) \in U(R)
$$

hence, $(a+1-a b)(b+1-a b) \in U(R)$. This implies that $a+1-p \in U(R)$. On the other hand,

$$
\begin{aligned}
p-e & =p-\sum_{i=0}^{m}\binom{2 m}{i} p^{2 m-i}(1-p)^{i} \\
& =\sum_{i=0}^{2 m-2} p^{i}\left(p-p^{2}\right)-\sum_{i=1}^{m}\binom{2 m}{i} p^{2 m-i}(1-p)^{i} \\
& =z\left(p-p^{2}\right)
\end{aligned}
$$

for some $z \in \operatorname{comm}^{2}(p)$. Since $\left(p-p^{2}\right)^{m}=0$, we have $(p-e)^{2 m+1}=0$. Therefore $(a+1-p)^{2 m+1}+(p-e)^{2 m+1} \in U(R)$, and so $a+f=(a+1-p)+(p-e) \in U(R)$. Accordingly, a has pseudo Drazin inverse.
Corollary 3.7. Let R be a ring, and let $a \in R$. Then the following are equivalent:
(1) $a \in R^{p D}$.
(2) There exists $b \in \operatorname{comm}^{2}(a)$ and $k \in \mathbb{N}$ such that

$$
b^{k}=b^{k+1} a, a^{k}-a^{k+1} b \in J(R)
$$

Proof. This is obvious by Theorem 3.6.
As an immediate consequence of Corollary 3.7, we have
Corollary 3.8. A ring R is a pseudopolar ring if and only if for any $a \in R$ there exists $b \in \operatorname{comm}^{2}(a)$ and $k \in \mathbb{N}$ such that

$$
b^{k}=b^{k+1} a, a^{k}-a^{k+1} b \in J(R) .
$$

Acknowledgement

The authors would like to thank the referee for his/her careful reading of the paper. The very detailed comments improve many proofs of the paper, e.g., Corollary 2.6, Theorem 3.1 and Theorem 3.6.

References

[1] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl., 16(2017) 1750178 (12 pages), DOI: 10.1142/S02194988175 0178X.
[2] J. Cui and J. Chen, When is a 2×2 matrix ring over a commutative local ring quasipolar? Comm. Algebra, 39(2011), 3212-3221.
[3] J. Cui and J. Chen, Characterizations of quasipolar rings, Comm. Algebra, 41(2013), 3207-3217.
[4] J. Cui and J. Chen, Pseudopolar matrix rings over local rings, J. Algebra Appl., 13(2014), 1350109 [12 pages], DOI: 10.1142 /S0219498813501090.
[5] R. Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, 109 , Marcel Dekker, Inc., New York, 1988.
[6] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J., 38(1996), 367-381.
[7] J.J. Koliha and P. Patrick, Elements of rings with equal spectral idempotents, J. Austral. Math. Soc., 72(2002), 137-152.
[8] Z. Wang and J. Chen, Pseudo Drazin inverses in associative rings and Banach algebras, Linear Algebra Appl., 437(2012), $1332-1345$.
[9] Z.L. Ying and J. Chen, On quasipolar rings, Algebra Colloq., 19(2012), 683-692.
[10] G.F. Zhuang; J. Chen and J. Cui, Jacobson's Lemma for the generalized Drazin inverse, Linear Algebra Appl., 436(2012), 742-746.
[11] H. Zou and J. Chen, Additive property of pseudo Drazin inverse of elements in Banach Algebras, Filomat, 28(2014), $1773-1781$.
[12] H. Zou and J. Chen, On the pseudo Drazin inverse of the sum of two elements in a Banach algebra, Filomat, 31(2017), $2011-2022$.

[^0]: 2010 Mathematics Subject Classification. 15A09; Secondary 32A65, 16E50
 Keywords. tripotent; generalized Drazin inverse; pseudo Drazin inverse; Banach algebra.
 Received: 12 January 2018; Accepted: 04 December 2018
 Communicated by Dragan S. Djordjević
 Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY17A010018).
 Email addresses: huanyinchen@aliyun.com (Huanyin Chen), sheibani@fgusem.ac.ir (corresponding author) (Marjan Sheibani)

