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Abstract. An element a in a ring R has generalized Drazin inverse if and only if there exists b ∈ comm2(a)
such that b = b2a, a − a2b ∈ Rqnil. We prove that a ∈ R has generalized Drazin inverse if and only if there
exists p3 = p ∈ comm2(a) such that a + p ∈ U(R) and ap ∈ Rqnil. An element a in a ring R has pseudo Drazin
inverse if and only if there exists b ∈ comm2(a) such that b = b2a, ak

− ak+1b ∈ J(R) for some k ∈ N. We also
characterize pseudo inverses by means of tripotents in a ring. Moreover, we prove that a ∈ R has pseudo
Drazin inverse if and only if there exists b ∈ comm2(a) and m, k ∈N such that bm = bm+1a, ak

− ak+1b ∈ J(R).

1. Introduction

Let R be an associative ring with an identity. The commutant of a ∈ R is defined by comm(a) = {x ∈
R | xa = ax}. The double commutant of a ∈ R is defined by comm2(a) = {x ∈ R | xy = yx for all y ∈ comm2(a)}.
We use U(R) to denote the set of all units in R. Set Rqnil = {a ∈ R | 1 + ax ∈ U(R) for every x ∈ comm(a)}. We
say a ∈ R is quasinilpotent if a ∈ `Rqnil. The generalized Drazin inverse of a ∈ R is the unique element b ∈ R
which satisfies

b ∈ comm2(a), b = b2a, a − a2b ∈ Rqnil.

The set of all generalized Drazin invertible elements of R will be denoted by R1D. Generalized Drazin
inverse is extensively studied in matrix theory and Banach algebra (see [2, 3, 6, 7, 9] and [10]).

An element a in a ring R is quasipolar if there exists e2 = e ∈ comm2(a) such that a+e ∈ U(R) and ae ∈ Rqnil.
As is well known, an element a ∈ R has generalized Drazin inverse if and only if it is quasipolar (see [7,
Theorem 4.2]). In Section 2, we shall characterize generalized Drazin inverse by means of tripotents p, i.e.,
p3 = p. We prove that a ∈ R has generalized Drazin inverse if and only if there exists p3 = p ∈ comm2(a) such
that a + p ∈ U(R) and ap ∈ Rqnil.

Following [8], an element a in a ring R has pseudo Drazin inverse if and only if there exists b ∈ R such
that

b ∈ comm2(a), b = b2a, ak
− ak+1b ∈ J(R)

for some k ∈ N. We may replace the double commutator by the commutator in the preceding definition
for a Banach algebra (see [8, Remark 5.1]). If a ∈ R has pseudo Drazin inverse, then it has a generalized
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Drazin inverse, but the converse is not true (see [8, Example 3.5]). Recently, many properties of pseudo
inverses of matrices over a ring are explored (see [4, 8] and [11]). We also characterize pseudo inverses
by means of tripotents in a ring. In Section 3, we prove that a ∈ R has pseudo Drazin inverse if and only
if there exists p3 = p ∈ comm2(a) such that a + p ∈ U(R) and akp ∈ Rqnil for some k ∈ N. Moreover, we
prove that a ∈ R has pseudo Drrazin inverse if and only if there exists b ∈ comm2(a) and m, k ∈ N such that
bm
− bm+1a, ak

− ak+1b ∈ J(R).
Throughout the paper, all rings are associative with an identity and all Banach algebras of bounded

linear operators are complex. We use J(R) and N(R) to denote the Jacobson radical of R and the set of all
nilpotent elements in R, respectively. R1D and RpD denote the sets of all elements having generalized Drazin
inverses and pesudo Drazin inverses in R, respectively. N stands for the set of all natural numbers.

2. Polar-like Characterizations

As is well known, generalized Drazin inverses in a ring can be characterized by quasipolar property.
The aim of this section is to characterize such generalized inverses in terms of tripotents in a ring. We begin
with

Lemma 2.1. Let R be a ring, and let a ∈ R, p3 = p ∈ comm2(a). If ap ∈ Rqnil, then ap2
∈ Rqnil.

Proof. Let x ∈ comm(ap2). Then (pxp)a = px(ap2)p = p(ap2)xp = a(pxp), and so pxp ∈ comm(a). As p ∈ comm2(a),
we have pxp2 = p2xp. Since (ap)(p2xp) = a(pxp) = (pxp)a = (pxp2)(ap), we see that pxp2

∈ comm(ap). By
hypothesis, ap ∈ Rqnil, and so 1 − (ap)(pxp2) ∈ U(R). In light of Jacobson’s Lemma, 1 − p2(ap2)x ∈ U(R). That
is, 1 − (ap2)x ∈ U(R). Therefore ap2

∈ Rqnil, as asserted.

Theorem 2.2. Let R be a ring, and let a ∈ R. Then the following are equivalent:

(1) a ∈ R1D.
(2) There exists p3 = p ∈ comm2(a) such that a + p ∈ U(R) and ap ∈ Rqnil.

Proof. (1)⇒ (2) Obviously, we have ad
∈ comm2(a), ad = adaad, a− a2ad

∈ Rqnil. Set p = 1− aad. As in the proof
of [6, Lemma 2.4], one easily checks that p = p2

∈ comm2(a) and a + p ∈ U(R) and ap ∈ Rqnil, and so p = p3, as
desired.

(2) ⇒ (1) By hypothesis, there exists p3 = p ∈ comm2(a) such that a + p ∈ U(R) and ap ∈ Rqnil. Set
b = (1 − p2)(a + p)−1. Then b ∈ comm2(a) and

b2a − b = −(1 − p2)(a + p)−2p
= (p3

− p)(a + p)−2

= 0;

hence, b2a = b. Further,

a − a2b = a − a2(1 − p2)(a + p)−1

= a(a + p)−1((a + p) − a(1 − p2))
= a(a + p)−1(ap2 + p)
= a(a + p)−1(a + p)p2

= ap2.

In light of Lemma 2.1, a − a2b ∈ Rqnil. Therefore a ∈ R has generalized Drazin inverse.

Corollary 2.3. Let R be a ring, let a ∈ R and let x ∈ comm(a) ∩U(R). Then the following are equivalent:

(1) a ∈ R1D.
(2) There exists p = p3

∈ comm2(a) such that a + xp ∈ U(R) and ap ∈ Rqnil.
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Proof. (1)⇒ (2) This is obvious by [7, Proposition 4.7].
(2)⇒ (1) Since ap ∈ Rqnil, we see that 1 + ap ∈ U(R). It is easy to check that

a + p = (a + p)p2 + (a + xp)(1 − p2)
= (1 + ap)p + (a + xp)(1 − p2).

Hence,
(a + p)−1 = (1 + ap)−1p + (a + xp)−1(1 − p2).

This completes the proof.

As an immediate consequence of Corollary 2.3, we prove that a ∈ R1D if and only if there exists
p = p3

∈ comm2(a) such that a + p or a − p is invertible and ap ∈ Rqnil.
We now turn to consider generalized Drazin inverses in a Banach algebra of bounded linear operators.

The following lemma is crucial.

Lemma 2.4. Let A be a Banach algebra, a, b ∈ A and ab = ba.

(1) If a, b ∈ Aqnil, then a + b ∈ Aqnil.
(2) If a or b ∈ Aqnil, then ab ∈ Aqnil.

Proof. In a Banach algebra A, the preceding definition of quasinilpotent coincides with the usual definition
of lim

n→∞
||an
||

1
n = 0, which is equivalent to λ · 1A − a ∈ U(A) for all complex λ , 0 (see [6]). Then we complete

the proof by [5, Theorem 7.4.3].

Theorem 2.5. Let A be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a ∈ A1D.
(2) There exists e3 = e ∈ comm2(a) such that a + e ∈ U(A) and lim

n→∞
||(ae)n

||
1
n = 0.

(3) There exist idempotents e, f ∈ comm2(a) such that

a − e + f ∈ U(A), lim
n→∞
||(ae)n

||
1
n = lim

n→∞
||(a f )n

||
1
n = 0.

Proof. (1)⇔ (2) This is obvious by Theorem 2.2 and [5, Page 251].
(1)⇒ (3) By hypothesis, there exists an idempotents f ∈ comm2(a) such that a + f ∈ U(A) and a f ∈ Aqnil.

Choose e = 0, thus proving (2).
(3)⇒ (1) Let a ∈ R and suppose that there exist idempotents e, f ∈ comm2(a) such that

a − e + f ∈ U(R), lim
n→∞
||(ae)n

||
1
n = lim

n→∞
||(a f )n

||
1
n = 0.

Set 1 = e − f . Since e ∈ comm2(a), we see that ea = ae. As f ∈ comm2(a), we get e f = f e. It follows from
ae, a f ∈ Aqnil that a(e − f ) = ae − a f ∈ Aqnil by Lemma 2.4. One easily checks that (e − f )3 = e − f . Therefore
we complete by Theorem 2.2.

Corollary 2.6. Let A be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a ∈ A1D.
(2) There exist two orthogonal idempotents e ∈ comm(a), f ∈ comm2(a) such that

a − e + f ∈ U(A), lim
n→∞
||(ae)n

||
1
n = lim

n→∞
||(a f )n

||
1
n = 0.
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Proof. (1)⇒ (2) Let a ∈ A. By Theorem 2.5 it follows that there exist idempotents 1, h ∈ comm2(a) such that
a−1+h ∈ U(A), a1, ah ∈ Aqnil. Clearly, 1h = h1. Let e = 1(1−h) and f = h(1−1). Then e, f ∈ A are orthogonal
idempotents. Obviously, a − e + f = a − 1 + h ∈ U(A). By using Lemma 2.4, ae = (a1)(1 − h) ∈ Aqnil. In view
of [5, Page 251], we see that lim

n→∞
||(ae)n

||
1
n = 0. Likewise, lim

n→∞
||(a f )n

||
1
n = 0, as desired.

(2)⇒ (1) Let a ∈ A. Then there exist orthogonal idempotents e ∈ comm(a), f ∈ comm2(a) such that

u := a − e + f ∈ U(A), lim
n→∞
||(ae)n

||
1
n = lim

n→∞
||(a f )n

||
1
n = 0.

Let 1 = f − e. Then 1 = 13
∈ comm(a). In view of Lemma 2.4, we see that a1 ∈ Aqnil, and so a212

∈ Aqnil.
Moreover, v := a2 + 12 = u2

− 2a1 = u2(1 − 2u−2a1) ∈ U(A). It follows from 1a = a1 that (1 − 12)a2 = v(1 − 12).
Hence 1 − 12 = ba2 = a2b where b = v−1(1 − 12). Let h = 12 and x ∈ comm(a). Then

xh − hxh = (1 − h)xh = (1 − h)nxh = bna2nxh = bnx(a2h)n

for all n ∈N. Hence
||xh − hxh||

1
n ≤ ||b||||x||

1
n ||(a2h)n

||
1
n .

Since a2h ∈ Aqnil, we see that
lim
n→∞
||(a2h)n

||
1
n = 0,

and so
lim
n→∞
||xh − hxh||

1
n = 0.

Therefore ||xh − hxh|| = 0 giving xh = hxh and similarly hxh = hx. Hence xh = hx, and so h ∈ comm2(a). Then
f + e = ( f − e)2 = 12

∈ comm2(a). If ya = ay, then y f = f y and ( f + e)y = y( f + e). It follows that ye = ey;
hence, e ∈ comm2(a). Therefore we complete the proof by Theorem 2.5.

3. p-Drazin Inverse

The goal of this section is to characterize p-Drazin inverse in a ring by means of tripotents and we
thereby obtain new characterizations of such generalized inverse. We now derive

Theorem 3.1. Let R be a ring, and let a ∈ R. Then the following are equivalent:

(1) a ∈ RpD.
(2) There exists p3 = p ∈ comm2(a) such that a + p ∈ U(R) and akp ∈ J(R) for some k ∈N.

Proof. (1)⇒ (2) follows by [8, Theorem 3.2].
(2) ⇒ (1) By hypothesis, there exists p3 = p ∈ comm2(a) such that a + p ∈ U(R) and akp ∈ J(R) for some

k ∈ N. Set b = (1 − p2)(a + p)−1. As in the proof of Theorem 2.2, we see that b ∈ comm2(a), b2a = b and
a − a2b = ap2. Moreover, we check that

ak
− ak+1b = ak(1 − ab)

= ak(1 − ab)k

= (a − a2b)k

= (akp)p ∈ J(R).

Therefore a ∈ R has pseudo Drazin inverse.

A ring R is a pseudopolar ring if every element in R is pseudopolar (see [8]). We now record the
following.

Corollary 3.2. A ring R is a pseudopolar ring if and only if for any a ∈ R there exists p = p3
∈ comm2(a) such that

a + p ∈ U(R) and akp ∈ J(R) for some k ∈N.
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Proof. This is obvious by Theorem 3.1.

Recall that a ring R is polar (or strongly π-regular) if every element in R has Drazin inverse, i.e., for any
a ∈ R, there exists b ∈ comm2(a) such that b = b2a and a − a2b ∈ N(R). For instances, every finite ring and
every algebraic algebra over a field are polar.

Corollary 3.3. Let R be a ring. Then the following are equivalent:

(1) R is polar.
(2) For any a ∈ R there exists e3 = e ∈ comm2(a) such that a + e ∈ U(R) and ae ∈ N(R).

Proof. (1)⇒ (2) This is clear, by [8, Theorem 2.1].
(2) ⇒ (1) In view of Theorem 3.1, R is pseudopolar. Let a ∈ Rqnil. Then there exists e3 = e ∈ comm2(a)

such that u := a + e ∈ U(R) and ae ∈ N(R). Hence, e = u − a = u(1 − u−1a) ∈ U(R). This implies that e2 = 1.
It follows from ae ∈ N(R) that ae2

∈ N(R), and so a ∈ N(R). Thus Rqnil
⊆ N(R) ⊆ Rqnil, i.e., Rqnil = N(R).

Therefore R is polar, by [8, Theorem 2.1].

Theorem 3.4. Let A be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a ∈ ApD.
(2) There exist idempotents e, f ∈ comm2(a) such that

a − e + f ∈ U(A), ake, ak f ∈ J(A)

for some k ∈N.

Proof. (1)⇒ (2) This is obvious, by [8, Theorem 3.2].
(2)⇒ (1) Let a ∈ A. Then there exist idempotents e, f ∈ comm2(a) such that

a − e + f ∈ U(A), ake, ak f ∈ J(A)

for some k ∈ N. Set 1 = f − e. Since e ∈ comm2(a), we see that ea = ae. It follows from f ∈ comm2(a) that
e f = f e. Moreover, ak( f − e) = ak f − ake ∈ J(A). One easily checks that ( f − e)3 = f − e. Therefore we complete
by Theorem 3.1.

As in the proof of Corollary 2.6, by using Corollary 3.4, we derive

Corollary 3.5. Let A be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a ∈ ApD.
(2) There exist two orthogonal idempotents e ∈ comm(a), f ∈ comm2(a) such that

a − e + f ∈ U(A), ake, ak f ∈ J(A)

for some k ∈N.

We are now ready to prove:

Theorem 3.6. Let R be a ring, and let a ∈ R. Then the following are equivalent:

(1) a ∈ RpD.
(2) There exists b ∈ comm2(a) and m, k ∈N such that

bm = bm+1a, ak
− ak+1b ∈ J(R).
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Proof. =⇒ This is obvious by choosing m = 1.
⇐= Let a ∈ A. Then there exists b ∈ comm2(a) and m, k ∈N such that

bm = bm+1a, ak
− ak+1b ∈ J(R).

Then
(ba − b2a2)m = (b − b2a)mam

= (b − b2a)m−1(b − b2a)am

= (1 − ba)m−1bm−1(b − b2a)am

= (1 − ba)m−1(bm
− bm+1a)am

= 0.
Set p = ba. Then pm(1 − p)m = 0. It is easy to verify that

1 = (p + (1 − p))2m

=
m∑

i=0

(
2m

i

)
p2m−i(1 − p)i +

2m∑
i=m+1

(
2m
i

)
p2m−i(1 − p)i.

Take e =
m∑

i=0

(
2m

i

)
p2m−i(1 − p)i and f = 1 − e. Then e + f = 1 and e f = f e = 0. Thus e ∈ comm2(p)

and e − e2 = e f = 0. As p ∈ comm2(a), we have e2 = e ∈ comm2(a), and so f 2 = f ∈ comm2(a). Since
ak(1 − p) = ak

− ak+1b ∈ J(R), we have

ak f =
( 2m∑

i=m+1

(
2m

i

)
p2m−i(1 − p)i−1

)
(ak(1 − p)) ∈ J(R).

Clearly, (a+1−ab)(b+1−ab) = 1+(1−a)(b−ab2)+(a−a2b).We easily check that (b−ab2)m = (1−ba)m−1(bm−1(b−
b2a)) = 0; hence, 1 + (1 − a)(b − ab2) ∈ U(R). Since ak

− ak+1b ∈ J(R), we have ak−1(a − a2b) ∈ J(R), and then

(a − a2b)2k+1 = ak−1(a − a2b)(1 − ab)k−1(a − a2b)k+1
∈ J(R). Let x = 1 + (1 − a)(b − ab2). Then

(
x−1(a − a2b)

)2k+1
=

x−(2k+1)(a − a2b)2k+1
∈ J(R). It follows that 1 +

(
x−1(a − a2b)

)2k+1
∈ U(R), so 1 + x−1(a − a2b) ∈ U(R). Therefore

1 + (1 − a)(b − ab2) + (a − a2b) = x
(
1 + x−1(a − a2b)

)
∈ U(R);

hence, (a + 1 − ab)(b + 1 − ab) ∈ U(R). This implies that a + 1 − p ∈ U(R). On the other hand,

p − e = p −
m∑

i=0

(
2m
i

)
p2m−i(1 − p)i

=
2m−2∑
i=0

pi(p − p2) −
m∑

i=1

(
2m

i

)
p2m−i(1 − p)i

= z(p − p2)

for some z ∈ comm2(p). Since (p−p2)m = 0, we have (p−e)2m+1 = 0. Therefore (a+1−p)2m+1+(p−e)2m+1
∈ U(R),

and so a + f = (a + 1 − p) + (p − e) ∈ U(R). Accordingly, a has pseudo Drazin inverse.

Corollary 3.7. Let R be a ring, and let a ∈ R. Then the following are equivalent:

(1) a ∈ RpD.
(2) There exists b ∈ comm2(a) and k ∈N such that

bk = bk+1a, ak
− ak+1b ∈ J(R).

Proof. This is obvious by Theorem 3.6.

As an immediate consequence of Corollary 3.7, we have

Corollary 3.8. A ring R is a pseudopolar ring if and only if for any a ∈ R there exists b ∈ comm2(a) and k ∈N such
that

bk = bk+1a, ak
− ak+1b ∈ J(R).
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