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Available at: http://www.pmf.ni.ac.rs/filomat

Biconjugate Residual Algorithm for Solving General
Sylvester-transpose Matrix Equations

Masoud Hajariana

aDepartment of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, General Campus, Evin, Tehran 19839, Iran

Abstract. The present paper is concerned with the solution of the coupled generalized Sylvester-transpose
matrix equations {

A1XB1 + C1XD1 + E1XTF1 = M1,
A2XB2 + C2XD2 + E2XTF2 = M2,

including the well-known Lyapunov and Sylvester matrix equations. Based on a variant of biconjugate
residual (BCR) algorithm, we construct and analyze an efficient algorithm to find the (least Frobenius
norm) solution of the general Sylvester-transpose matrix equations within a finite number of iterations in
the absence of round-off errors. Two numerical examples are given to examine the performance of the
constructed algorithm.

1. Introduction

Linear matrix equations have variety of applications in applied mathematics and engineering [3–5, 25,
26, 29]. For instance, the Sylvester-transpose matrix equation

AX + XTB = C, (1.1)

has close relations with many problems in system theory, such as eigenstructure assignment, observer
design, control of system with input constraint, and fault detection [13, 18–20, 32]. The generalized
Sylvester matrix equation

AXB + CXD = E, (1.2)

appears in the model reduction and stability, reachability, observability and controllability analysis of
discrete-time and continuous-time linear systems [36, 38–40]. During the last two decades, the linear
matrix equations have drawn much attention due to their wide applications [3, 14, 27, 28, 35, 42]. Li and
Wang introduced the weighted steepest descent algorithms to solve the general linear matrix equation
including the Lyapunov and Sylvester matrix equations [31]. In [37], the explicit expression of least
squares Hermitian solution with the least norm of (1.2) was presented. By applying Galerkin projection
with an extended Krylov subspace method, Shank et al. proposed an iterative method for the low-rank
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approximate solution of the generalized Lyapunov equations [1]. In [2], Dopico et al. introduced several
projection algorithms based on different Krylov spaces to find the low-rank approximations to the solution
of the Sylvester-transpose matrix equation. The development of iterative methods proposed for Ax = b has
gained interest to compute numerical solutions of linear matrix equations in recent years [12, 21, 33, 45–47].
By developing the conjugate gradient normal equation residual (CGNR), the conjugate gradient normal
equation error (CGNE) and the least-squares QR-factorization (LSQR) algorithms, various efficient methods
were constructed for solving diverse linear matrix equations [12, 23, 24, 30]. In [15–17], by applying the
hierarchical identification principle, the gradient based iterative algorithms were proposed for solving
several linear matrix equations.
Our main result in this paper is to generalize a variant of BCR algorithm to compute the solution X ∈ Rm×n

of the coupled generalized Sylvester-transpose matrix equations{
A1XB1 + C1XD1 + E1XTF1 = M1,
A2XB2 + C2XD2 + E2XTF2 = M2,

(1.3)

where Ai,Ci ∈ Rpi×m, Bi,Di ∈ Rn×qi , Ei ∈ Rpi×n, Fi ∈ Rm×qi and Mi ∈ Rpi×qi for i = 1, 2.
The coupled generalized Sylvester-transpose matrix equations (1.3) contain several matrix equations as
special cases such as Lyapunov, Sylvester and Sylvester-transpose matrix equations.
The rest of this article is organized as follows. In Section 2, after a brief presentation of BCR algorithm,
we obtain the generalization of the algorithm to solve the coupled generalized Sylvester-transpose matrix
equations (1.3). In addition, we discuss the convergence properties of the generalized BCR algorithm. We
provide two numerical evaluations of the obtained algorithm in Section 3. In Section 4, conclusions are
given.
Some notations used in the sequel are presented as follows:
The symbols tr(A), AT,R(A) and A† are used to denote the trace, the transpose, the column space and pseudo
inverse of A, respectively. The inner product of A ∈ Rm×n and B ∈ Rm×n is defined by 〈A,B〉 = tr(BTA). The
associated norm is the well-known Frobenius norm denoted by ||.||. For a matrix A ∈ Rm×n, the so-called
stretching function vec(A) is defined by vec(A) = (aT

1 , aT
2 , ..., aT

n )T, where ak is the k-th column of A. The
notation A ⊗ B stands for the Kronecker product of matrices A and B.

2. Description of the BCR Algorithm and its Convergence

In this section, we first briefly describe the BCR algorithm to solve Ax = b. Then we develop the new
modified BCR algorithm to calculate the solution of the coupled generalized Sylvester-transpose matrix
equations (1.3). Various iterative methods have been introduced for the solution of the nonsymmetric
linear system Ax = b; see, e.g., [6–10, 43, 44] and references therein. Vespucci and Broyden in [34] presented
the different computational variations of BCR algorithm without any convergence analysis. One of those
variations is summarized as follows:
BCR algorithm
Initial values: x(1) and s(1) arbitrary, r(1) = Ax(1) − b,
u(1) = s(1), v(1) = r(1), w(1) = Au(1), and z(1) = ATv(1).
Recursions:
α(k) =

w(k)Tr(k)
w(k)Tw(k) , x(k + 1) = x(k) − α(k)u(k),

r(k + 1) = r(k) − α(k)w(k),
β(k) =

z(k)Ts(k)
z(k)Tz(k) , s(k + 1) = s(k) − β(k)z(k),

γ(k) =
w(k)TAs(k+1)

w(k)Tw(k) , u(k + 1) = s(k + 1) − γ(k)u(k),

η(k) =
z(k)TATr(k+1)

z(k)Tz(k) , v(k + 1) = r(k + 1) − η(k)v(k),
w(k + 1) = Au(k + 1),
z(k + 1) = ATv(k + 1).
In order to develop the above algorithm for solving (1.3), first we transform (1.3) into a linear system. By
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utilizing the stretching function and the Kronecker product, the coupled generalized Sylvester-transpose
matrix equations (1.3) can be equivalently transformed into the following linear system(

BT
1 ⊗ A1 + DT

1 ⊗ C1 + (FT
1 ⊗ E1)P

BT
2 ⊗ A2 + DT

2 ⊗ C2 + (FT
2 ⊗ E2)P

)
︸                                      ︷︷                                      ︸

A

vec(X)︸ ︷︷ ︸
x

=

(
vec(M1)
vec(M2)

)
︸      ︷︷      ︸

b

, (2.1)

where P ∈ Rmn×mn is an orthogonal matrix. For more details about the form of the matrix P see [41].
Substituting the above system in the BCR algorithm leads to

r(1) = Ax(1) − b =

(
BT

1 ⊗ A1 + DT
1 ⊗ C1 + (FT

1 ⊗ E1)P
BT

2 ⊗ A2 + DT
2 ⊗ C2 + (FT

2 ⊗ E2)P

)
x(1) −

(
vec(M1)
vec(M2)

)
,

w(k + 1) = Au(k + 1) =

(
BT

1 ⊗ A1 + DT
1 ⊗ C1 + (FT

1 ⊗ E1)P
BT

2 ⊗ A2 + DT
2 ⊗ C2 + (FT

2 ⊗ E2)P

)
u(k + 1),

z(k + 1) = ATv(k + 1) =

(
BT

1 ⊗ A1 + DT
1 ⊗ C1 + (FT

1 ⊗ E1)P
BT

2 ⊗ A2 + DT
2 ⊗ C2 + (FT

2 ⊗ E2)P

)T

v(k + 1)

=
(
B1 ⊗ AT

1 + D1 ⊗ CT
1 + PT(F1 ⊗ ET

1 ) B2 ⊗ AT
2 + D2 ⊗ CT

2 + PT(F2 ⊗ ET
2 )

)
v(k + 1).

(2.2)

According to (2.2), let us define

x(k) = vec(X(k)), s(k) = vec(S(k)), z(k) = vec(Z(k)), u(k) = vec(U(k)), (2.3)

v(k) =

(
vec(V1(k))
vec(V2(k))

)
, r(k) =

(
vec(R1(k))
vec(R2(k))

)
, w(k) =

(
vec(W1(k))
vec(W2(k))

)
, (2.4)

where X(k),S(k),Z(k),U(k) ∈ Rm×n and Ri(k),Vi(k),Wi(k) ∈ Rpi×qi for i = 1, 2. Substituting (2.3) and (2.4) into
(2.2) gives us

vec(Ri(1)) = vec(AiX(1)Bi + CiX(1)Di + EiX(1)TFi −Mi), i = 1, 2,

vec(Wi(k + 1)) = vec(AiU(k + 1)Bi + CiU(k + 1)Di + EiU(k + 1)TFi), i = 1, 2,

vec(Z(k + 1)) = vec(AT
1 V1(k + 1)BT

1 + CT
1 V1(k + 1)DT

1 + F1V1(k + 1)TE1

+AT
2 V2(k + 1)BT

2 + CT
2 V2(k + 1)DT

2 + F2V2(k + 1)TE2).

Now by considering the above discussion, we establish the matrix form of BCR algorithm for solving (1.3)
as follows.

Algorithm 1. (Matrix form of BCR algorithm to solve (1.3))

Step 1. Given the initial matrix X(1) ∈ Rm×n and nonzero arbitrary matrix S(1) ∈ Rm×n. Input the tolerance τ > 0;

Step 2. Compute

Ri(1) = AiX(1)Bi + CiX(1)Di + EiX(1)TFi −Mi, i = 1, 2,

U(1) = S(1), V1(1) = R1(1), V2(1) = R2(1),

Wi(1) = AiU(1)Bi + CiU(1)Di + EiU(1)TFi, i = 1, 2,

Z(1) = AT
1 V1(1)BT

1 + CT
1 V1(1)DT

1 + F1V1(1)TE1 + AT
2 V2(1)BT

2 + CT
2 V2(1)DT

2 + F2V2(1)TE2;

Set k = 1;

Step 3. Exit if the stopping criterion
√
||R1(k)||2 + ||R2(k)||2 ≤ τ has been met;
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Step 4. Compute

α(k) =
tr(W1(k)TR1(k)) + tr(W2(k)TR2(k))

tr(W1(k)TW1(k)) + tr(W2(k)TW2(k))
,

X(k + 1) = X(k) − α(k)U(k),

Ri(k + 1) = Ri(k) − α(k)Wi(k), i = 1, 2,

β(k) =
tr(Z(k)TS(k))
tr(Z(k)TZ(k))

,

S(k + 1) = S(k) − β(k)Z(k),

γ(k) =

∑2
i=1 tr(Wi(k)T(AiS(k + 1)Bi + CiS(k + 1)Di + EiS(k + 1)TFi))

tr(W1(k)TW1(k)) + tr(W2(k)TW2(k))
,

U(k + 1) = S(k + 1) − γ(k)U(k),

η(k) =
1

tr(Z(k)TZ(k))
[tr(Z(k)T(AT

1 R1(k + 1)BT
1 + CT

1 R1(k + 1)DT
1 + F1R1(k + 1)TE1

+AT
2 R2(k + 1)BT

2 + CT
2 R2(k + 1)DT

2 + F2R2(k + 1)TE2)],

Vi(k + 1) = Ri(k + 1) − η(k)Vi(k), i = 1, 2,

Wi(k + 1) = AiU(k + 1)Bi + CiU(k + 1)Di + EiU(k + 1)TFi

= AiS(k + 1)Bi + CiS(k + 1)Di + EiS(k + 1)TFi − γ(k)Wi(k), i = 1, 2,

Z(k + 1) = AT
1 V1(k + 1)BT

1 + CT
1 V1(k + 1)DT

1 + F1V1(k + 1)TE1 + AT
2 V2(k + 1)BT

2 + CT
2 V2(k + 1)DT

2 + F2V2(k + 1)TE2

= AT
1 R1(k + 1)BT

1 + CT
1 R1(k + 1)DT

1 + F1R1(k + 1)TE1 + AT
2 R2(k + 1)BT

2 + CT
2 R2(k + 1)DT

2 + F2R2(k + 1)TE2 −η(k)Z(k);

Step 5. Set k = k + 1 and go to Step 3.

In order to provide a convergence theorem of Algorithm 1, we first present the following lemma which
gives some key properties of the algorithm.

Lemma 1. Suppose that there exists a positive integer number r such that α(k) , 0, α(k) , ∞ and [||R1(k)|| +
||R2(k)||] , 0 for all k = 1, 2, ..., r. Then

tr(R1(v)TW1(u)) + tr(R2(v)TW2(u)) = 0, f or u, v = 1, 2, ..., r, v > u, (2.5)

tr(S(v)TZ(u)) = 0, f or u, v = 1, 2, ..., r, v > u, (2.6)

tr(Z(v)TZ(u)) = 0, f or u, v = 1, 2, ..., r, u , v, (2.7)

tr(W1(v)TW1(u)) + tr(W2(v)TW2(u)) = 0, f or u, v = 1, 2, ..., r, u , v. (2.8)

Proof. It is described in the Appendix.

Using the above lemma, we will be able to obtain the convergence theorem of Algorithm 1 as follows.

Theorem 1. Let the coupled generalized Sylvester-transpose matrix equations (1.3) be consistent. Algorithm 1 can
compute the solution of (1.3) within a finite number of iterations in the absence of round-off errors.

Proof. Let us first consider the space Rp1×q1 × Rp2×q2 with a inner product defined as follows

〈(M1,M2), (N1,N2)〉 = tr(MT
1 N1) + tr(MT

2 N2) M1,N1 ∈ Rp1×q1 , M2,N2 ∈ Rp2×q2 .

If W1(k) , 0 or W2(k) , 0 for k = 1, 2, ..., p1q1 + p2q2 then from Lemma 1 we deduce that (W1(k),W2(k)),
k = 1, 2, ..., p1q1 + p2q2 is an orthogonal basis of the inner product space Rp1×q1 ×Rp2×q2 . From this result and
(2.5), we infer that Algorithm 1 can obtain the solution of (1.3) in a finite number of iterations in the absence
of round-off errors.
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In what follows, we show that Algorithm 1 with the special initial matrix can obtain the least Frobenius
norm solution of (1.3).

Theorem 2. Let the coupled generalized Sylvester-transpose matrix equations (1.3) be consistent. If we choose the
initial matrix

X(1) = AT
1 M1(1)BT

1 + CT
1 M1(1)DT

1 + F1M1(1)TE1 + AT
2 M2(1)BT

2 + CT
2 M2(1)DT

2 + F2M2(1)TE2, (2.9)

and matrix

S(1) = AT
1 N1(1)BT

1 + CT
1 N1(1)DT

1 + F1N1(1)TE1 + AT
2 N2(1)BT

2 + CT
2 N2(1)DT

2 + F2N2(1)TE2, (2.10)

where M1(1),N1(1) ∈ Rp1×q1 and M2(1),N2(1) ∈ Rp2×q2 are arbitrary, then the solution X∗ generated by Algorithm 1
is the least Frobenius norm solution of (1.3).

Proof. From (2.9) and (2.10) together with Algorithm 1 it follows that there exist the matrices M1(k),N1(k) ∈
Rp1×q1 and M2(k),N2(k) ∈ Rp2×q2 such that

X(k) = AT
1 M1(k)BT

1 + CT
1 M1(k)DT

1 + F1M1(k)TE1 + AT
2 M2(k)BT

2 + CT
2 M2(k)DT

2 + F2M2(k)TE2, (2.11)

and

S(k) = AT
1 N1(k)BT

1 + CT
1 N1(k)DT

1 + F1N1(k)TE1 + AT
2 N2(k)BT

2 + CT
2 N2(k)DT

2 + F2N2(k)TE2. (2.12)

By using (2.11) and (2.12), it is clear that

vec(X(k)) =vec(AT
1 M1(k)BT

1 + CT
1 M1(k)DT

1 + F1M1(k)TE1 + AT
2 M2(k)BT

2 + CT
2 M2(k)DT

2 + F2M2(k)TE2)

=
(
B1 ⊗ AT

1 + D1 ⊗ CT
1 + PT(F1 ⊗ ET

1 ) B2 ⊗ AT
2 + D2 ⊗ CT

2 + PT(F2 ⊗ ET
2 )

) (vec(M1(k))
vec(M2(k))

)
=

(
BT

1 ⊗ A1 + DT
1 ⊗ C1 + (FT

1 ⊗ E1)P
BT

2 ⊗ A2 + DT
2 ⊗ C2 + (FT

2 ⊗ E2)P

)T (
vec(M1(k))
vec(M2(k))

)
∈R

((
BT

1 ⊗ A1 + DT
1 ⊗ C1 + (FT

1 ⊗ E1)P
BT

2 ⊗ A2 + DT
2 ⊗ C2 + (FT

2 ⊗ E2)P

)T)
.

Therefore, it comes that the solution X∗ generated by Algorithm 1 is the least Frobenius norm solution of
(1.3).

Remark 1. It holds

||R1(k + 1)||2 + ||R2(k + 1)||2 =tr((R1(k) − α(k)W1(k))T(R1(k) − α(k)W1(k)))

+tr((R2(k) − α(k)W2(k))T(R2(k) − α(k)W2(k)))

=||R1(k)||2 + ||R2(k)||2 + α(k)2(||W1(k)||2 + ||W2(k)||2)

−2α(k)[tr(W1(k)TR1(k)) + tr(W2(k)TR2(k))]

=||R1(k)||2 + ||R2(k)||2 − α(k)[tr(W1(k)TR1(k)) + tr(W2(k)TR2(k))]

=||R1(k)||2 + ||R2(k)||2 −
[tr(W1(k)TR1(k)) + tr(W2(k)TR2(k))]2

||W1(k)||2 + ||W2(k)||2

≤||R1(k)||2 + ||R2(k)||2.

This shows that Algorithm 1 guarantees the descent of the residual norms.
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3. Numerical Experiments

This section presents two numerical examples to further illustrate the numerical effectiveness of BCR
algorithm compared with the CGNR and CGNE methods. All computations are carried out in MATLAB
with double machine precision.

Example 1. As the first example, we consider the Sylvester-transpose matrix equation AXB + CXTD = M with the
following parameters

A = triu(rand(n,n), 1) + dia1(2 + dia1(rand(n))), B = triu(rand(n,n), 1) + dia1(2 + dia1(rand(n))),

C = tril(rand(n,n), 1) + dia1(1.5 + dia1(rand(n))), D = triu(rand(n,n), 1) + dia1(1.5 + dia1(rand(n))),

M = 10 ∗ rand(n).

For n = 15, we apply CGNR and CGNE methods and Algorithm 1 with the initial matrix X(0) to solve this matrix
equation. The obtained results are presented in Figure 1 where

r(k) = log10 ||M − AX(k)B − CX(k)TD||.

Figure 1: Numerical comparison of the testing methods for Example 1.
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Algorithm 1

Example 2. In this example, we study the generalized Sylvester-transpose matrix equation AXB+CXD+EXTF = M
where

A =



4 40 4 7 9 1 0 10
4 400 −99 −2 −2 2 3 4
−2 −2 100 5 600 −1 −5 5
100 2 −2 −2 5 1 200 2
−90 −9 10 5 200 3 1 3
10 −20 −1 50 4 5 3 10
20 3 900 6 3 5 9 4
20 3 233 6 3 5 9 4


, B =



10 −22 3 7 110 −1 6 10
40 −5 1 −12 5 5 6 4
−2 5 1 10 6 −2 12 2
10 5 −5 −2 5 −3 25 12
1 −800 2 2 3 5 7 44

20 −10 −100 5 3 2 11 77
30 6 200 4 2 200 8 77

300 6 2 4 2 200 8 7700


,
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C =



−32 168 −4 −14 −422 6 −24 −20
−152 820 −202 44 −24 −16 −18 −8

4 −24 196 −30 1176 6 −58 2
160 −16 16 4 −10 14 300 −44
−184 3182 12 2 388 −14 −26 −170
−60 0 398 80 −4 2 −38 −288
−80 −18 1000 −4 −2 −790 −14 −300
−1160 −18 458 −4 −2 −790 −14 −30792


,

D =



−40 −156 −26 −49 −265 −3 −12 −70
−100 −1990 493 34 0 −20 −27 −28

14 0 −502 −45 −3012 9 1 −29
−520 −20 20 14 −35 1 −1050 −34
448 1645 −54 −29 −1006 −25 −19 −103
−90 120 205 −260 −26 −29 −37 −204
−160 −27 −4900 −38 −19 −425 −61 −174
−700 −27 −1169 −38 −19 −425 −61 −15420


,

E =



−28 208 0 −7 −413 7 −24 −10
−148 1220 −301 42 −26 −14 −15 −4

2 −26 296 −25 1776 5 −63 7
260 −14 14 2 −5 15 500 −42
−274 3173 22 7 588 −11 −25 −167
−50 −20 397 130 0 7 −35 −278
−60 −15 1900 2 1 −785 −5 −296
−1140 −15 691 2 1 −785 −5 −30788


,

F =



−30 −178 −23 −42 −155 −4 −6 −60
−60 −1995 494 22 5 −15 −21 −24
12 5 −501 −35 −3006 7 13 −27
−510 −15 15 12 −30 −2 −1025 −22
449 845 −52 −27 −1003 −20 −12 −59
−70 110 105 −255 −23 −27 −26 −127
−130 −21 −4700 −34 −17 −225 −53 −97
−400 −21 −1167 −34 −17 −225 −53 −7720


, M = rand(8).

This generalized Sylvester-transpose matrix equation can be transformed into the following linear system(
BT
⊗ A + DT

⊗ C + (FT
⊗ E)P

)
︸                                  ︷︷                                  ︸

T

vec(X)︸ ︷︷ ︸
x

= vec(M)︸  ︷︷  ︸
d

.

Since the condition number κ(T) = ||T||||T†|| = 1.8131×106, we see that the above system is ill-conditioned. By using
the mentioned methods with X(0), we obtain the sequence {X(k)}. In Figure 2, we depict the obtained results where

r(k) = log10 ||M − AX(k)B − CX(k)D − EX(k)TF||.

The above both examples show that Algorithm 1 can solve the matrix equations efficiently.
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Figure 2: Numerical comparison of the testing methods for Example 2.
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4. Conclusions

In this paper, we have introduced the matrix form of BCR algorithm for solving the coupled generalized
Sylvester-transpose matrix equations (1.3). We have shown that the introduced algorithm can find the least
Frobenius norm solution of (1.3) within a finite number of iterations in the absence of round-off errors. It
has been demonstrated by numerical examples that the introduced algorithm is better than some existing
methods to solve linear matrix equation.
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Appendix

The proof of Lemma 1
We apply induction to prove (2.5)-(2.8). Since the inner product is commutative, we only need to

demonstrate (2.5)-(2.8) for 1 ≤ u < v ≤ r. When v = 2 and u = 1, we have

tr(R1(2)TW1(1)) + tr(R2(2)TW2(1))

= tr(R1(1)TW1(1)) + tr(R2(1)TW2(1)) − tr(W1(1)TR1(1)) − tr(W2(1)TR2(1)) = 0,

tr(S(2)TZ(1)) = tr(S(1)TZ(1)) − tr(Z(1)TS(1)) = 0,

tr(Z(2)TZ(1))

= tr((AT
1 R1(1)BT

1 + CT
1 R1(1)DT

1 + F1R1(1)TE1 + AT
2 R2(1)BT

2 + CT
2 R2(1)DT

2 + F2R2(1)TE2 − η(1)Z(1))TZ(1))

= tr((AT
1 R1(2)BT

1 + CT
1 R1(2)DT

1 + F1R1(2)TE1 + AT
2 R2(2)BT

2 + CT
2 R2(2)DT

2 + F2R2(2)TE2)TZ(1))

−tr(Z(1)T(AT
1 R1(2)BT

1 + CT
1 R1(2)DT

1 + F1R1(2)TE1 + AT
2 R2(2)BT

2 + CT
2 R2(2)DT

2 + F2R2(2)TE2)) = 0,

tr(W1(2)TW1(1)) + tr(W2(2)TW2(1))



M. Hajarian / Filomat 32:15 (2018), 5307–5318 5315

= tr((A1S(2)B1 + C1S(2)D1 + E1S(2)TF1 − γ(1)W1(1))TW1(1))

+tr((A2S(2)B2 + C2S(2)D2 + E2S(2)TF2 − γ(1)W2(1))TW2(1))

= tr((A1S(2)B1 + C1S(2)D1 + E1S(2)TF1)TW1(1)) + tr((A2S(2)B2 + C2S(2)D2 + E2S(2)TF2)TW2(1))

−

2∑
i=1

tr(Wi(1)T(AiS(2)Bi + CiS(2)Di + EiS(2)TFi)) = 0.

These imply that (2.5)-(2.8) hold for v = 2 and u = 1. Now for u < w < r, we assume that

tr(R1(w)TW1(u)) + tr(R2(w)TW2(u)) = 0, tr(S(w)TZ(u)) = 0, (4.1)

tr(Z(w)TZ(u)) = 0, tr(W1(w)TW1(u)) + tr(W2(w)TW2(u)) = 0. (4.2)

By making use of (4.1) and (4.2), we can obtain

tr(R1(w + 1)TW1(u)) + tr(R2(w + 1)TW2(u))

= tr((R1(w) − α(w)W1(w))TW1(u)) + tr((R2(w) − α(w)W2(w))TW2(u)) = 0,

tr(S(w + 1)TZ(u)) = tr((S(w) − β(w)Z(w))TZ(u)) = 0,

tr(Z(w + 1)TZ(u))

= tr((AT
1 R1(w + 1)BT

1 + CT
1 R1(w + 1)DT

1 + F1R1(w + 1)TE1 + AT
2 R2(w + 1)BT

2

+CT
2 R2(w + 1)DT

2 + F2R2(w + 1)TE2 − η(w)Z(w))TZ(u))

=
1
β(u)

[tr(R1(w + 1)T(A1(S(u) − S(u + 1))B1 + C1(S(u) − S(u + 1))D1 + E1(S(u) − S(u + 1))TF1))

+tr(R2(w + 1)T(A2(S(u) − S(u + 1))B2 + C2(S(u) − S(u + 1))D2 + E2(S(u) − S(u + 1))TF2))]

=
1
β(u)

[tr(R1(w + 1)T(W1(u) + γ(u − 1)W1(u − 1))) − tr(R1(w + 1)T(W1(u + 1) + γ(u)W1(u)))

+tr(R2(w + 1)T(W2(u) + γ(u − 1)W2(u − 1))) − tr(R2(w + 1)T(W2(u + 1) + γ(u)W2(u)))]

= −
1
β(u)

[tr(R1(w + 1)TW1(u + 1)) + tr(R2(w + 1)TW2(u + 1))], (4.3)

tr(W1(w + 1)TW1(u)) + tr(W2(w + 1)TW2(u))

= tr((A1S(w + 1)B1 + C1S(w + 1)D1 + E1S(w + 1)TF1 − γ(w)W1(w))TW1(u))

+tr((A2S(w + 1)B2 + C2S(w + 1)D2 + E2S(w + 1)TF2 − γ(w)W2(w))TW2(u))

= tr(S(w + 1)T(AT
1 W1(u)BT

1 + CT
1 W1(u)DT

1 + F1W1(u)TE1 + AT
2 W2(u)BT

2 + CT
2 W2(u)DT

2 + F2W2(u)TE2))

=
1
α(u)

[tr(S(w + 1)T(AT
1 (R1(u) − R1(u + 1))BT

1 + CT
1 (R1(u) − R1(u + 1))DT

1 + F1(R1(u) − R1(u + 1))TE1

+AT
2 (R2(u) − R2(u + 1))BT

2 + CT
2 (R2(u) − R2(u + 1))DT

2 + F2(R2(u) − R2(u + 1))TE2))]

=
1
α(u)

[tr(S(w + 1)T(Z(u) + η(u − 1)Z(u − 1)) − Z(u + 1) − η(u)Z(u)))]

= −
1
α(u)

[tr(S(w + 1)TZ(u + 1))]. (4.4)

Also for u = w, we can get

tr(R1(w + 1)TW1(w)) + tr(R2(w + 1)TW2(w)) = 0,
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tr(S(w + 1)TZ(w)) = 0,

tr(Z(w + 1)TZ(w)) = tr((AT
1 R1(w + 1)BT

1 + CT
1 R1(w + 1)DT

1 + F1R1(w + 1)TE1

+AT
2 R2(w + 1)BT

2 + CT
2 R2(w + 1)DT

2 + F2R2(w + 1)TE2 − η(w)Z(w))TZ2(w))

= tr((AT
1 R1(w + 1)BT

1 + CT
1 R1(w + 1)DT

1 + F1R1(w + 1)TE1

+AT
2 R2(w + 1)BT

2 + CT
2 R2(w + 1)DT

2 + F2R2(w + 1)TE2)TZ(w))

−tr(Z(w)T(AT
1 R1(w + 1)BT

1 + CT
1 R1(w + 1)DT

1 + F1R1(w + 1)TE1

+AT
2 R2(w + 1)BT

2 + CT
2 R2(w + 1)DT

2 + F2R2(w + 1)TE2) = 0,

tr(W1(w + 1)TW1(1)) + tr(W2(w + 1)TW2(1))

= tr((A1S(w + 1)B1 + C1S(w + 1)D1 + E1S(w + 1)TF1 − γ(w)W1(w))TW1(w))

+tr((A2S(w + 1)B2 + C2S(w + 1)D2 + E2S(w + 1)TF2 − γ(w)W2(w))TW2(w))

= tr((A1S(w + 1)B1 + C1S(w + 1)D1 + E1S(w + 1)TF1)TW1(w))

+tr((A2S(w + 1)B2 + C2S(w + 1)D2 + E2S(w + 1)TF2)TW2(w))

−

2∑
i=1

tr(Wi(w)T(AiS(w + 1)Bi + CiS(w + 1)Di + EiS(w + 1)TFi)) = 0.

From
tr(Z(w)TZ(u)) = 0, tr(R1(w + 1)TW1(w)) + tr(R2(w + 1)TW2(w)) = 0,

and (4.3), it could be concluded that
tr(Z(w + 1)TZ(u)) = 0.

Also from
tr(W1(w)TW1(u)) + tr(W2(w)TW2(u)) = 0, tr(S(w + 1)TZ(w)) = 0,

and (4.4), one can easily verify

tr(W1(w + 1)TW1(u)) + tr(W2(w + 1)TW2(u)) = 0.

Hence Lemma 1 holds by the principle of induction.
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