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Available at: http://www.pmf.ni.ac.rs/filomat

Majorization Problems for Certain Classes of Multivalent Analytic
Functions Related with the Srivastava-Khairnar-More

Operator and Exponential Function

Huo Tanga, Guantie Dengb

aSchool of Mathematics and Statistics, Chifeng University, Chifeng 024000, Inner Mongolia, China
bSchool of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Abstract. In the present paper, we investigate several majorizaton problems for certain classes Mλ,δ
µ,p(a, b, c; η)

and Nλ,δ
µ,p(a, b, c;γ) of multivalent analytic functions related to exponential function, which are defined

through the Srivastava-Khairnar-More operator Iλ,δµ,p(a, b, c) given by (1.4). Meanwhile, some special cases
of our main results in form of corollaries are given.

1. Introduction

Let C be complex plane andAp denote the class of analytic and p-valent functions of the form

f (z) = zp +

∞∑
k=1

ak+pzk+p (p ∈N = {1, 2, · · · })

in the open unit disk
U = {z : z ∈ C and |z| < 1}.

For convenience, we writeA1 = A.

In 1967, Macgregor [10] introduced the notion of majorization as follows.

Definition 1.1. Let f and 1 be analytic inU. We say that f is majorized by 1 inU and write

f (z)� 1(z) (z ∈ U),
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if there exists a function ϕ(z), analytic inU, satisfying

|ϕ(z)| ≤ 1 and f (z) = ϕ(z)1(z) (z ∈ U). (1.1)

Later, Roberston [17] (see also [19]) gave the concept of quasi-subordination as below.

Definition 1.2. For two analytic functions f and 1 in U, we say f is quasi-subordinate to 1 in U and
write

f (z) ≺q 1(z) (z ∈ U),

if there exists two analytic functions ϕ(z) and ω(z) inU, such that f (z)
ϕ(z) is analytic inU and

|ϕ(z)| ≤ 1, ω(0) = 0 and |ω(z)| ≤ |z| < 1 (z ∈ U),

satisfying
f (z) = ϕ(z)1(ω(z)) (z ∈ U). (1.2)

Remark 1.1.

(i) For ϕ(z) ≡ 1 in (1.2), we have
f (z) = 1(ω(z)) (z ∈ U)

and say f is subordinate to 1 inU, denoted by (see [21]; also see [18, 22, 23, 29])

f (z) ≺ 1(z) (z ∈ U).

(ii) For ω(z) = z in (1.2), the quasi-subordination (1.2) reduces to the majorization (1.1).

In 1991, Ma and Minda [9] introduced the following function class S∗(φ), which is defined by using the
above subordination principle:

S∗(φ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ φ(z) (z ∈ U)

}
,

where φ(z) is analytic and univalent inU and for which φ(U) is convex with φ(0) = 1 and Re(φ(z)) > 0 for
z ∈ U.

We observe that, for choosing the appropriate function φ(z), the class S∗(φ) reduces to one of the well-
known classes of functions. For example,

(i) If we put

φ(z) =
1 + Az
1 + Bz

(−1 ≤ B < A ≤ 1; z ∈ U),

then we get the class

S∗(A,B) :=
{

f ∈ A :
z f ′(z)

f (z)
≺

1 + Az
1 + Bz

(−1 ≤ B < A ≤ 1; z ∈ U)
}
,

which was introduced by Janowski [7]. In particular, for A = 1 − 2α and B = −1, we have the class
S∗(1 − 2α,−1) = S∗(α) of starlike function of order α (0 ≤ α < 1). Further, for A = 1 and B = −1, we have the
familiar class S∗(1,−1) = S∗ of starlike function inU.

(ii) If we set
φ(z) = ez (z ∈ U),
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then we obtain the class

S∗e :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ez (z ∈ U)

}
,

which was introduced and investigate by Mendiratta et al. [11] and implies that

f ∈ S∗e ⇐⇒
∣∣∣∣∣log

z f ′(z)
f (z)

∣∣∣∣∣ < 1 (z ∈ U). (1.3)

For the functions f j ∈ Ap, given by

f j(z) = zp +

∞∑
k=1

ak+p, jzk+p ( j = 1, 2; z ∈ U),

we define the Hadamard product (or convolution) of f1 and f2 by

( f1 ∗ f2)(z) = zp +

∞∑
k=1

ak+p,1ak+p,2zk+p = ( f2 ∗ f1)(z).

Recently, Tang et al. [24] introduced a family of linear operators Iλ,δµ,p(a, b, c) : Ap → Ap, which is the
generalization of the Srivastava-Khairnar-More operator [20] (see also [30]), defined by

I
λ,δ
µ,p(a, b, c) f (z) = f λ,δµ,p (a, b, c)(z) ∗ f (z) (1.4)

(a, b ∈ C; c ∈ C \Z−0 ; Z−0 = {0,−1,−2, · · · }; λ > −p; µ, δ ≥ 0; z ∈ U),

where f λ,δµ,p (a, b, c)(z) is the function defined in terms of the Hadamard product (or convolution):

f δµ,p(a, b, c)(z) ∗ f λ,δµ,p (a, b, c)(z) =
zp

(1 − z)λ+p (λ > −p, µ, δ ≥ 0)

and the function f δµ,p(a, b, c)(z) is given by

f δµ,p(a, b, c)(z) = (1 − µ + δ)zp
·2 F1(a, b; c; z) + (µ − δ)z[zp

·2 F1(a, b; c; z)]′ + µδz2[zp
·2 F1(a, b; c; z)]′′

with the Gauss hypergeometric function 2F1(a, b; c; z), defined by

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k

(c)k

zk

k!
(a, b ∈ C; c ∈ C \Z−0 ; Z−0 = {0,−1,−2, · · · })

and (ν)k is the Pochhammer symbol (or the shifted factorial) given, in terms of Gamma function, by

(ν)k =
Γ(ν + k)

Γ(ν)
=


1 (k = 0; ν ∈ C∗ = C \ {0}),

ν(ν + 1) · · · (ν + k − 1) (k ∈N; ν ∈ C).

In particular, we find, from (1.4), that

I
λ,0
0,p (a, λ + p, a) f (z) = f (z) and I

1,0
0,p(a, p, a) f (z) =

z f ′(z)
p

and easily deduce that

z[Iλ,δµ,p(a, b, c) f (z)]′ = (λ + p)Iλ+1,δ
µ,p (a, b, c) f (z) − λIλ,δµ,p(a, b, c) f (z) (1.5)
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and
z[Iλ,δµ,p(a + 1, b, c) f (z)]′ = aIλ,δµ,p(a, b, c) f (z) − (a − p)Iλ,δµ,p(a + 1, b, c) f (z). (1.6)

We also notice that the operator Iλ,δµ,p(a, b, c) generalizes several previously studied familiar operators,
and we will show some of the interesting particular cases as below:

(i) Iλ,0µ,1(a, b, c) = Iλµ(a, b, c), which is the Srivastava-Khairnar-More operator [20] (see also [30]);

(ii) Iλ,00,1 (a, b, c) = Iλ(a, b, c), which was introduced by Noor [14];

(iii) Iλ,00,p (a, 1, c) = Iλp (a, c), which is the Cho-Kwon-Srivastava operator [3];

(iv) In,0
0,1(a,n + 1, a) = In, which is the Noor integral operator [13].

Based on the above class S∗e and by virtue of the operatorIλ,δµ,p(a, b, c), we now define the following classes
Mλ,δ
µ,p(a, b, c; η) and Nλ,δ

µ,p(a, b, c;γ) of functions f ∈ Ap.

Definition 1.3. Let p ∈ N; a, b ∈ C; c ∈ C \Z−0 ; Z−0 = {0,−1,−2, · · · }; λ > −p and µ, δ ≥ 0. A function
f ∈ Ap is said to be in the class Mλ,δ

µ,p(a, b, c; η) of multivalent analytic functions of order η (0 ≤ η < p), related
with exponential function, if and only if

1
p − η

z(Iλ,δµ,p(a, b, c) f (z))′

I
λ,δ
µ,p(a, b, c) f (z)

− η

 ≺ ez. (1.7)

Remark 1.2.

(i) For η = 0 in (1.7), we have the function class

Mλ,δ
µ,p(a, b, c) := Mλ,δ

µ,p(a, b, c; 0) =

 f ∈ Ap :
z(Iλ,δµ,p(a, b, c) f (z))′

I
λ,δ
µ,p(a, b, c) f (z)

≺ pez (p ∈N)

 .
(ii) For p = 1 in (1.7), we get the function class

Mλ,δ
µ (a, b, c; η) := Mλ,δ

µ,1(a, b, c; η) =

 f ∈ A :
1

1 − η

z(Iλ,δµ,1(a, b, c) f (z))′

I
λ,δ
µ,1(a, b, c) f (z)

− η

 ≺ ez (0 ≤ η < 1)

 .
(iii) Further, for η = p − 1 = 0 in (1.7), we obtain the function class

Mλ,δ
µ (a, b, c) := Mλ,δ

µ,1(a, b, c; 0) =

 f ∈ A :
z(Iλ,δµ,1(a, b, c) f (z))′

I
λ,δ
µ,1(a, b, c) f (z)

≺ ez (z ∈ U)

 .
Definition 1.4. Let p ∈ N; γ ∈ C∗; a, b ∈ C; c ∈ C \ Z−0 ; Z−0 = {0,−1,−2, · · · }; λ > −p and µ, δ ≥ 0. A

function f ∈ Ap is said to be in the class Nλ,δ
µ,p(a, b, c;γ) of multivalent analytic functions of complex order

γ , 0, related with exponential function, if and only if

1 +
1
γ

z(Iλ,δµ,p(a + 1, b, c) f (z))′

I
λ,δ
µ,p(a + 1, b, c) f (z)

− p

 ≺ ez. (1.8)

Remark 1.3.
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(i) For γ = 1 in (1.8), we have the function class

Nλ,δ
µ,p(a, b, c) := Nλ,δ

µ,p(a, b, c; 1) =

 f ∈ Ap :
z(Iλ,δµ,p(a + 1, b, c) f (z))′

I
λ,δ
µ,p(a + 1, b, c) f (z)

≺ (p − 1 + ez) (p ∈N)

 .
(ii) For p = 1 in (1.8), we get the function class

Nλ,δ
µ (a, b, c;γ) := Nλ,δ

µ,1(a, b, c;γ) =

 f ∈ A : 1 +
1
γ

z(Iλ,δµ,1(a + 1, b, c) f (z))′

I
λ,δ
µ,1(a + 1, b, c) f (z)

− 1

 ≺ ez (γ ∈ C∗)

 .
(iii) Further, for p = γ = 1 in (1.8), we obtain the function class

Nλ,δ
µ (a, b, c) := Nλ,δ

µ,1(a, b, c; 1) =

 f ∈ A :
z(Iλ,δµ,1(a + 1, b, c) f (z))′

I
λ,δ
µ,1(a + 1, b, c) f (z)

≺ ez (z ∈ U)

 .
A majorization problem for the normalized class of starlike functions has been investigated by Mac-

Gregor [10] and Altintas et al. [1] (see also [2]). Recently, many researchers have studied several ma-
jorization problems for univalent and multivalent functions, which are all subordinate to certain function
φ(z) = 1+Az

1+Bz (−1 ≤ B < A ≤ 1), involving various different operators, for instance, see [5, 8, 16, 27, 28].
More recently, Goyal and Goswami [6], Tang et al. [25], and Panigrahi and El-Ashwah [15] have considered
majorization problems for meromorphic and multivalent meromorphic functions. Nevertheless, only a
few articles deal with the above-mentioned problems associated with exponential function (see[26]). Here,
in the present paper, we aim to investigate the problems of majorization of the classes Mλ,δ

µ,p(a, b, c; η) and
Nλ,δ
µ,p(a, b, c;γ) defined by the operator Iλ,δµ,p(a, b, c), which are related with exponential function.

2. Majorization Problem for the Class Sλ,µ,mp,q,s [η; A,B]

Firstly, we give and prove majorization property for the class Mλ,δ
µ,p(a, b, c; η).

Theorem 2.1. Let the function f ∈ Ap and assume that 1 ∈ Mλ,δ
µ,p(a, b, c; η) with e|p − η| ≤ |λ + η|. If

I
λ,δ
µ,p(a, b, c) f (z) is majorized by Iλ,δµ,p(a, b, c)1(z) inU, that is, that

I
λ,δ
µ,p(a, b, c) f (z)� Iλ,δµ,p(a, b, c)1(z) (z ∈ U),

then, for |z| ≤ r1, we have ∣∣∣Iλ+1,δ
µ,p (a, b, c) f (z)

∣∣∣ ≤ ∣∣∣Iλ+1,δ
µ,p (a, b, c)1(z)

∣∣∣ ,
where r1 = r1(p, λ, η) is the smallest positive root of the equation

|p − η|r2er
− |λ + η|r2

− |p − η|er
− 2r + |λ + η| = 0 (p ∈N; λ > −p; 0 ≤ η < p). (2.1)

Proof. Since 1 ∈Mλ,δ
µ,p(a, b, c; η), we see, from (1.7), that

1
p − η

z(Iλ,δµ,p(a, b, c)1(z))′

I
λ,δ
µ,p(a, b, c)1(z)

− η

 = eω(z), (2.2)

where ω(z) = c1z + c2z2 + · · · is bounded and analytic inU, satisfying (see, for details, Goodman [4])

ω(0) = 0 and |ω(z)| ≤ |z| (z ∈ U). (2.3)
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From (2.2), we easily obtain
z(Iλ,δµ,p(a, b, c)1(z))′

I
λ,δ
µ,p(a, b, c)1(z)

= η + (p − η)eω(z). (2.4)

Now, by virtue of (1.5) and (2.4) and making simple computations, we have

I
λ+1,δ
µ,p (a, b, c)1(z)

I
λ,δ
µ,p(a, b, c)1(z)

=
λ + η + (p − η)eω(z)

λ + p
,

which, using (2.3), yields the inequality

|I
λ,δ
µ,p(a, b, c)1(z)| ≤

λ + p
|λ + η| − |p − η|e|z|

|I
λ+1,δ
µ,p (a, b, c)1(z)|. (2.5)

Also, because Iλ,δµ,p(a, b, c) f (z) is majorized by Iλ,δµ,p(a, b, c)1(z) inU, so we find, from (1.1), that

I
λ,δ
µ,p(a, b, c) f (z) = ϕ(z)Iλ,δµ,p(a, b, c)1(z). (2.6)

Differentiating (2.6) on both sides with respect to z and multiplying by z, we obtain

z
(
I
λ,δ
µ,p(a, b, c) f (z)

)′
= zϕ′(z)Iλ,δµ,p(a, b, c)1(z) + zϕ(z)

(
I
λ,δ
µ,p(a, b, c)1(z)

)′
. (2.7)

By using (1.5) in (2.7), together with (2.6), we have

I
λ+1,δ
µ,p (a, b, c) f (z) =

1
λ + p

zϕ′(z)Iλ,δµ,p(a, b, c)1(z) + ϕ(z)Iλ+1,δ
µ,p (a, b, c)1(z). (2.8)

On the other hand, noting that the Schwarz function ϕ satisfies the inequality (see, e.g. Nehari [12])

|ϕ′(z)| ≤
1 − |ϕ(z)|2

1 − |z|2
(z ∈ U), (2.9)

and in view of (2.5) and (2.9) in (2.8), we get

|I
λ+1,δ
µ,p (a, b, c) f (z)| ≤

[
|ϕ(z)| +

|z|(1 − |ϕ(z)|2)
(1 − |z|2)

(
|λ + η| − |p − η|e|z|

) ] |Iλ+1,δ
µ,p (a, b, c)1(z)|,

which, by letting
|z| = r, |ϕ(z)| = ρ (0 ≤ ρ ≤ 1),

becomes the inequality
|I
λ+1,δ
µ,p (a, b, c) f (z)| ≤ Φ1(r, ρ)|Iλ+1,δ

µ,p (a, b, c)1(z)|,

where

Φ1(r, ρ) =
r(1 − ρ2)

(1 − r2)
(
|λ + η| − |p − η|er) + ρ.

In order to determine r1, we must choose

r1 = max
{
r ∈ [0, 1) : Φ1(r, ρ) ≤ 1,∀ ρ ∈ [0, 1]

}
= max

{
r ∈ [0, 1) : Ψ1(r, ρ) ≥ 0,∀ ρ ∈ [0, 1]

}
,

where
Ψ1(r, ρ) = (1 − r2)

(
|λ + η| − |p − η|er)

− r(1 + ρ).
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Clearly, for ρ = 1, the function Ψ1(r, ρ) takes its minimum value, namely,

min
{
Ψ1(r, ρ) : ρ ∈ [0, 1]

}
= Ψ1(r, 1) := ψ1(r),

where
ψ1(r) = (1 − r2)

(
|λ + η| − |p − η|er)

− 2r.

Further, because ψ1(0) = |λ + η| − |p − η| > 0 and ψ1(1) = −2 < 0, so there exists r1, such that ψ1(r) ≥ 0 for all
r ∈ [0, r1], where r1 = r1(p, λ, η) is the smallest positive root of the equation (2.1). This completes the proof
of Theorem 2.1.

3. Majorization Problem for the Class Iλ,µ,mp,q,s [α, b; A,B]

Next, we discuss majorization property for the class Nλ,δ
µ,p(a, b, c;γ).

Theorem 3.1. Let the function f ∈ Ap and assume that 1 ∈ Nλ,δ
µ,p(a, b, c;γ) with e|γ| ≤ |a − γ|. If

I
λ,δ
µ,p(a + 1, b, c) f (z) is majorized by Iλ,δµ,p(a + 1, b, c)1(z) inU, that is, that

I
λ,δ
µ,p(a + 1, b, c) f (z)� Iλ,δµ,p(a + 1, b, c)1(z) (z ∈ U),

then, for |z| ≤ r2, we have ∣∣∣Iλ,δµ,p(a, b, c) f (z)
∣∣∣ ≤ ∣∣∣Iλ,δµ,p(a, b, c)1(z)

∣∣∣ , (3.1)

where r2 = r2(a, γ) is the smallest positive root of the equation

|γ|r2er
− |a − γ|r2

− |γ|er
− 2r + |a − γ| = 0 (γ ∈ C∗; a ∈ C). (3.2)

Proof. Because 1 ∈ Nλ,δ
µ,p(a, b, c;γ), so, from (1.8), we show that

1 +
1
γ

z(Iλ,δµ,p(a + 1, b, c)1(z))′

I
λ,δ
µ,p(a + 1, b, c)1(z)

− p

 = eω(z), (3.3)

where ω(z) is defined as (2.3).
From (3.3), it follows that

z(Iλ,δµ,p(a + 1, b, c)1(z))′

I
λ,δ
µ,p(a + 1, b, c)1(z)

= p − γ + γeω(z). (3.4)

Now, using (1.6) in (3.4) and making simple calculations, we get

I
λ,δ
µ,p(a, b, c)1(z)

I
λ,δ
µ,p(a + 1, b, c)1(z)

=
a − γ + γeω(z)

a
,

which, in terms of (2.3), yields the inequality

|I
λ,δ
µ,p(a + 1, b, c)1(z)| ≤

|a|
|a − γ| − |γ|e|z|

|I
λ,δ
µ,p(a, b, c)1(z)|. (3.5)

Again, since Iλ,δµ,p(a + 1, b, c) f (z) is majorized by Iλ,δµ,p(a + 1, b, c)1(z) inU, then, applying the same process
of (2.6) and (2.7) of Theorem 2.1, we verify, from (1.6), that

I
λ,δ
µ,p(a, b, c) f (z) =

1
a

zϕ′(z)Iλ,δµ,p(a + 1, b, c)1(z) + ϕ(z)Iλ,δµ,p(a, b, c)1(z). (3.6)
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Next, in view of (2.9) as well as (3.5) in (3.6), and just as the proof of Theorem 2.1, we have

|I
λ,δ
µ,p(a, b, c) f (z)| ≤

[
|ϕ(z)| +

|z|(1 − |ϕ(z)|2)
(1 − |z|2)

(
|a − γ| − |γ|e|z|

) ] |Iλ,δµ,p(a, b, c)1(z)|,

which, by putting
|z| = r, |ϕ(z)| = ρ (0 ≤ ρ ≤ 1),

reduces to the inequality

|I
λ,δ
µ,p(a, b, c) f (z)| ≤

Φ2(ρ)
(1 − r2)

(
|a − γ| − |γ|er) |Iλ,δµ,p(a, b, c)1(z)|, (3.7)

where the function Φ2(ρ) given by

Φ2(ρ) = −rρ2 + (1 − r2)
(
|a − γ| − |γ|er)ρ + r

takes its maximum value at ρ = 1 with r2 = r2(a, γ) defined by (3.2). Furthermore, if 0 ≤ σ ≤ r2(a, γ), then
the function

Ψ2(ρ) = −σρ2 + (1 − σ2)
(
|a − γ| − |γ|eσ

)
ρ + σ

increases on the interval 0 ≤ ρ ≤ 1, therefore Ψ2(ρ) does not exceed

Ψ2(1) = (1 − σ2)
(
|a − γ| − |γ|eσ

)
(0 ≤ σ ≤ r2(a, γ)).

Hence, from this fact and (3.7), we conclude that the inequality (3.1) holds true. We complete the proof of
Theorem 3.1.

4. Corollaries and Concluding Remarks

As a special case of Theorem 2.1, when η = 0, we get the following result.

Corollary 4.1. Let the function f ∈ Ap and 1 ∈ Mλ,δ
µ,p(a, b, c) with ep ≤ |λ|. If Iλ,δµ,p(a, b, c) f (z) is majorized

by Iλ,δµ,p(a, b, c)1(z) inU, then, for |z| ≤ r3, we have∣∣∣Iλ+1,δ
µ,p (a, b, c) f (z)

∣∣∣ ≤ ∣∣∣Iλ+1,δ
µ,p (a, b, c)1(z)

∣∣∣ ,
where r3 = r1(p, λ, 0) is the smallest positive root of the equation

pr2er
− |λ|r2

− per
− 2r + |λ| = 0 (p ∈N; λ > −p).

Setting p = 1 and η = p − 1 = 0 in Theorem 2.1, respectively, we obtain the following corollaries.

Corollary 4.2. Let the function f ∈ A and 1 ∈ Mλ,δ
µ (a, b, c; η) with e|1 − η| ≤ |λ + η|. If Iλ,δµ,1(a, b, c) f (z) is

majorized by Iλ,δµ,1(a, b, c)1(z) inU, then, for |z| ≤ r4, we get∣∣∣∣Iλ+1,δ
µ,1 (a, b, c) f (z)

∣∣∣∣ ≤ ∣∣∣∣Iλ+1,δ
µ,1 (a, b, c)1(z)

∣∣∣∣ ,
where r4 = r1(1, λ, η) is the smallest positive root of the equation

|1 − η|r2er
− |λ + η|r2

− |1 − η|er
− 2r + |λ + η| = 0 (λ > −1; 0 ≤ η < 1).

Corollary 4.3. Let the function f ∈ A and 1 ∈ Mλ,δ
µ (a, b, c) with e ≤ |λ|. If Iλ,δµ,1(a, b, c) f (z) is majorized by

I
λ,δ
µ,1(a, b, c)1(z) inU, then, for |z| ≤ r5, we obtain∣∣∣∣Iλ+1,δ

µ,1 (a, b, c) f (z)
∣∣∣∣ ≤ ∣∣∣∣Iλ+1,δ

µ,1 (a, b, c)1(z)
∣∣∣∣ ,
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where r5 = r1(1, λ, 0) is the smallest positive root of the equation

r2er
− |λ|r2

− er
− 2r + |λ| = 0 (λ > −1).

Putting γ = 1 in Theorem 3.1, we have the following result.

Corollary 4.4. Let the function f ∈ Ap and 1 ∈ Nλ,δ
µ,p(a, b, c) with e ≤ |a − 1|. If Iλ,δµ,p(a + 1, b, c) f (z) is

majorized by Iλ,δµ,p(a + 1, b, c)1(z) inU, then, for |z| ≤ r6, we obtain∣∣∣Iλ,δµ,p(a, b, c) f (z)
∣∣∣ ≤ ∣∣∣Iλ,δµ,p(a, b, c)1(z)

∣∣∣ ,
where r6 = r2(a, 1) is the smallest positive root of the equation

r2er
− |a − 1|r2

− er
− 2r + |a − 1| = 0 (a ∈ C). (4.1)

Taking p = 1 and p = γ = 1 in Theorem 3.1, respectively, we state the following corollaries.

Corollary 4.5. Let the function f ∈ A and 1 ∈ Nλ,δ
µ (a, b, c;γ) with e|γ| ≤ |a − γ|. If Iλ,δµ,1(a + 1, b, c) f (z) is

majorized by Iλ,δµ,1(a + 1, b, c)1(z) inU, then,∣∣∣∣Iλ,δµ,1(a, b, c) f (z)
∣∣∣∣ ≤ ∣∣∣∣Iλ,δµ,1(a, b, c)1(z)

∣∣∣∣ (|z| ≤ r2),

where r2 is given by (3.2).

Corollary 4.6. Let the function f ∈ A and 1 ∈ Nλ,δ
µ (a, b, c) with e ≤ |a−1|. IfIλ,δµ,1(a+1, b, c) f (z) is majorized

by Iλ,δµ,1(a + 1, b, c)1(z) inU, then,∣∣∣∣Iλ,δµ,1(a, b, c) f (z)
∣∣∣∣ ≤ ∣∣∣∣Iλ,δµ,1(a, b, c)1(z)

∣∣∣∣ (|z| ≤ r6),

where r6 is given by (4.1).

Concluding Remarks. By choosing the suitable parameters p, λ, µ, δ, a, b and c in all results of this paper,
we easily get the corresponding majorization results for the previously studied familiar operatorsIλµ(a, b, c),
Iλ(a, b, c), Iλp (a, c) and In, which are mentioned in the introduction.
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