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Abstract. In this paper, we introduce a notion of (α,ψ)-K-contraction in the setting of extended b-metric
spaces and investigate the existence of a fixed point. The presented results generalize and unify a number
of well-known fixed point theorem mainly in two distinct aspects; in the sense of the contraction conditions
and in the frame of abstract spaces.

1. Introduction and Preliminaries

In 1993, Czerwik [16] suggested a successful and proper generalization of the metric space notion by
introducing the concepts of b-metric space. In this paper, the author examine the basic topological properties
of this new space and investigate the existence and uniqueness of certain mappings in framework of b-metric
space. Following this famous result in the setting of b-metric space, a number of authors have reported
several interesting results in this direction (see e.g. [2, 6–8],[11]-[14] and related references therein). Very
recently, Kamran et al. [18] extend the b-metric space and successfully prove the analog of Banach mapping
principle in this new space.

In this paper, we shall define a general contraction condition by the help of some auxiliary functions
and investigate the existence and uniqueness of a fixed point for such mappings.

Throughout the manuscript, we denote N0 := N ∪ {0} where N is the positive integers. Further, R
represent the real numbers and R+

0 := [0,∞).
We, first, recall the notion of b-metric.

Definition 1.1 (Czerwik [16]). Let X be a nonempty set and d : X × X → [0,∞) be a function satisfying the
following conditions:

(b1) d(x, y) = 0 if and only if x = y.
(b2) d(x, y) = d(y, x) for all x, y ∈ X.
(b3) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X, where s ≥ 1.

The function d is called a b-metric and the space (X, d) is called a b-metric space, in short, bMS.
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The immediate examples of b-metric are the following (see also [2, 6–8],[11]-[14].)

Example 1.2. Let X = R2. Then, the functional d : X × X→ [0,∞) defined by:

d((x1, y1), (x2, y2)) :=


|x1 − x2| + |y1 − y2|, ((x1, y1), (x2, y2)) ∈ [0, 1] × [0, 1]
|x1 − x2|

2 + |y1 − y2|
2, ((x1, y1), (x2, y2))(1,∞) × (1,∞)

0, otherwise.

It is a b-metric on X with coefficient s = 2.

Example 1.3. The space Lp[0, 1] (where 0 < p < 1) of all real functions x(t), t ∈ [0, 1] such that
∫ 1

0 |x(t)|pdt < ∞,
together with the functional

d(x, y) := (
∫ 1

0
|x(t) − y(t)|pdt)1/p, for each x, y ∈ Lp[0, 1],

is a b-metric space. Notice that s = 21/p.

Example 1.4. Let X={a, b, c} and d : X × X → R+ such that d (a, b) = d (b, a) = d (a, c) = d (c, a) = b, d (b, c) =
d (c, b) = α ≥ c, d (a, a) = d (b, b) = d (c, c) = a. Then

d
(
x, y

)
≤
α
2

[
d (x, z) + d

(
z, y

)]
, for x, y, z ∈ X.

Then (X, d) is a b-metric space. If α > c the ordinary triangle inequality does not hold and (X, d) is not a metric
space.

Remark 1.5. It is clear that for s = 1, the b-metric becomes a usual metric.

In what follows, we recollect the notion of extend the b-metric space that is defined by Kamran et al. [18]

Definition 1.6. [18] Let X be a non empty set and θ : X × X → [1,∞). A function dθ : X × X → [0,∞)i is called
an extended b− metric if for all x, y, z ∈ X is satisfies

(dθ1) dθ(x, y) = 0 if and only if x = y;

(dθ2) dθ(x, y) = dθ(y, x);

(dθ3) dθ(x, z) ≤ θ(x, z)
[
dθ(x, y) + dθ(y, z)

]
.

The pair (X, dθ) is called an extended b−metric space, in short extended-bMS.

Remark 1.7. If θ(x, y) = s, for s ≥ 1 then we obtain the definition of bMS.

Example 1.8. Let X = {a, b, c} ∪R+
0 and d : X × X→ [0,∞) be defined by

Case 1. if x, y ∈ R+
0 then dθ(x, y) = |x − y|2,

Case 2. if x ∈ {a, b, c} and y ∈ R+
0 then dθ(x, y) = 1 = dθ(y, x) and dθ(x, x) = 0 ,

Case 3. if x, y ∈ {a, b, c}

dθ(a, b) = 1, dθ(a, c) =
1
2

and dθ(b, c) = 2,

with dθ(x, x) = 0 and dθ(x, y) = dθ(y, x).

Notice that d is not a metric since dθ(b, c) > dθ(b, a) + dθ(a, c). However, it is easy to see that d is a extended b-metric
space. Indeed, for the following θ : X × X→ [1,∞), we conclude the desired result.

θ(x, y) =


2 if x, y ∈ R+

0 ,
4
3 if x, y ∈ {a, b, c},
1 if (x, y) or (y, x) ∈ {a, b, c} ×R+

0 .
(1)
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Example 1.9. Let X =
{
x, y, z

}
and θ : X × X→ [1,∞), θ(x, y) = |x| + |y| + 2. Define dθ : X × X→ [0,∞) as

dθ(x, y) = dθ(y, x) = 5, dθ(x, z) = dθ(z, x) = 3, dθ(y, z) = dθ(z, y) = 1,

dθ(x, x) = dθ(y, y) = dθ(z, z) = 0.
Obviously, (dθ1) and (dθ2) hold. For (dθ3), we have

5 = dθ(x, y) ≤ θ(x, y)(dθ(x, z) + dθ(z, y)) = (|x| + |y| + 2) · 4,

3 = dθ(x, z) ≤ θ(x, z)(dθ(x, y) + dθ(y, z)) = (|x| + |z| + 2) · 6,

1 = dθ(y, z) ≤ θ(y, z)(dθ(y, x) + dθ(x, z)) = (|y| + |z| + 2) · 8,

In conclusion, for any x, y, z ∈ X,

dθ(x, z) ≤ θ(x, z)
[
dθ(x, y) + dθ(y, z)

]
.

Hence, (X, dθ) is an extended b−metric space. Notice also that

5 = dθ(x, y) > 4 = dθ(x, z) + dθ(z, y),

thus the standard triangle inequality does not hold in this case and (X, d) is not a metric space.

In what follows that we recollect some basic concepts, for instance, convergence, notion of the Cauchy
sequence, and completeness in a extended-bMS. For more details, see e.g. [18].

Definition 1.10. [18] Let (X, dθ) be an extended-bMS.

(i) A sequence xn in X is said to converge to x ∈ X, if for every ε > 0 there exists N = N(ε) ∈ N such that
dθ(xn, x) < ε, for all n ≥ N. In this case, we write limn→∞ xn = x.

(ii) A sequence xn in X is said to be Cauchy if for every ε > 0 there exists N = N(ε) ∈N such that dθ(xm, xn) < ε,
for all m,n ≥ N.

Definition 1.11. An extended-bmetric space (X, dθ) is complete if every Cauchy sequence in X is convergent.

Lemma 1.12. Let (X, dθ) be an complete extended-bMS. If dθ is continuous, then every convergent sequence has a
unique limit.

Theorem 1.13. [18] Let (X, dθ) be an extended-bMS such that dθ is a continuous functional. Let T : X→ X satisfy:

dθ(Tx,Ty) ≤ kdθ(x, y) (2)

for all x, y ∈ X, where k ∈ [0, 1) be such that for each x0 ∈ X, limn,m→∞ θ(xn, xm) < 1
k , here xn = Tnx0, n = 1, 2, ....

Then T has precisely one fixed point u. Moreover for each y ∈ X, Tny→ u.

For our purposes, we need to recall the following definition of α−orbital admissible mappings given by
Popescu [29]

Definition 1.14. Let T : X→ X and α : X×X→ [0,∞) .We say that T is an α−orbital admissible if for all x, y ∈ X
we have

α(x,Tx) ≥ 1⇒ α(Tx,T2x) ≥ 1. (3)

Remark 1.15. Each α−admissible mapping is an α−orbital admissible mapping.(see [29]).

Let Φ be the family of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(Φ1) φ is nondecreasing;

(Φ2) φ(t) < t.
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2. Main results

We start with the definition of (α,ψ)-K-contraction.

Definition 2.1. Let (X, d) be an extended b-metric space α : X × X → [0,∞) and θ : X × X → [1,∞). A mapping
T : X→ X is called (α,ψ)-K-contraction if it satisfies

α(x, y)dθ(Tx,Ty) ≤ φ(K(x, y)), for all x, y ∈ X, (4)

where φ ∈ Φ and

K(x, y) = max{dθ(x, y), dθ(x,Tx), dθ(y,Ty),
dθ(x,Tx)dθ(y,Ty)

dθ(x, y)
,

dθ(x,Ty) + dθ(y,Tx)
2 max{θ(y,Tx), θ(x,Ty)}

}. (5)

The following is the first main result of this paper.

Theorem 2.2. Let (X, d) be a complete extended b-metric space and T : X → X be a (α,ψ)-K-contraction mapping.
Suppose that for each x0 ∈ X and for each t > 0,

lim sup
n,m→∞

φn+1(t)
φn(t)

θ(xn, xm) < 1

where xn = Tnx0, n ∈N. Suppose also that

(i) T is α-orbital admissible,
(ii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1

(iii) T is continuous.

Then the mappings T posses a fixed point u, that is, Tu = u.

Proof. By assumption, for a given x0 ∈ X, we have a constructive sequence {xn} that is defined by xn = Tnx0
for each n ∈ N. If for some n0, we have xn0 = xn0+1 = Txn0 , then xn0 is a fixed point of T. From now on, we
assume that xn , xn+1 for all n ≥ 0. Since T is α−admissible, we have

α(x0, x1) = α(x0,Tx0) ≥ 1⇒ α(Tx0,Tx1) = α(x1, x2) ≥ 1.

Recursively, we find that

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . (6)

On account of (6) and (4), we have

dθ(xn, xn+1) = dθ(Txn−1,Txn) ≤ φ(M(xn−1, xn)),

where

K(xn−1, xn) = max {dθ(xn−1, xn), dθ(xn−1,Txn−1), dθ(xn,Txn),
dθ(xn−1,Txn−1)dθ(xn,Txn)

dθ(xn−1, xn)
,

dθ(xn,Txn−1) + dθ(xn−1,Txn)
2 max{θ(y,Tx), θ(x,Ty)}

}
= max {dθ(xn−1, xn), dθ(xn−1, xn), dθ(xn, xn+1),

dθ(xn−1, xn)dθ(xn, xn+1)
dθ(xn−1, xn)

,
dθ(xn−1, xn+1)

2 max{θ(xn, xn), θ(xn−1, xn+1)}

}
≤ max

{
dθ(xn−1, xn), dθ(xn, xn+1),

dθ(xn, xn+1) + dθ(xn−1, xn)
2

}
= max{dθ(xn−1, xn), dθ(xn, xn+1)}.
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If for some n, we have K(xn−1, xn) = max{dθ(xn−1, xn), dθ(xn, xn+1) = dθ(xn, xn+1)}, then

0 < dθ(xn, xn+1) ≤ φ(dθ(xn, xn+1)) < dθ(xn, xn+1),

a contradiction. Accordingly, we conclude, for all n ≥ 1, that

K(xn−1, xn) = max{dθ(xn−1, xn), dθ(xn, xn+1) = dθ(xn−1, xn).

We deduce that

0 < dθ(xn, xn+1) ≤ φ(dθ(xn−1, xn)) < dθ(xn−1, xn), ∀ n ≥ 1. (7)

We deduce

0 < dθ(xn, xn+1) ≤ φn(dθ(x0, x1)), ∀ n ≥ 0. (8)

Therefore, there exists L ≥ 0 such that

lim
n→∞

dθ(xn, xn+1) = L.

Letting n→∞ in (7), we get

L ≤ φ(L),

which holds unless l = 0. Thus

lim
n→∞

dθ(xn, xn+1) = 0. (9)

We claim that {xn} is a Cauchy sequence. By using the modified triangle inequality (b3) together with (7)
and (8), we find that

dθ(xn, xn+k) ≤ θ(xn, xn+k)[dθ(xn, xn+1) + dθ(xn+1, xn+k)]
≤ θ(xn, xn+k)dθ(xn, xn+1) + θ(xn, xn+k)θ(xn+1, xn+k)dθ(xn+1, xn+2)

+ ... + θ(xn, xn+k)θ(xn+1, xn+k)...θ(xn+k−1, xn+k)dθ(xn+k−1, xn+k)

≤ θ(xn, xn+k)φn(dθ(x0, x1)) + θ(xn, xn+k)θ(xn+1, xn+k)φn+1(dθ(x0, x1))

+ ... + θ(xn, xn+k)θ(xn+1, xn+k)...θ(xn+k−1, xn+k)φn+k−1(dθ(x0, x1))
≤ θ(x1, xn+k)θ(x2, xn+k)...θ(xn, xn+k)φn(dθ(x0, x1))

+ θ(x1, xn+k)θ(x2, xn+k)...θ(xn, xn+k)θ(xn+1, xn+k)φn+1(dθ(x0, x1))
+ ... + · · ·

+ θ(x1, xn+k)θ(x2, xn+k)...θ(xn+k−1, xn+k)φn+k−1(dθ(x0, x1))

=

n+k−1∑
j=n

φ j(dθ(x0, x1))
j∏

i=1

θ(xi, xn+k).

We deduce that

dθ(xn, xn+k) ≤ Sn+k−1 − Sn, (10)

for the series

∞∑
j=1

φ j(dθ(x0, x1))
j∏

i=1

θ(xi, xn+k).
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Put an = φn(dθ(x0, x1))
∏n

i=1 θ(xi, xn+k). We have

an+1

an
=
φn+1(dθ(x0, x1))
φ j(dθ(x0, x1))

θ(xn+1, xn+k).

In view of the assumption,

lim sup
n→∞

φn+1(t)
φ j(t)

θ(xn+1, xn+k) < 1,

the above series converges by ratio test. Consequently, in view of (10), we get

lim
n,m→∞

dθ(xn, xn+k) = 0, (11)

that is, {xn} is a Cauchy sequence. Since (X, d) is a complete extended b-metric space, there exists z ∈ X such
that

lim
n→∞

dθ(xn, z) = 0. (12)

Since the mapping T and the extended b-metric are continuous, we derive that

lim
n→∞

dθ(Txn,Tz) = 0 = lim
n→∞

dθ(xn+1,Tz) = dθ(z,Tz). (13)

Hence, we conclude that Tz = z.

In what follows, we refine the definition of (α,ψ)-K-contraction as (α,ψ)-M-contraction to remove the
heavy condition, continuity, on the given self-mapping.

Definition 2.3. Let (X, d) be an extended b-metric space α : X × X → [0,∞) and θ : X × X → [1,∞). A mapping
T : X→ X is called (α,ψ)-M-contraction if it satisfies

α(x, y)dθ(Tx,Ty) ≤ φ(M(x, y)), for all x, y ∈ X, (14)

where φ ∈ Φ and

M(x, y) = max{dθ(x, y),
dθ(x,Tx) + dθ(y,Ty)

2
,

dθ(x,Ty) + dθ(y,Tx)
2 max{θ(y,Tx), θ(x,Ty)}

}. (15)

This is the second main result in which the continuity of the mapping is removed.

Theorem 2.4. Let (X, d) be a complete extended b-metric space and T : X→ X be a (α,ψ)-M-contraction mapping.
Suppose that for each x0 ∈ X and for each t > 0,

lim sup
n,m→∞

φn+1(t)
φn(t)

θ(xn, xm) < 1

where xn = Tnx0, n ∈N. Suppose also that

(i) T is α-orbital admissible,
(ii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞, then there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Then the mappings T posses a fixed point u, that is, Tu = u.
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Proof. Following the proof of Theorem 2.2, we know that the sequence {xn} defined by xn+1 = Txn for all
n ≥ 0, converges for some u ∈ X. From (6) and condition (iii), there exists a subsequence {xn(k)} of {xn} such
that α(xn(k),u) ≥ 1 for all k. Applying (14), for all k, we get that

dθ(xn(k)+1,Tu) = dθ(Txn(k),Tu) ≤ α(xn(k),u)dθ(Txn(k),Tu) ≤ φ(M(xn(k),u)). (16)

On the other hand, we have

M(xn(k),u) = max
{

dθ(xn(k),u),
dθ(xn(k), xn(k)+1) + dθ(u,Tu)

2
,

dθ(xn(k),Tu) + dθ(u, xn(k)+1)
2 max{θ(y,Tx), θ(x,Ty)}

}
.

Letting k→∞ in the above equality, we get that

lim
k→∞

M(xn(k),u) =
dθ(u,Tu)

2
. (17)

Suppose that dθ(u,Tu) > 0. From (17), for k large enough, we have M(xn(k),u) > 0, which implies that
φ(M(xn(k),u)) < M(xn(k),u). Thus, from (16), we have

dθ(xn(k)+1,Tu) < M(xn(k),u).

Letting k→∞ in the above inequality, using (17), we obtain that

dθ(u,Tu) ≤
dθ(u,Tu)

2
,

which is a contradiction. Thus we have dθ(u,Tu) = 0, that is, u = Tu.

For the uniqueness of a fixed point of a (α,ψ)-K-contractive mapping (respectively, (α,ψ)-M-contractive
mapping), we shall suggest the following hypothesis.

(U) For all x, y ∈ Fix(T), either α(x, y) ≥ 1 or α(y, x) ≥ 1.

Here, Fix(T) denotes the set of fixed points of T.

Theorem 2.5. Adding condition (U) to hypotheses of Theorem 2.2 (respectively, Theorem 2.4), we obtain uniqueness
of the fixed point of T.

Proof. Suppose, on the contrary, that u and v are two distinct fixed points of T. Then we have K(u, v) = d(u, v)
(respectively, M(u, v) = d(u, v)). On account of the hypothesis of (U), we employ the contraction condition
(14)

φ(d(u, v)) = φ(d(Tu,Tv))
≤ α(u, v)φ(d(Tu,Tv))
≤ φ(K(u, v))
< φ(d(u, v)),

which is a contradiction. Hence, we conclude that the obtained fixed points are unique in Theorem 2.2 and
Theorem 2.4.

Definition 2.6. Let (X, d) be an extended b-metric space α : X × X → [0,∞) and θ : X × X → [1,∞). A mapping
T : X→ X is called α-contraction if it satisfies

α(x, y)dθ(Tx,Ty) ≤ φ(dθ(x, y)), for all x, y ∈ X, (18)

where φ ∈ Φ.
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Corollary 2.7. Let (X, d) be a complete extended b-metric space and T : X→ X be a α-contraction mapping. Suppose
that for each x0 ∈ X and for each t > 0,

lim sup
n,m→∞

φn+1(t)
φn(t)

θ(xn, xm) < 1

where xn = Tnx0, n ∈N. Suppose also that

(i) T is α-orbital admissible,
(ii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1

(iii) T is continuous.

or

(iii)∗ if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞, then there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Then the mappings T posses a fixed point u, that is, Tu = u. If, additionally, we assume the condition (U), then u is
the unique fixed point of T.

Definition 2.8. Let (X, d) be an extended b-metric space α : X × X → [0,∞) and θ : X × X → [1,∞). A mapping
T : X→ X is called α-Jaggi-type contraction if it satisfies

α(x, y)dθ(Tx,Ty) ≤ φ(
dθ(x,Tx)dθ(y,Ty)

dθ(x, y)
), for all x, y ∈ X, (19)

where φ ∈ Φ.

Corollary 2.9. Let (X, d) be a complete extended b-metric space and T : X → X be a α-Jaggi-type contraction
mapping. Suppose that for each x0 ∈ X and for each t > 0,

lim sup
n,m→∞

φn+1(t)
φn(t)

θ(xn, xm) < 1

where xn = Tnx0, n ∈N. Suppose also that

(i) T is α-orbital admissible,
(ii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1

(iii) T is continuous.

Then the mappings T posses a fixed point u, that is, Tu = u. If, additionally, we assume the condition (U), then u is
the unique fixed point of T.

3. Conclusion

One can easily drive several consequences from the presented main results in this paper in different
aspects. For example, letting θ(x, y) = s ≥ 1 yields the corresponding fixed point results in the context of
b-metric space. Moreover, the standard versions of the given results are follows when we take θ(x, y) = 1.
As in Corollary 2.7 and Corollary 2.9, we can derive more results by replacing K(x, y) with a proper one.
On the other hand, as in [19], by assign α(x, y) in a proper way, we can conclude results in the frame of
”partially ordered spaces” and for ”cyclic contraction.”
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