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Abstract. In this paper, we first improve the boundary Schwarz lemma for holomorphic self-mappings
of the unit ball Bn, and then we establish the boundary Schwarz lemma for harmonic self-mappings of the
unit diskD and pluriharmonic self-mappings of Bn. The results are sharp and coincides with the classical
boundary Schwarz lemma when n = 1.

1. Introduction

Let Cn be the complex Euclidean n-space. In this paper, we write a point z ∈ Cn as a column vector of
the following n × 1 matrix form

z =


z1
z2
...

zn

 ,
and the symbol T stands for the transpose of vectors or matrices. For two points z = {z1, . . . , zn}

T and

w = {w1, . . . ,wn}
T of Cn the standard Hermitian scalar product on Cn is given by 〈z,w〉 =

n∑
k=1

zkwk and the

Euclidean norm of z is given by |z| = 〈z, z〉
1
2 . Throughout this paper, we denote by Bn = {z ∈ Cn : |z| < 1} the

unit ball of Cn, and ∂Bn the boundary of Bn.
For n = 1, the planar case, we let D = {z ∈ C : |z| < 1} be the unit disk and T := {z ∈ C : |z| = 1} be the

unit circle. In this paper, we always use w(z) stands for the harmonic (or pluriharmonic) mapping and f (z)
stands for the holomorphic mapping. We will first improve the boundary Schwarz lemma for holomorphic
mappings and then establish similar results for harmonic mappings and pluriharmonic mappings.

The classical Schwarz lemma states that any holomorphic mapping f mapsD into itself, with f (0) = 0,
satisfies | f (z)| ≤ |z| inD.
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It is well known that the Schwarz lemma has become a crucial theme in many branches of mathematical
research for more than a hundred years. One can refer to the references [1, 9, 11–15, 17, 20, 21] for
generalizations and applications of this lemma.

The classical Schwarz lemma at the boundary is as follows:
Theorem A. ([3, Page 42]) Suppose f is a holomorphic self-mapping of D with f (0) = 0, and, further, f is
holomorphic at z = 1 with f (1) = 1. Then, the following two conclusions hold:

1. f ′(1) ≥ 1.
2. f ′(1) = 1 if and only if f (z) ≡ z.

Theorem A has the following generalization.
Theorem B. ([9, Theorem 1.1′]) Suppose f is a holomorphic self-mapping of D with f (0) = 0, and, further, f is
holomorphic at z = α ∈ T with f (α) = β ∈ T. Then, the following two conclusions hold:

1. β f ′(α)α ≥ 1.
2. β f ′(α)α = 1 if and only if f (z) ≡ eiθz, where eiθ = βα−1 and θ ∈ R.

We remark that, when α = β = 1, Theorem B coincides with Theorem A.
The study on the boundary version of the Schwarz lemma has been attracted much attention. For more

discussions in this line, see, e.g., [15] for functions with one complex variable, and [9–11, 17, 20] for functions
with several complex variables.

In this paper, we first improve Theorem A as follows.

Theorem 1.1. Let f be a holomorphic self-mapping ofD. If f is holomorphic at z = 1 with f (1) = 1, then

f ′(1) ≥
2|1 − f (0)|2

1 − | f (0)|2 + | f ′(0)|
. (1)

The above inequality is sharp with the extremal function

ϕ(z) =
βA(z) + f (0)

1 + β f (0)A(z)
, (2)

where β =
1− f (0)

1− f (0)
∈ T and

A(z) = z
(1 − | f (0)|2)z + | f ′(0)|
(1 − | f (0)|2) + | f ′(0)|z

.

Remark 1.2. In Theorem 1.1, if f (0) = 0, then we have

f ′(1) ≥
2

1 + | f ′(0)|
≥ 1.

The last equality holds if and only if f (z) = eiαz where α is a real number. This improves the classical boundary
Schwarz lemma.

Theorem 1.1 has the following generalization.

Theorem 1.3. Let f be a holomorphic self-mapping ofD. If f is holomorphic at z = α ∈ T with f (α) = β ∈ T, then

β f ′(α)α ≥
2|1 − β f (0)|2

1 − | f (0)|2 + | f ′(0)|
. (3)

When α = β = 1, then Theorem 1.1 coincides with Theorem 1.3.
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Furthermore, if we fix points a, b ∈ D such that f (a) = b, then we can obtain the boundary Schwarz lemma
for f as follows.

Theorem 1.4. Let f be a holomorphic self-mapping ofD satisfying f (a) = b, where a, b ∈ D. If f is holomorphic at
z = α ∈ T with f (α) = β ∈ T, then

β f ′(α)α ≥
1 − |a|2

1 − |b|2
|1 − b̄β|2

|1 − āα|2
2

1 + 1−|a|2
1−|b|2 | f

′(a)|
. (4)

When a = b = 0, then (4) coincides with (18).

For the higher dimensional case, we have some similar results which are given as follows.

Theorem 1.5. Let f be a holomorphic self-mapping of Bn. If f is holomorphic at z = α ∈ ∂Bn with f (α) = β ∈ ∂Bn,
then we have the followng inequality holds.

β
T

J f (α)α ≥
2|1 − β

T
f (0)|2

1 −
∣∣∣∣βT

f (0)
∣∣∣∣2 + ‖J f (0)‖

, (5)

where ‖J f (0)‖ is the norm of J f (0) and the norm ‖ · ‖ is defined in (13).
When n = 1, then Theorem 1.5 coincides with Theorem 1.3.

Theorem 1.6. Let f be a holomorphic self-mapping of Bn satisfying f (a) = b, where a, b ∈ Bn. If f is holomorphic
at z = α ∈ ∂Bn with f (α) = β ∈ ∂Bn, then

β
T

J f (α)α ≥
1 − |a|2

1 − |b|2
·
|1 − b

T
β|2

|1 − aTα|2
·

2

1 + 1−|a|2
1−|b|2 ‖J f (a)‖

, (6)

where ‖J f (a)‖ is the norm of J f (a) and the norm ‖ · ‖ is defined in (13).
When n = 1, then Theorem 1.6 coincides with Theorem 1.4.

The proofs of Theorem 1.1 ∼ Theorem 1.6 will be given in the section 3.
A twice continuously differentiable, complex-valued mapping w defined on Ω ⊆ C is harmonic on Ω if

it satisfies the following Laplace equation.

∆w(z) = 4wzz̄(z) = 0 for z ∈ Ω.

For any z = reiθ
∈ D and α ∈ [0, 2π], the directional derivative of w is defined as follows

∂αw(z) = lim
r→0+

w(z + reiα) − w(z)
reiα = eiαwz(z) + e−iαwz̄(z). (7)

Then

max
0≤α≤2π

|∂αw(z)| = Λw(z) = |wz(z)| + |wz̄(z)| (8)

and

min
0≤α≤2π

|∂αw(z)| = λw(z) = ||wz(z)| − |wz̄(z)|| . (9)

According to [8], w is locally univalent and sense-preserving inD if and only if its Jacobian Jw satisfies the
following condition: For every z ∈ D,

Jw(z) = |wz(z)|2 − |wz̄(z)|2 > 0.

In the second part of this paper, we will establish the boundary Schwarz lemma for harmonic mappings
and pluriharmonic mappings. We first improve Heinz’s result [4, Lemma] as follows.
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Theorem 1.7. Suppose that w is a harmonic self-mapping of D satisfying w(0) = 0. Then we have the followng
inequality holds.

|w(z)| ≤
4
π

arctan
(
|z|
|z| + π

4 Λw(0)
1 + π

4 Λw(0)|z|

)
for z ∈ D. (10)

We remark here that since Λw(0) ≤ 4
π , and for 0 < r < 1 the functionϕ(x) =

r+ π
4 x

1+ π
4 xr is an increasing function

of x, we know that the following inequality

4
π

arctan
(
|z|
|z| + π

4 Λw(0)
1 + π

4 Λw(0)|z|

)
≤

4
π

arctan |z|,

holds for all z ∈ D.
By using Theorem 1.7, we prove the following theorem which is the so-called boundary Schwarz lemma

for harmonic mappings.

Theorem 1.8. Suppose that w is a harmonic self-mapping of D satisfying w(0) = 0. If w is differentiable at z = 1
with w(1) = 1, then we have the followng inequality holds.

Re[wz(1) + wz̄(1)] ≥
4
π

1
1 + π

4 Λw(0)
. (11)

The above inequality is sharp.

Remark 1.9. According to [2, page 7], a harmonic mapping w of D has the representation w = h + 1̄, where h
and 1 are holomorphic in D. Furthermore, if 1(0) = 0, then the representation is unique and is called the canonical
representation of w.

Under the hypotheses of Theorem 1.8, if ϕ = h − 1 is holomorphic at z = 1, then

Im[wz(1)] = 0 = Im[wz̄(1)],

and the symbol “Re” in (11) can be removed. See Remark 4.1 for the proof.

Example 1.10. Let ψ1(z) = z−α
1−αz and ψ2(z) =

z−β
1−βz

be the holomorphic automorphism of D, where α = 1+i
2 and

β = 1 −
√

3
2 + i

2 . Consider the harmonic mapping

w(z) = azψ1(z) + bzψ2(z) for z ∈ D,

where a, b ∈ C.
If w(0) = 0, w(1) = 1 and |w(z)| ≤ 1 for all z ∈ D, then we have a = i

2 and b = 1−i
√

3
4 . Therefore, wz(1) = 1 and

wz̄(1) =
√

3
2 both are real numbers.

Theorem 1.11. Suppose that w is a harmonic self-mapping ofD satisfying w(a) = 0. If w is differentiable at z = α
with w(α) = β, where α, β ∈ T, then we have the followng inequality holds.

Re
{
β [wz(α)α + wz̄(α)ᾱ]

}
≥

4
π

1
1 + π

4 Λw(a)(1 − |a|2)
1 − |a|2

|1 − āα|2
. (12)

When α = β = 1 and a = 0, then Theorem 1.11 coincides with Theorem 1.8.

A continuous complex-valued function w defined on a domain G ⊆ Cn is said to be pluriharmonic if for
each fixed z ∈ G and θ ∈ ∂Bn, the function w(z + θζ) is harmonic in {ζ : |ζ| < dG(z)} where dG(z) denotes the
distance from z to the boundary ∂G of G. If G is simply connected, then a real-valued function u defined
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on G is pluriharmonic if and only if u is the real part of a holomorphic function on G. Clearly, a mapping
w : Bn

→ C is pluriharmonic if and only if w has a representation w = h + 1, where h and 1 are holomorphic
in Bn. We refer to [5], [6], [7] for more details on pluriharmonic mappings.

For a complex-valued and differentiable function f from Bn into Cwe introduce

fz =

(
∂ f
∂z1

, · · · ,
∂ f
∂zn

)
and fz =

(
∂ f
∂z1

, · · · ,
∂ f
∂zn

)
.

If f : Bn
→ Cm is differentiable, then we introduce

fz =

(
∂ f j

∂zk

)
m×n

and fz =

(
∂ f j

∂zk

)
m×n

.

A function w = {w1, · · · ,wm}
T : Bn

→ Cm is said to be pluriharmonic, if each component w j ( j = 1, · · · ,m)
is a pluriharmonic mapping from Bn into C. Let w = h + 1 be a pluriharmonic mapping from Bn into Cn.
Then, the real Jacobian determinant of w can be written in the following form

det Jw = det
(
∂h ∂1

∂1 ∂h

)
and if h is locally biholomorphic, then the determinant of Jw can be written as follows

det Jw = |det ∂h|2 det(In − ∂1[∂h]−1∂1[∂h]−1).

If w is planar harmonic mapping ofD, then its Jacobian is given as follows

det Jw = |wz|
2
− |wz|

2 = |h′|2 − |1′|2.

For an n × n complex matrix A, we introduce the operator norm

‖A‖ = sup
z,0

‖Az‖
‖z‖

= max{‖Aθ‖ : θ ∈ ∂Bn
}. (13)

Theorem 1.12. Let w be a pluriharmonic self-mapping of Bn satisfying w(a) = 0, where a ∈ Bn. If w(z) is
differentiable at z = α ∈ ∂Bn with w(α) = β ∈ ∂Bn, then we have the followng inequality holds.

Re
{
β

T
[
wz(α)

1 − aTα

1 − |a|2
(α − a) + wz(α)

1 − aTα

1 − |a|2
(α − a)

]}
(14)

≥
4
π

1

1 + π
4 Λw(a)

∣∣∣∣ α−a
1−aTα

∣∣∣∣ (1 − |a|2)
,

where Λw(a) = ‖wz(a)‖ + ‖wz(a)‖. If a = 0, then we have

Re
[
β

T
(wz(α)α + wz̄(α)α)

]
≥

4
π

1
1 + π

4 Λw(0)
. (15)

Remark 1.13. Since the following inequalities∣∣∣∣ α − a
1 − āTα

∣∣∣∣ (1 − |a|2) ≤ (1 + |a|)2

and ∣∣∣∣∣∣1 − aTα

1 − |a|2

∣∣∣∣∣∣ |α − a| ≤
1 + |a|
1 − |a|

,
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hold, we obtain that

4
π

1
1 + π

4 Λw(a)(1 + |a|)2 (16)

≤

∣∣∣∣βT
(wz(α)(α − a))

∣∣∣∣ ∣∣∣∣∣∣1 − aTα

1 − |a|2

∣∣∣∣∣∣
+

∣∣∣∣βT
(wz(α)(α − a))

∣∣∣∣ ∣∣∣∣∣∣1 − aTα

1 − |a|2

∣∣∣∣∣∣
≤ (‖wz(α)‖ + ‖wz(α)‖)

(1 + |a|
1 − |a|

)
.

Therefore

Λw(α) ≥
4
π

(1 − |a|
1 + |a|

) 1
1 + π

4 Λw(a)(1 + |a|)2 .

The proofs of Theorem 1.7 ∼ Theorem 1.12 will be given in the section 4.

2. Preliminaries

In this section, we shall introduce some necessary terminologies, recall several known results.
The following results are due to Osserman [15] which is the Schwarz lemma at the boundary.

Theorem C. ([15, Lemma 1 and Lemma 2]) Let f : D → D be a holomorphic self-mapping of D satisfying
f (0) = 0. Then

| f (z)| ≤ |z|
|z| + | f ′(0)|

1 + | f ′(0)||z|
for |z| < 1. (17)

Moreover, if for some b ∈ T, f (z) extends continuously to b with | f (b)| = 1 and f ′(b) exists, then

| f ′(b)| ≥
2

1 + | f ′(0)|
. (18)

By using the classical Schwarz lemma for f , we know that | f ′(b)| > 1 unless f (z) = eiθz and θ is a real number.
Theorem D. ([15, Lemma 4]) Let f : D→ D be a holomorphic self-mapping ofD. If for some b ∈ T, f (z) extends
continuously to b with | f (b)| = 1 and f ′(b) exists, then

| f ′(b)| ≥
2(1 − | f (0)|)2

1 − | f (0)|2 + | f ′(0)|
. (19)

The following lemma will be used in the proofs of Theorem 1.6 and Theorem 1.12.
Theorem E. ([18, Theorem 2.2.2]) For given a ∈ Bn, let A = sIn + aaT

1+s , where s =
√

1 − |a|2 and In is the unit square
matrix of order n. Then

ϕa(z) = A
a − z

1 − aTz
is a biholomorphic automorphism of Bn which interchanges 0 and a. Moreover, ϕa is biholomorphic in a neighborhood
of Bn, and

A2 = s2In + aaT, Aa = a, ϕ−1
a = ϕa, Jϕa (z) = A

[
−

In

1 − aTz
+

(a − z)aT

(1 − aTz)2

]
.

In 2016, Tang et al proved the following theorem which is an improvement of Theorem B.
Theorem F. ([19, Theorem 3.1]) Let f : Bn

→ Bn be a holomorphic mapping, and let f (a) = a for some a ∈ Bn.
Then we have the following two conclusions:
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1. If f is holomorphic at z = α ∈ ∂Bn with f (α) = β ∈ ∂Bn, then

β
T

J f (α)α ≥
|1 − aTβ|2

|1 − aTα|2
.

2. If there exist α1, · · · , αn ∈ ∂Bn such that α1 − a, · · · , αn − a are linearly independent and f is holomorphic at
z = αk with f (αk) = βk ∈ ∂Bn(k = 1, · · · ,n), then the following n equalities:

βk
T

J f (αk)αk =
|1 − aTβk|

2

|1 − aTαk|
2

(k = 1, · · · ,n)

hold if and only if
f (z) ≡ ϕa(Uϕa(z)),

where U = (ϕa(β1), · · · , ϕa(βn))(ϕa(α1), · · · , ϕa(αn))−1 is a unitary square matrix of order n.

When n = 1 and a = 0, then Theorem F coincides with Theorem B.
In 1959, Heinz proved the following result ([4, Lemma]) which is the so-called Schwarz lemma for

harmonic mappings: If w is a harmonic mapping ofD into itself such that w(0) = 0, then for any z ∈ D,

|w(z)| ≤
4
π

arctan |z|.

Later, Pavlović improved the above result of Heinz and proved the following theorem.
Theorem G. ([16, Theorem 3.6.1]) Suppose w is a harmonic mapping ofD into itself. Then, the following statement
holds: ∣∣∣∣∣∣w(z) −

1 − |z|2

1 + |z|2
w(0)

∣∣∣∣∣∣ ≤ 4
π

arctan |z| z ∈ D.

3. Schwarz Lemma at the Boundary for Holomorphic Mappings

In this section we first prove the Theorem 1.1 which will be used in the proofs of Theorem 1.5 and
Theorem 1.6.

Proof of Theorem 1.1
Let

F(z) =
f (z) − f (0)

1 − f (0) f (z)
.

Then we have F : D → D is a holomorphic self-mapping of D such that F(0) = 0 and F(1) = β =
1− f (0)

1− f (0)
. By

using (17), we have

|F(z)| ≤ |z|
|z| + |F′(0)|

1 + |F′(0)||z|
, (20)

where

F′(0) =
f ′(0)

1 − | f (0)|2
. (21)

Consider the function 1(z) = βF(z). Then we 1(0) = 0, 1(1) = 1 and |1(z)| = |F(z)|. Since 1(z) is holomorphic
at z = 1, we see that

1(z) = 1 + 1′(1)(z − 1) + ◦(|z − 1|).
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This together with (20) show that

∣∣∣1 + 1′(1)(z − 1) + ◦(|z − 1|)
∣∣∣2 ≤ (

|z|
|z| + |F′(0)|
1 + |F′(0)||z|

)2

.

Therefore,

2Re
[
1′(1)(1 − z)

]
≥ 1 −

(
|z|
|z| + |F′(0)|

1 + |F′(0)||z|

)2

+ ◦(|1 − z|). (22)

Take z = r ∈ (0, 1) and letting r→ 1− we have

2Re
[
1′(1)

]
≥ lim

r→1−

1 −
(
r r+|F′(0)|

1+|F′(0)|r

)2

1 − r
(23)

=
4

1 + |F′(0)|
.

Assume that z = reiθ
∈ D, where θ , 0. By letting r→ 1−, it follows from (22) that

2Re
[
1′(1)

1 − eiθ

|1 − eiθ|

]
= 2Re

[
1′(1)

sin(θ/2)
| sin(θ/2)|

(−i)eiθ/2
]

(24)

≥
◦(|1 − eiθ

|)
|1 − eiθ|

.

Letting θ→ 0± leads to 2Re
[
∓i1′(1)

]
≥ 0. This shows that

Im
[
1′(1)

]
= 0. (25)

Therefore we have
1′(1) ≥

2
1 + |F′(0)|

.

Note that β =
1− f (0)

1− f (0)
∈ T and 1(z) = βF(z). Then we have

1′(1) = β
1 − | f (0)|2(
1 − f (0)

)2 f ′(1) =
1 − | f (0)|2

|1 − f (0)|2
f ′(1).

According to (21), we have

f ′(1) ≥
2|1 − f (0)|2

1 − | f (0)|2 + | f ′(0)|
.

This completes the proof of the lemma.

Proof of Theorem 1.3
Let 1(ζ) = β f (ζα), where α, β ∈ T and ζ ∈ D. Then we have 1(ζ) is differentiable at z = 1 with 1(1) = 1.

By using Theorem 1.1, we have

1′(1) ≥
2|1 − 1(0)|2

1 − |1(0)|2 + |1′(0)|
.

This implies that

β f ′(α)α ≥
2|1 − β f (0)|2

1 − | f (0)|2 + | f ′(0)|
≥

2(1 − | f (0)|)2

1 − | f (0)|2 + | f ′(0)|
. (26)

The proof of the theorem is complete.
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Proof of Theorem 1.4
Consider the automorphisms ϕa(z) = a−z

1−āz and ϕb(z) = b−z
1−b̄z which interchange 0 and a, 0 and b respec-

tively. Then we have ϕa(α) = p ∈ T and ϕb(β) = q ∈ T. Moreover we have

ϕ′a(p) =
−(āα − 1)2

1 − |a|2
, ϕ′a(0) = −1 + |a|2 (27)

and

ϕ′b(β) =
−1 + |b|2

(1 − b̄β)2
, ϕ′b(b) =

−1
1 − |b|2

. (28)

Let 1(z) = ϕb ◦ f ◦ ϕa(z) for z ∈ D. Then we have

1(0) = ϕb ◦ f (a) = ϕb(b) = 0

and
1(p) = ϕb ◦ f (α) = ϕb(β) = q.

According to Theorem 1.3 we see that

q̄1′(p)p ≥
2

1 + |1′(0)|
.

Elementary calculations lead to the following inequalities

q̄ϕ′b(β) =

(
b − β
1 − b̄β

)
·
−1 + |b|2

(1 − b̄β)2
(29)

= β̄
1 − |b|2

|1 − b̄β|2
,

and

ϕ′a(p)p =
−(āα − 1)2

1 − |a|2
·

a − α
1 − āα

(30)

= α
|1 − āα|2

1 − |a|2
,

and

1′(0) = ϕ′b(b) f ′(a)ϕ′a(0) =
1 − |a|2

1 − |b|2
f ′(a).

These show that

q̄1′(p)p = q̄ϕ′b(β) · f ′(α) · ϕ′a(p) · p (31)

=
1 − |b|2

|1 − b̄β|2
β̄ f ′(α)α

|1 − āα|2

1 − |a|2

≥
2

1 + |1′(0)|

=
2

1 + 1−|a|2
1−|b|2 | f

′(a)|
.

Therefore,

β f ′(α)α ≥
1 − |a|2

1 − |b|2
|1 − b̄β|2

|1 − āα|2
2

1 + 1−|a|2
1−|b|2 | f

′(a)|
.

The proof of the theorem is complete.
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Proof of Theorem 1.5

Assume that f is a holomorphic self-mapping of Bn and holomorphic at z = α with f (α) = β, where

α, β ∈ ∂Bn. Let 1(ζ) = β
T

f (αζ) for ζ ∈ D. Then 1 is a holomorphic self-mapping ofD satisfying 1(0) = β
T

f (0)

and 1(1) = β
T

f (α) = 1. By using (1), we know that

1′(1) ≥
2|1 − 1(0)|2

1 − |1(0)|2 + |1′(0)|
.

It follows from 1′(0) = β
T

J f (0)α and 1′(1) = β
T

J f (α)α that

1′(1) = β
T

J f (α)α (32)

≥
2|1 − 1(0)|2

1 − |1(0)|2 + |1′(0)|

≥

2
∣∣∣∣1 − βT

f (0)
∣∣∣∣2

1 −
∣∣∣∣βT

f (0)
∣∣∣∣2 + ‖J f (0)‖

≥

2
(
1 −

∣∣∣∣βT
f (0)

∣∣∣∣)2

1 −
∣∣∣∣βT

f (0)
∣∣∣∣2 + ‖J f (0)‖

where ‖J f (0)‖ is the operator norm defined in (13). Let a = 1 + ‖J f (0)‖ ≥ 1 and φ(x) := 2(1−x)2

a−x2 . Then we have
φ(x) is decreasing for x ∈ (0, 1). Therefore

β
T

J f (α)α ≥
2(1 − | f (0)|)2

1 − | f (0)|2 + ‖J f (0)‖
.

The proof of the theorem is complete.
The following Lemma 3.1 will be used in proving Theorem 1.6.

Lemma 3.1. Let f : Bn
→ Bn be a holomorphic mapping with f (0) = 0. If f is holomorphic at z = α ∈ ∂Bn with

f (α) = β ∈ ∂Bn, then

β
T

J f (α)α ≥
2

1 + ‖J f (0)‖
. (33)

Proof. Let

1(ζ) = β
T

f (ζα), ζ ∈ D.

Then 1 : D→ D is a holomorphic function with 1(0) = 0 and 1 is holomorphic at ζ = 1 with

1(1) =

n∑
j=1

β j f j(α) =

n∑
j=1

β jβ j = 1.
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By applying (1), we know that

1′(1) = β
T

J f (α)α (34)

≥
2

1 + |1′(0)|

=
2

1 +
∣∣∣∣βT

J f (0)α
∣∣∣∣

≥
2

1 + ‖J f (0)‖
.

This completes the proof of Lemma 3.1.

Proof of Theorem 1.6
Letϕa(z) = A a−z

1−az be the holomorphic automorphism ofBn where A = saIn + aa′
1+sa

, sa =
√

1 − |a|2. Similarly,

let ϕb(z) = B b−z
1−bz

be the holomorphic automorphism of Bn where B = sbIn + bb
′

1+sb
, sb =

√
1 − |b|2.

Let 1(z) = ϕb ◦ f ◦ ϕa(z) : Bn
→ Bn be a holomorphic self-mapping ofD. Then

1(0) = ϕb ◦ f ◦ ϕa(0) = ϕb ◦ f (a) = ϕb(b) = 0.

Assume that ϕa(α) = p ∈ ∂Bn and ϕb(β) = q ∈ ∂Bn. Then we have

1(p) = ϕb ◦ f ◦ ϕa(p) = ϕb ◦ f (α) = ϕb(β) = q.

By using the above Lemma 3.1, we have

2
1 + ‖J1(0)‖

≤ qT J1(p)p = ϕb(β)
T

Jϕb (β)J f (α)Jϕa (p)ϕa(α).

According to Lemma E and the proof of [19, (3.2) and (3.3)] we know that

ϕb(β)
T

Jϕb (β) =
αT
− β

T

1 − β
T
b

B2

− In

1 − b
T
β

+
(b − β)b

T

(1 − b
T
β)2

 (35)

=
1

|1 − b
T
β|2

[(1 − β
T
b)b

T
− s2β

T
]

−In +
(b − β)b

T

1 − b
T
β


=

1 − |b|2

|1 − b
T
β|2
β

T

and

Jϕa (ϕa(α))ϕa(α) = [Jϕa (α)]−1ϕa(α) (36)

=
1 − aTa
1 − |a|2

(α − a).

Let γ2, · · · , γn be a standard orthogonal basis of ∂Bn such that αTγk = 0 , (k = 2, · · · ,n). Then there are
µ1, · · · , µn ∈ C such that

1 − aTα

1 − |a|2
(α − a) = µ1α + µ2γ2 + · · · + µnγn. (37)



J.-F. Zhu / Filomat 32:15 (2018), 5385–5402 5396

This gives

µ1 = αT 1 − aTα

1 − |a|2
(α − a) =

|1 − aTα|2

1 − |a|2
. (38)

Suppose that f is differentiable in a neighborhood V of α. Then f (∂Bn
∩ V) and ∂Bn are tangent at β. This

means that the tangent space and holomorphic tangent space to f (∂Bn
∩ V) at f (α) = β are contained in

Tβ(∂Bn) = {w ∈ Cn : Reβ
T
w = 0}

and
T(1,0)
β (∂Bn) = {w ∈ Cn : β

T
w = 0}

respectively. Note that for any ξ ∈ Tα(∂Bn), J f (α)ξ is a tangent vector of f (∂Bn
∩ V) at β. Then

J f (α)ξ ∈ Tβ(∂Bn).

This shows that J f (α)(T(1,0)
α (∂Bn)) ⊆ Tβ(∂Bn). Using

< J f (α)ξ, β >= 0 =< β
T

J f (α)ξ, 1 >,

we see that β
T

J f (α)ξ = 0 holds for any ξ ∈ Tα(∂Bn). So there exists λ ∈ R such that β
T

J f (α) = λαT. That is

β
T

J f (α)α = λ. (39)

(See [10, Theorem 3.1] for more details). Therefore we have

qT J1(p)p = ϕb(β)
T

Jϕb (β)J f (α)Jϕa (ϕa(α))ϕa(α) (40)

=
1 − |b|2

|1 − b
T
β|2
β

T
J f (α)

(
|1 − aTα|2

1 − |a|2
α + µ2γ2 + · · · + µnγn

)

=
1 − |b|2

|1 − b
T
β|2
λαT

(
|1 − aTα|2

1 − |a|2
α + µ2γ2 + · · · + µnγn

)

=
1 − |b|2

|1 − b
T
β|2
λ
|1 − aTα|2

1 − |a|2
.

On the other hand, since

Jϕb (b) =
−B

1 − |b|2
and Jϕa (0) = A(−1 + |a|2)

we see that

J1(0) = Jϕb (b)J f (a)Jϕa (0) (41)

=
1 − |a|2

1 − |b|2
B · J f (a) · A.

Thus

‖J1(0)‖ ≤
1 − |a|2

1 − |b|2
‖J f (a)‖.

This shows that

β
T

J f (α)α ≥
1 − |a|2

1 − |b|2
|1 − b

T
β|2

|1 − aTα|2
·

2

1 + 1−|a|2
1−|b|2 ‖J f (a)‖

,

as required.
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4. Schwarz Lemma at the Boundary for Harmonic Mappings

In this section, we shall prove Theorem 1.7 ∼ Theorem 1.12. We start with the proof of Theorem 1.7.

Proof of Theorem 1.7
Let w(z) = u(z) + iv(z) be a harmonic self-mapping of D satisfying w(0) = 0. For any θ ∈ R, let

f (z) = ξ(z) + iη(z) be the function which is holomorphic in D and satisfies the relations f (0) = 0, | f (z)| < 1
for all z ∈ D and

Re f (z) = u(z) cosθ + v(z) sinθ. (42)

Then we have
ξ(z) = Rew(z)e−iθ

and

f ′(z) = ξx − iξy = 2ξz (43)

= 2
∂
∂z

Rew(z)e−iθ

= wz(z)e−iθ + wz̄(z)eiθ.

Consider the holomorphic mapping

1(z) =
e
π
2 i f (z)

− 1
e
π
2 i f (z) + 1

.

Then we have 1(0) = 0 and 1′(0) = πi
4 f ′(0). According to the assumption we know that |Re f | = |ξ| < 1. This

implies that
Ree

π
2 i f = e

−πη
2 cos

π
2
ξ > 0.

Therefore, |1(z)| < 1. Applying the Schwarz lemma (17) we obtain

|1(z)| ≤ |z|
|z| + π

4 | f
′(0)|

1 + π
4 | f
′(0)||z|

. (44)

On the other hand, the following elementary inequality holds∣∣∣∣∣∣ eiζ
− 1

eiζ + 1

∣∣∣∣∣∣ ≥ tan
1
2
|Reζ| for |Reζ| ≤

π
2
. (45)

The inequalities (44) together with (45) show that

tan
π
4
|Re f | ≤ |1(z)| ≤ |z|

|z| + π
4 | f
′(0)|

1 + π
4 | f
′(0)||z|

.

For 0 < r < 1 the function ϕ(x) =
r+ π

4 x
1+ π

4 xr is an increasing function of x. Also (43) shows that | f ′(0)| =

|wz(0)e−iθ + wz̄(0)eiθ
| ≤ Λw(0). Thus

|Re f | ≤
4
π

arctan
(
|z|
|z| + π

4 Λw(0)
1 + π

4 Λw(0)|z|

)
.

Applying (42) we obtain the estimate

|u(z) cosθ + v(z) sinθ| ≤
4
π

arctan
(
|z|
|z| + π

4 Λw(0)
1 + π

4 Λw(0)|z|

)
.

Since the above inequality holds for every θ ∈ R, the inequality (10) follows, which proves Theorem 1.7.



J.-F. Zhu / Filomat 32:15 (2018), 5385–5402 5398

Proof of Theorem 1.8
According to Theorem 1.7 we see that

|w(z)| ≤
4
π

arctan
(
|z|
|z| + π

4 Λw(0)
1 + π

4 Λw(0)|z|

)
:= M(z) for z ∈ D. (46)

Since w is differentiable at z = 1, we know that

w(z) = 1 + wz(1)(z − 1) + wz(1)(z − 1) + ◦(|z − 1|).

This together with (46) show that∣∣∣1 + wz(1)(z − 1) + wz(1)(z − 1) + ◦(|z − 1|)
∣∣∣2 ≤ (M(z))2 .

Therefore,

2Re
[
wz(1)(1 − z) + wz(1)(1 − z)

]
≥ 1 − (M(z))2 + ◦(|z − 1|). (47)

Take z = r ∈ (0, 1) and letting r→ 1−, it follows from M(1) = 1 that

2Re [wz(1) + wz(1)] ≥ lim
r→1−

1 −M(r)2

1 − r
(48)

=
4
π

2
1 + π

4 Λw(0)
.

Therefore we have
Re[wz(1) + wz(1)] ≥

4
π

1
1 + π

4 Λw(0)

as required.
To check the sharpness of (11), let

U(z) =
2
π

arctan
2x

1 − x2 − y2 ,

where z = x + iy ∈ D. Then, we have that U is harmonic in D with U(0) = 0, U(1) = 1, and for any
z = r ∈ (−1, 1),

U(r) =
4
π

arctan r.

Elementary computations show that

ΛU(0) =
4
π

and
∂U
∂r

(1) =
2
π

=
∂U
∂z

(1) +
∂U
∂z

(1).

This shows that (11) is sharp, and hence, the proof of the theorem is complete.

Remark 4.1. Since w is harmonic in D, according to [2, page 7], we know that w has the canonical representation
w = h + 1̄, where h = uh + ivh, 1 = u1 + iv1 are holomorphic inD. If 1(0) = 0, then the representation is unique.

We point out that under the assumptions of Theorem 1.8, if ϕ = h − 1 is holomorphic at z = 1, then

Im[wz(1)] = 0 = Im[wz̄(1)]. (49)

We first prove the following equality holds:

Im[wz(1) − wz̄(1)] = 0. (50)
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For the proof of (50), assume that z = reiθ
∈ D, where θ , 0. By letting r→ 1−, it follows from (47) that

2Re
[
wz(1)

1 − eiθ

|1 − eiθ|
+ wz(1)

1 − e−iθ

|1 − eiθ|

]
≥
◦(|1 − eiθ

|)
|1 − eiθ|

.

Letting θ→ 0± leads to
2Re [wz(1)(∓i) + wz̄(1)(±i)] ≥ 0,

which guarantees the validity of (50).
Secondly, we prove the following equality holds:

Im[wz(1) + wz̄(1)] = 0. (51)

To prove (51), note that w(0) = 0 implies ϕ(0) = 0, since 1(0) = 0. The condition w(1) = 1 ensure that

ϕ(1) = 1 − 1(1) − 1(1) = 1 − 2u1(1) ∈ R

and

|ϕ(z)|2 = |w(z)|2 − 4uh(z)u1(z), for z ∈ D. (52)

Thus, we have

ϕ(1)2 = 1 − 4uh(1)u1(1). (53)

Since ϕ is holomorphic inD with ϕ(0) = 0, we know that ϕ(1) , 0. If ϕ is holomorphic at z = 1, then

ϕ(z) = ϕ(1) + ϕ′(1)(z − 1) + ◦(|z − 1|). (54)

Hence,

2ϕ(1)Re[ϕ′(1)(z − 1)] = |w(z)|2 − 4uh(z)u1(z) − ϕ(1)2
− ◦(|z − 1|). (55)

Assume that z = reiθ
∈ D, where θ , 0. By letting r→ 1−, it follows from (53) and (55) that

2ϕ(1)Re
[
ϕ′(1)

1 − eiθ

|1 − eiθ|

]
=
◦(|1 − eiθ

|)
|1 − eiθ|

.

Letting θ→ 0± leads to
2ϕ(1)Re

[
ϕ′(1)(∓i)

]
= 0,

which shows that Im[ϕ′(1)] = 0, and hence, (51) holds true.
The equality (49) holds obviously from (50) and (51), thus we can rewrite (11) as follows

wz(1) + wz̄(1) ≥
4
π

1
1 + π

4 Λw(0)
. (56)

Proof of Theorem1.11

Let ϕa(z) = a−z
1−āz be the automorphism of D. Then we have ϕa(z) interchanges 0 and a. For α ∈ T, let

p = ϕa(α) ∈ T. Then we have
ϕa(p) = α

and

ϕ′a(p) =
−(1 − āα)2

1 − |a|2
, ϕ′a(0) = −1 + |a|2.
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For β ∈ T, let G(ζ) := β̄w ◦ ϕa(ζp) where ζ ∈ D. Then we have G(ζ) is a harmonic self-mapping of D and
satisfies the following conditions

G(0) = βw(ϕa(0)) = βw(a) = 0

and
G(1) = βw(ϕa(p)) = βw(α) = |β|2 = 1.

Note that
Gζ(ζ) = βwz(ϕa(ζp))ϕ′a(ζp)p

and
Gζ(ζ) = βwz̄(ϕa(ζp))ϕ′a(ζp)p̄.

By using Theorem 1.8, we see that

Re
(
Gζ(1) + Gζ(1)

)
= Re

(
β
[
wz(α)ϕ′a(p)p + wz̄(α)ϕ′a(p)p̄

])
(57)

= Re
(
β

[
wz(α)α

|1 − āα|2

1 − |a|2
+ wz̄(α)α

|1 − āα|2

1 − |a|2

])
≥

4
π

1
1 + π

4 ΛG(0)

=
4
π

1
1 + π

4 (|Gζ(0)| + |Gζ̄(0)|)

=
4
π

1
1 + π

4 (|wz(a)| + |wz̄(a)|)(1 − |a|2)

=
4
π

1
1 + π

4 Λw(a)(1 − |a|2)
.

Thus

Re
(
β [wz(α)α + wz̄(α)ᾱ]

)
≥

4
π

1
1 + π

4 Λw(a)(1 − |a|2)
1 − |a|2

|1 − āα|2
.

If a = 0, then

Re
(
β [wz(α)α + wz̄(α)ᾱ]

)
≥

4
π

1
1 + π

4 Λw(0)
. (58)

This completes the proof of the theorem.

Proof of Theorem 1.12
Let ϕa(z) = A a−z

1−az be the holomorphic automorphism of Bn where A = saIn + aa′
1+sa

, sa =
√

1 − |a|2.

Assume that ϕa(α) = p ∈ ∂Bn. Let G(ζ) = β
T
w ◦ ϕa(ζp) be a harmonic mapping satisfying

G(0) = β
T
w ◦ ϕa(0) = β

T
w(a) = 0.

Then
G(1) = β

T
w ◦ ϕa(p) = β

T
w(α) = 1.

Applying Theorem 1.8 we have

4
π

1
1 + π

4 ΛG(0)
≤ Re[Gz(1) + Gz(1)] (59)

= Re
[
β

T (
wz(α)Jϕa (p)p + wz(α)Jϕa (p)p

)]
.
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By using lemma E and [19, (3.3)], we obtain

Jϕa (p)p = Jϕa (ϕa(α))ϕa(α) (60)

= [Jϕa (α)]−1ϕa(α)

=

[
−

In

1 − aTα
+

(a − α)aT

(1 − aTα)2

]−1

A−1A
(

a − α

1 − aTα

)
=

[
−(1 − aTα)In −

1 − aTα

1 − |a|2
(a − α)aT

]
a − α

1 − aTα

=
1 − aTα

1 − |a|2
(α − a)

and

Jϕa (0)p = Jϕa (ϕa(a))ϕa(α) (61)

= [Jϕa (a)]−1ϕa(α)

=

[
−

In

1 − |a|2

]−1

A−1A
(

a − α

1 − aTα

)
=

α − a

1 − aTα
(1 − |a|2).

Therefore,

ΛG(0) = |Gζ(0)| + |Gζ(0)| (62)

=
∣∣∣∣βT

wζ(a)Jϕa (0)p
∣∣∣∣ +

∣∣∣∣βT
wζ(a)Jϕa (0)p̄

∣∣∣∣
=

(∣∣∣∣βT
wζ(a)(α − a)

∣∣∣∣ +
∣∣∣∣βT

wζ(a)(α − ā)
∣∣∣∣) 1 − |a|2

|1 − aTα|

≤ Λw(a)
∣∣∣∣∣ α − a

1 − aTα

∣∣∣∣∣ (1 − |a|2),

where Λw(a) = ‖wz(a)‖ + ‖wz̄(a)‖, and the norm ‖.‖ is defined in (13). This yields that

4
π

1

1 + π
4 Λw(a)

∣∣∣∣ α−a
1−aTα

∣∣∣∣ (1 − |a|2)
(63)

≤ Re
[
β

T (
wz(α)Jϕa (p)p + wz(α)Jϕa (p)p

)]
= Re

[
β

T
(
wz(α)

1 − aTα

1 − |a|2
(α − a) + wz(α)

1 − aTα

1 − |a|2
(α − a)

)]

If a = 0, then we have

Re
[
β

T
(wz(α)α + wz(α)α)

]
≥

4
π

1
1 + π

4 Λw(0)
.

This completes the proof of the theorem.
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