Filomat 32:15 (2018), 5403–5413 https://doi.org/10.2298/FIL1815403O

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Selection Principles in Function Spaces with the Compact-Open Topology

Alexander V. Osipov^a

^aKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, 620219, Ekaterinburg, Russia

Abstract. For a Tychonoff space *X*, we denote by $C_k(X)$ the space of all real-valued continuous functions on *X* with the compact-open topology. A subset $A \subset X$ is said to be sequentially dense in *X* if every point of *X* is the limit of a convergent sequence in *A*. In this paper, the following properties for $C_k(X)$ are considered.

For example, a space $C_k(X)$ satisfies $S_1(S, D)$ (resp., $S_{fin}(S, D)$) if whenever $(S_n : n \in \mathbb{N})$ is a sequence of sequentially dense subsets of $C_k(X)$, one can take points $f_n \in S_n$ (resp., finite $F_n \subset S_n$) such that $\{f_n : n \in \mathbb{N}\}$ (resp., $\bigcup \{F_n : n \in \mathbb{N}\}$) is dense in $C_k(X)$. Other properties are defined similarly.

In [22], we obtained characterizations these selection properties for $C_p(X)$. In this paper, we give characterizations for $C_k(X)$.

1. Introduction

For a Tychonoff space *X*, we denote by $C_k(X)$ the space of all real-valued continuous functions on *X* with the compact-open topology. Subbase open sets of $C_k(X)$ are of the form $[A, U] = \{f \in C(X) : f(A) \subset U\}$, where *A* is a compact subset of *X* and *U* is a non-empty open subset of \mathbb{R} . Since the compact-open topology coincides with the topology of uniform convergence on compact subsets of *X*, we can represent a basic neighborhood of the point $f \in C(X)$ as $\langle f, A, \epsilon \rangle$ where $\langle f, A, \epsilon \rangle := \{g \in C(X) : |f(x) - g(x)| < \epsilon \forall x \in A\}$, *A* is a compact subset of *X* and $\epsilon > 0$.

Many topological properties are defined or characterized in terms of the following classical selection principles. Let \mathcal{A} and \mathcal{B} be sets consisting of families of subsets of an infinite set *X*. Then:

 $S_1(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $\{b_n\}_{n \in \mathbb{N}}$ such that for each $n, b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $\{B_n\}_{n \in \mathbb{N}}$ of finite sets such that for each $n, B_n \subseteq A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

²⁰¹⁰ Mathematics Subject Classification. Primary 54C25; Secondary 54C35, 54C40, 54D20

Keywords. Compact-open topology, function space, *R*-separable, *M*-separable, γ_k -set, sequentially separable, strongly sequentially separable, selectively sequentially separable, selection principles

Received: 11 May 2018; Revised: 22 July 2018; Accepted: 24 July 2018

Communicated by Ljubiša D. R. Kočinac

Email address: oab@list.ru (Alexander V. Osipov)

 $U_{fin}(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: whenever $\mathcal{U}_1, \mathcal{U}_2, ... \in \mathcal{A}$ and none contains a finite subcover, there are finite sets $\mathcal{F}_n \subseteq \mathcal{U}_n, n \in \mathbb{N}$, such that $\{\bigcup \mathcal{F}_n : n \in \mathbb{N}\} \in \mathcal{B}$.

The following prototype of many classical properties is called " \mathcal{A} choose \mathcal{B} " in [29].

 $\binom{\mathcal{A}}{\mathcal{B}}$: For each $\mathcal{U} \in \mathcal{A}$ there exists $\mathcal{V} \subseteq \mathcal{U}$ such that $\mathcal{V} \in \mathcal{B}$.

Then $S_{fin}(\mathcal{A}, \mathcal{B})$ implies $\binom{\mathcal{A}}{\mathcal{B}}$.

In this paper, by a cover we mean a nontrivial one, that is, \mathcal{U} is a cover of X if $X = \bigcup \mathcal{U}$ and $X \notin \mathcal{U}$. A cover \mathcal{U} of a space X is called:

• an ω -cover (a *k*-cover) if each finite (compact) subset *C* of *X* is contained in an element of \mathcal{U} ;

• a γ -cover (a γ_k -cover) if \mathcal{U} is infinite and for each finite (compact) subset C of X the set { $U \in \mathcal{U} : C \not\subseteq U$ } is finite.

Note that a γ_k -cover is a *k*-cover, and a *k*-cover is infinite. A compact space has no *k*-covers.

A space *X* is said to be a γ_k -set if each open *k*-cover \mathcal{U} of *X* contains a countable set $\{U_n : n \in \mathbb{N}\}$ which is a γ_k -cover of *X* [9].

In a series of papers it was demonstrated that γ -covers and *k*-covers play a key role in function spaces [8–10, 13, 16, 22–26, 28] and many others. We continue to investigate applications of *k*-covers in function spaces with the compact-open topology.

2. Main Definitions and Notation

If *X* is a topological space and $A \subseteq X$, then the sequential closure of *A*, denoted by $[A]_{seq}$, is the set of all limits of sequences from *A*. A set $D \subseteq X$ is said to be sequentially dense if $X = [D]_{seq}$. A space *X* is called sequentially separable if it has a countable sequentially dense set. Call *X* strongly sequentially separable and every countable dense subset of *X* is sequentially dense. Clearly, every strongly sequentially separable space is sequentially separable, and every sequentially separable space is sequentially separable.

For a topological space *X* we denote:

- *O* the family of open covers of *X*;
- Γ the family of open γ -covers of *X*;
- Γ_k the family of open γ_k -covers of *X*;
- Ω the family of open ω -covers of *X*;
- \mathcal{K} the family of open *k*-covers of *X*;
- $\mathcal{K}_{cz}^{\omega}$ the family of countable co-zero *k*-covers of *X*;
- \mathcal{D} the family of dense subsets of $C_k(X)$;
- \mathcal{D}^{ω} the family of countable dense subsets of $C_k(X)$;
- S the family of sequentially dense subsets of $C_k(X)$;
- $\mathbb{K}(X)$ the family of all non-empty compact subsets of *X*.
- A space *X* is *R*-separable, if *X* satisfies $S_1(\mathcal{D}, \mathcal{D})$ (Def. 47, [2]).
- A space *X* is *M*-separable (selective separability), if *X* satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$.

• A space *X* is selectively sequentially separable, if *X* satisfies $S_{fin}(S, S)$ (Def. 1.2, [3]).

For a topological space *X* we have the next relations of selectors for sequences of dense sets of *X*.

$$S_{1}(\mathcal{S},\mathcal{S}) \Rightarrow S_{fin}(\mathcal{S},\mathcal{S}) \Rightarrow S_{fin}(\mathcal{S},\mathcal{D}) \Leftarrow S_{1}(\mathcal{S},\mathcal{D})$$

$$\uparrow \qquad \uparrow \qquad f_{1}(\mathcal{D},\mathcal{S}) \Rightarrow S_{fin}(\mathcal{D},\mathcal{S}) \Rightarrow S_{fin}(\mathcal{D},\mathcal{D}) \Leftarrow S_{1}(\mathcal{D},\mathcal{D})$$

Let *X* be a topological space, and $x \in X$. A subset *A* of *X* converges to $x, x = \lim A$, if *A* is infinite, $x \notin A$, and for each neighborhood *U* of $x, A \setminus U$ is finite. Consider the following collection:

- $\Omega_x = \{A \subseteq X : x \in A \setminus A\};$
- $\Gamma_x = \{A \subseteq X : x = \lim A\}.$

Note that if $A \in \Gamma_x$, then there exists $\{a_n\} \subset A$ converging to x. So, simply Γ_x may be the set of non-trivial convergent sequences to x.

We write $\Pi(\mathcal{A}_x, \mathcal{B}_x)$ without specifying *x*, we mean $(\forall x)\Pi(\mathcal{A}_x, \mathcal{B}_x)$.

So, we have three types of topological properties described through the selection principles:

• local properties of the form $S_*(\Phi_x, \Psi_x)$;

• global properties of the form $S_*(\Phi, \Psi)$;

• semi-local properties of the form $S_*(\Phi, \Psi_x)$.

Our main goal is to describe the topological properties for sequences of dense sets of $C_k(X)$ in terms of selection principles of *X*.

3. $S_1(\mathcal{D}, \mathcal{S})$

Recall that *X* a γ'_k -set if it satisfies the selection hypothesis $S_1(\mathcal{K}, \Gamma_k)$ [9].

Theorem 3.1. ([11]) For a Tychonoff space X the following statements are equivalent:

1. $C_k(X)$ satisfies $S_1(\Omega_0, \Gamma_0)$ (i.e., $C_k(X)$ is strongly Fréchet-Urysohn);

2. *X* is a γ'_k -set.

Recall that the *i*-weight iw(X) of a space X is the smallest infinite cardinal number τ such that X can be mapped by a one-to-one continuous mapping onto a Tychonoff space of the weight not greater than τ .

Theorem 3.2. (Noble [19]) A space $C_k(X)$ is separable if and only if $iw(X) = \aleph_0$.

Theorem 3.3. For a Tychonoff space X with $iw(X) = \aleph_0$ the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_1(\mathcal{D}, \mathcal{S})$;
- 2. Every dense subset of $C_k(X)$ is sequentially dense;
- 3. *X* satisfies $S_1(\mathcal{K}, \Gamma_k)$ (*X* is a γ'_k -set);
- 4. *X* is a γ_k -set;
- 5. $C_k(X)$ is Fréchet-Urysohn;
- 6. $C_k(X)$ satisfies $S_{fin}(\mathcal{D}, \mathcal{S})$;
- 7. *X* satisfies $S_{fin}(\mathcal{K}, \Gamma_k)$;
- 8. Each finite power of X satisfies $S_{fin}(\mathcal{K}, \Gamma_k)$;
- 9. $C_k(X)$ satisfies $S_1(\Omega_0, \Gamma_0)$;
- 10. $C_k(X)$ satisfies $S_1(\mathcal{D}, \Gamma_0)$.

Proof. (1) \Rightarrow (6) is immediate.

- (4) \Leftrightarrow (5) By Theorem 4.7.4 in [17].
- (3) \Leftrightarrow (4) By Theorem 18 in [4].
- (3) \Leftrightarrow (7) By Theorem 5 in [9].
- (3) \Leftrightarrow (8) By Theorem 7 in [9].
- (3) \Leftrightarrow (9) By Theorem 3.1.
- $(9) \Rightarrow (10)$ is immediate.

(6) \Rightarrow (2) Let *D* be a dense subset of $C_k(X)$. By $S_{fin}(\mathcal{D}, \mathcal{S})$, for sequence $(D_i : D_i = D \text{ and } i \in \mathbb{N})$ there is a sequence $(K_i : i \in \mathbb{N})$ such that for each *i*, K_i is finite, $K_i \subset D_i$, and $\bigcup_{i \in \mathbb{N}} K_i$ is a countable sequentially dense subset of $C_k(X)$. It follows that *D* is a sequentially dense subset of $C_k(X)$.

(2) \Rightarrow (4) Let \mathcal{U} be an open *k*-cover of *X*. Note that the set $\mathcal{D} := \{f \in C(X) : f \upharpoonright (X \setminus U) \equiv 1 \text{ for some } U \in \mathcal{U}\}$ is dense in $C_k(X)$, hence, it is sequentially dense. Take $f_n \in \mathcal{D}$ such that $f_n \mapsto \mathbf{0}$. Let $f_n \upharpoonright (X \setminus U_n) \equiv 1$ for some $U_n \in \mathcal{U}$. Then $\{U_n : n \in \mathbb{N}\}$ is a γ_k -subcover of \mathcal{U} , because of $f_n \mapsto \mathbf{0}$. Hence, *X* is a γ_k -set.

(3) \Rightarrow (1) Let $(D_{i,j} : i, j \in \mathbb{N})$ be a sequence of dense subsets of $C_k(X)$ and let $D = \{f_i : i \in \mathbb{N}\}$ be a countable dense subset of $C_k(X)$.

For every $i, j \in \mathbb{N}$ consider $\mathcal{U}_{i,j} = \{U_{h,i,j} : U_{h,i,j} = (f_i - h)^{-1}(-\frac{1}{j}, \frac{1}{j})$ for $h \in D_{i,j}\}$. Note that $\mathcal{U}_{i,j}$ is an k-cover of X for every $i, j \in \mathbb{N}$. Since X a γ'_k -set, there is a sequence $(U_{h(i,j),i,j} : i, j \in \mathbb{N})$ such that $U_{h(i,j),i,j} \in \mathcal{U}_{i,j}$, and $\{U_{h(i,j),i,j} : i, j \in \mathbb{N}\}$ is an element of Γ_k . Claim that $\{h(i, j) : i, j \in \mathbb{N}\}$ is a dense subset of $C_k(X)$. Fix $g \in C(X)$

and a base neighborhood $W = \langle g, A, \epsilon \rangle$ of g, where A is a compact subset of X and $\epsilon > 0$. There are $f_i \in D$ and $j \in \mathbb{N}$ such that $\langle f_i, A, \frac{1}{j} \rangle \subseteq W$. Since $\{U_{h(i,j),i,j} : i, j \in \mathbb{N}\}$ is an element of Γ_k , there is j' > j such that $A \subset U_{h(i,j'),i,j'}$, hence, $h(i, j') \in \langle f_i, A, \frac{1}{j'} \rangle \subseteq \langle f_i, A, \frac{1}{j} \rangle \subseteq W$.

Since $C_k(X)$ is Fréchet-Urysohn, every dense subset of $C_k(X)$ is sequentially dense. It follows that $\{h(i, j) : i, j \in \mathbb{N}\}$ is sequentially dense.

 $(10) \Rightarrow (3)$ Let $\{\mathcal{U}_i : i \in \mathbb{N}\} \subset \mathcal{K}$ and let $D = \{d_j : j \in \mathbb{N}\}$ be a countable dense subset of $C_k(X)$. Consider $D_i = \{f_{K,U,i,j} \in C(X) :$ such that $f_{K,U,i,j} \upharpoonright K \equiv d_j, f_{K,U,i,j} \upharpoonright (X \setminus U) \equiv 1$ where $K \in \mathbb{K}(X), K \subset U \in \mathcal{U}_i\}$ for every $i \in \mathbb{N}$. Since D is a dense subset of $C_k(X)$, then D_i is a dense subset of $C_k(X)$ for every $i \in \mathbb{N}$. By (10), there is a set $\{f_{K(i),U(i),i,j(i)} : i \in \mathbb{N}\}$ such that $f_{K(i),U(i),i,j(i)} \in D_i$ and $\{f_{K(i),U(i),i,j(i)} : i \in \mathbb{N}\} \in \Gamma_0$. Claim that a set $\{U(i) : i \in \mathbb{N}\} \in \Gamma_k$. Let $K \in \mathbb{K}(X)$ and let $W = [K, (-\frac{1}{2}, \frac{1}{2})]$ be a base neighborhood of **0**. Since $\{f_{K(i),U(i),i,j(i)} : i \in \mathbb{N}\} \in \Gamma_0$, there is $i' \in \mathbb{N}$ such that $f_{K(i),U(i),i,j(i)} \in W$ for every i > i'. It follows that $K \subset U(i)$ for every i > i' and, hence, $\{U(i) : i \in \mathbb{N}\} \in \Gamma_k$. \Box

Let $S \subset \mathbb{K}(X)$. An open cover \mathcal{U} of a space X is called:

- a *s*-cover if each $C \in S$ is contained in an element of \mathcal{U} ;
- a γ_s -cover if \mathcal{U} is infinite and for each $C \in S$ the set $\{U \in \mathcal{U} : C \nsubseteq U\}$ is finite.

Definition 3.4. Let $S \subset \mathbb{K}(X)$. A space X is called a γ_s -set if each *s*-cover of X contains a sequence which is a γ_s -cover of X.

Definition 3.5. A space *X* is called a γ_k^{ω} -set if each countable cozero *k*-cover \mathcal{U} of *X* contains a set $\{U_n : n \in \mathbb{N}\}$ which is a γ_k -cover of *X*.

For a mapping $f : X \mapsto Y$ we will denote by $f(k) = \{f(K) : K \in \mathbb{K}(X)\}$.

Theorem 3.6. For a Tychonoff space X with $iw(X) = \aleph_0$, the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_1(\mathcal{D}^{\omega}, \mathcal{S})$;
- 2. $C_k(X)$ is strongly sequentially separable;
- 3. *X* is a γ_k^{ω} -set;
- 4. X satisfies $S_1(\mathcal{K}_{cz}^{\omega}, \Gamma_k)$;
- 5. for every a condensation (one-to-one continuous mapping) $f : X \mapsto Y$ from the space X on a separable metric space Y, the space Y is a $\gamma_{f(k)}$ -set.

Proof. (3) \Rightarrow (5) Let *f* be a condensation *f* : *X* \mapsto *Y* from the space *X* on a separable metric space *Y*. If μ is a *f*(*k*)-cover of *Y*, then there is $\mu' \subset \mu$ such that μ' is a *f*(*k*)-cover of *Y* and $|\mu'| = \aleph_0$. The family $f^{-1}(\mu') = \{f^{-1}(V) : V \in \mu'\}$ is a countable co-zero *k*-cover of *X*. By the argument that *X* is a γ_k^{ω} -set, we have that *Y* is $\gamma_{f(k)}$ -set.

The remaining implications follow from the proofs of Theorem 3.3 and Theorem 18 in [4]. \Box

Corollary 3.7. For a separable metrizable space X, the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_1(\mathcal{D}, \mathcal{S})$;
- 2. Every dense subset of $C_k(X)$ is sequentially dense;
- 3. $C_k(X)$ is strongly sequentially separable;
- 4. $C_k(X)$ is a Fréchet-Urysohn;
- 5. $C_k(X)$ is metrizable and separable;
- 6. *X* satisfies $S_1(\mathcal{K}, \Gamma_k)$;
- 7. X satisfies $S_1(\mathcal{K}, \mathcal{K})$;
- 8. *X* satisfies $S_{fin}(\mathcal{K}, \mathcal{K})$;
- 9. X is a hemicompact.

Proof. By Theorem 3.3 and Theorem 6 in [4]. \Box

A space *X* is called a *k*-*Lindelöf space* if for each open *k*-cover \mathcal{U} of *X* there is a $\mathcal{V} \subseteq \mathcal{U}$ such that \mathcal{V} is countable and $\mathcal{V} \in \mathcal{K}$. Each *k*-Lindelöf space is Lindelöf, so normal, too.

Lemma 3.8. ([17]) $C_k(X)$ has countable tightness if and only if X is k-Lindelöf.

By Theorem 3.3, Theorem 3.6 and Lemma 3.8 we have

Theorem 3.9. For a Tychonoff space X with $iw(X) = \aleph_0$ the following statements are equivalent:

- 1. $C_k(X)$ is Fréchet-Urysohn;
- 2. $C_k(X)$ is strongly sequentially separable and has countable tightness;
- 3. *X* satisfies $S_1(\mathcal{K}^{\omega}, \Gamma_k)$ and is *k*-Lindelöf;
- 4. Every dense subset of $C_k(X)$ contains a countable sequentially dense subset of $C_k(X)$.

In Doctoral Dissertation, A.J. March considered the following problem (Problem 117 in [15]): Is it possible to find a space *X* such that $C_k(X)$ is strongly sequentially separable but $C_k(X)^2$ is not strongly sequentially separable?

We get a negative answer to this question.

Proposition 3.10. Suppose X has the property $S_1(\mathcal{K}_{cz}^{\omega}, \Gamma_k)$. Then $X \bigsqcup X$ has the property $S_1(\mathcal{K}_{cz}^{\omega}, \Gamma_k)$.

Proof. Let $\mathcal{U} = \{U_i : i \in \mathbb{N}\}$ be a countable *k*-cover of $X \bigsqcup X$ by cozero sets. Let $X \bigsqcup X = X_1 \bigsqcup X_2$ where $X_i = X$ for i = 1, 2. Consider $\mathcal{V}_1 = \{U_i^1 = U_i \cap X_1 : X_1 \setminus U_i \neq \emptyset, i \in \mathbb{N}\}$ and $\mathcal{V}_2 = \{U_i^2 = U_i \cap X_2 : X_2 \setminus U_i \neq \emptyset, i \in \mathbb{N}\}$ as families of subsets of the space X. Define $\mathcal{V} := \{U_i^1 \cap U_i^2 : U_i^1 \in \mathcal{V}_1 \text{ and } U_i^2 \in \mathcal{V}_2\}$. Note that \mathcal{V} is a countable *k*-cover of X by cozero sets. By Theorem 18 in [4], there is $\{U_{i_n}^1 \cap U_{i_n}^2 : n \in \mathbb{N}\} \subset \mathcal{V}$ such that $\{U_{i_n}^1 \cap U_{i_n}^2 : n \in \mathbb{N}\}$ is a γ_k -cover of X. It follows that $\{U_{i_n} : n \in \mathbb{N}\}$ is a γ_k -cover of $X \bigsqcup X$.

Theorem 3.11. For a Tychonoff space X the following statements are equivalent:

- 1. $C_k(X)$ is strongly sequentially separable;
- 2. $(C_k(X))^n$ is strongly sequentially separable for each $n \in \mathbb{N}$.

Proof. By Theorem 3.6, Proposition 9.1 and the argument that $C_k(X \bigsqcup X) = C_k(X) \times C_k(X)$. \Box

A.J. March considered the problem (Problem 116 in [15]): Is it possible to find spaces *X*, *Y* such that $C_k(X)$ and $C_k(Y)$ are strongly sequentially separable but $C_k(X) \times C_k(Y)$ is not strongly sequentially separable? A. Miller constructed the following example [18].

Example 3.12. There exist disjoint subsets of the plane *X* and *Y* such that both *X* and *Y* are γ_k -sets but $X \cup Y$ is not. Let *X* be the open disk of radius one, i.e., $X = \{(x, y) : x^2 + y^2 < 1\}$, and *Y* be any singleton on the boundary of *X*, e.g., $Y = \{(1, 0)\}$.

Thus, we have the example of the subsets of the plane *X* and *Y* such that $C_k(X)$ and $C_k(Y)$ are strongly sequentially separable, but $C_k(X \cup Y)$ is not.

Note that (in contrast to the C_p -theory) $C_k(X \cup Y) \neq C_k(X) \times C_k(Y)$.

In [4], the authors considered the next problem (Problem 21 in [4]) : Is the class of γ_k -sets closed for finite unions ?

A particular answer to this problem and March's problem is the following

Theorem 3.13. Suppose that X and Y are γ_k -sets, $iw(X) = iw(Y) = \aleph_0$ and Y is first-countable. Then $X \bigsqcup Y$ is a γ_k -set.

Proof. By Theorem 3.6, $C_k(X)$ and $C_k(Y)$ are strongly sequentially separable. Notice that each hemicompact space belong to the class $S_1(\mathcal{K}, \Gamma_k)$, and the converse holds for first countable spaces [16]. It follows that $C_k(Y)$ is a separable metrizable (first countable) space. By Theorem 9 in [6], $C_k(X) \times C_k(Y)$ is strongly sequentially separable. Since $C_k(X) \times C_k(Y) = C_k(X \sqcup Y)$ and, by Theorem 3.6, we have that $X \sqcup Y$ is a γ_k -set. \Box

Corollary 3.14. The product $C_k(X) \times C_k(Y)$ of strongly sequentially separable space $C_k(X)$ and strongly sequentially separable first-countable space $C_k(Y)$ belongs to the class of strongly sequentially separable spaces.

4. $S_1(\mathcal{D}, \mathcal{D})$

In [10] it was shown that a Tychonoff space X belongs to the class $S_1(\mathcal{K}, \mathcal{K})$ if and only if $C_k(X)$ has countable strong fan tightness (i.e. for each $f \in C_k(X)$, $S_1(\Omega_f, \Omega_f)$ holds [27]).

Lj.D.R. Kočinac proved the next

Theorem 4.1. ([4, Theorem 6]) For a first countable Tychonoff space X the following statements are equivalent:

- 1. $C_k(X)$ is first countable;
- 2. $C_k(X)$ has countable strong fan tightness;
- 3. $C_k(X)$ has countable fan tightness;
- 4. X is locally compact Lindelöf space;
- 5. *X* satisfies $S_1(\mathcal{K}, \mathcal{K})$;
- 6. *X* satisfies $S_{fin}(\mathcal{K}, \mathcal{K})$;

We consider the generalizations (Theorem 4.2 and Theorem 5.3) of the Theorem 4.1 to the class of Tychonoff spaces with $iw(X) = \aleph_0$.

Theorem 4.2. For a Tychonoff space X with $iw(X) = \aleph_0$ the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_1(\mathcal{D}, \mathcal{D})$;
- 2. *X* satisfies $S_1(\mathcal{K}, \mathcal{K})$;
- 3. Each finite power of X satisfies $S_1(\mathcal{K}, \mathcal{K})$;
- 4. $C_k(X)$ satisfies $S_1(\Omega_0, \Omega_0)$ [countable strong fan tightness];
- 5. $C_k(X)$ satisfies $S_1(\mathcal{D}, \Omega_0)$.

Proof. (2) \Leftrightarrow (3) By Theorem 5 in [14].

(2) \Leftrightarrow (4) By Theorem 2.2 in [10].

(1) \Rightarrow (2) Let $\mathcal{K}_i \in \mathcal{K}$ for every $i \in \mathbb{N}$ and let D be a countable dense subset of $C_k(X)$. Consider $D_i = \{f_{K,U,d} \in C(X) : f | (X \setminus U) \equiv 1 \text{ and } f | K = d \text{ where } K \text{ is a compact subset of } X, U \in \mathcal{K}_i \text{ such that } K \subset U$ and $d \in D$. Since D is a dense subset of $C_k(X)$, we have that D_i is a dense subset of $C_k(X)$ for every $i \in \mathbb{N}$. By (1), there is a sequence $\{f_{K_i,U_i,d_i}\}_{i\in\mathbb{N}}$ such that for each $i, f_{K_i,U_i,d_i} \in D_i$, and $\{f_{K_i,U_i,d_i} : i \in \mathbb{N}\}$ is a dense subset of $C_k(X)$. Note that $U_i \in \mathcal{K}_i$ for each $i \in \mathbb{N}$ and $\{U_i : i \in \mathbb{N}\} \in \mathcal{K}$.

 $(2) \Rightarrow (1)$ Let $(D_{i,j}: i, j \in \mathbb{N})$ be a sequence of dense subsets of $C_k(X)$ and let $D = \{d_n : n \in \mathbb{N}\}$ be a countable dense subset of $C_k(X)$. For every couple $(i, j), i, j \in \mathbb{N}$ and $f \in D_{i,j}$ consider $K_{i,j,f} = \{x \in X : |f(x) - d_j(x)| < \frac{1}{i}\}$ and $\mathcal{K}_{i,j} = \{K_{i,j,f} : f \in D_{i,j}\}$. We claim that $\mathcal{K}_{i,j} \in \mathcal{K}$ for every couple $(i, j), i, j \in \mathbb{N}$. Let $K \in \mathbb{K}(X)$ and $\langle d_j, K, \frac{1}{i} \rangle$ a base neighborhood of d_j . Since $D_{i,j}$ is a dense subset of $C_k(X)$, there is $f \in D_{i,j}$ such that $f \in \langle d_j, K, \frac{1}{i} \rangle$, hence, $K \subset K_{i,j,f}$. Fix $j \in \mathbb{N}$, by (2), there is a family $\{K_{i,j,f(i,j)} : i \in \mathbb{N}\}$ such that $K_{i,j,f(i,j)} \in \mathcal{K}$. So $f(i, j) \in D_{i,j}$ for $i, j \in \mathbb{N}$. Claim that $\{f(i, j) : i, j \in \mathbb{N}\}$ is dense in $C_k(X)$. Let $p \in C(X)$, $K \in \mathbb{K}(X)$, $\epsilon > 0$ and let $\langle p, K, \epsilon \rangle$ be a base neighborhood of p. There is $j' \in \mathbb{N}$ such that $d_{j'} \in \langle p, K, \frac{\epsilon}{2} \rangle$. Since $\{K_{i,j',f(i,j')} : i \in \mathbb{N}\} \in \mathcal{K}$, there is $i' \in \mathbb{N}$ such that $K \subset K_{i',j',f(i',j')}$ and $\frac{1}{i'} < \frac{\epsilon}{2}$. It follows that $|f(i', j')(x) - p(x)| < |f(i', j')(x) - d_{j'}(x)| + |d_{j'}(x) - p(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ for every $x \in K$. Hence, $f(i', j') \in \langle p, K, \epsilon \rangle$ and $\{f(i, j) : i, j \in \mathbb{N}\}$ is dense in $C_k(X)$.

 $(4) \Rightarrow (5)$ is immediate.

 $(5) \Rightarrow (1)$ Let $(D_{i,j} : i \in \mathbb{N})$ be a sequence of dense subsets of $C_k(X)$ for each $j \in \mathbb{N}$ and let $D = \{d_j : j \in \mathbb{N}\}$ be a countable dense subset of $C_k(X)$. By (5), for every $j \in \mathbb{N}$ there is a family $\{d_j^i : i \in \mathbb{N}\}$ such that $d_j^i \in D_{i,j}$ and $\{d_j^i : i \in \mathbb{N}\} \in \Omega_{d_j}$. Note that $\{d_j^i : i, j \in \mathbb{N}\} \in \mathcal{D}$. \Box

5. $S_{fin}(\mathcal{D}, \mathcal{D})$

According to [11] X belongs to $S_{fin}(\mathcal{K}, \mathcal{K})$ if and only if $C_k(X)$ has countable fan tightness (i.e., for each $f \in C_k(X)$, $S_{fin}(\Omega_f, \Omega_f)$ holds [1]).

Theorem 5.1. For a Tychonoff space X with $iw(X) = \aleph_0$ the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$;
- 2. *X* satisfies $S_{fin}(\mathcal{K}, \mathcal{K})$;
- 3. Each finite power of X satisfies $S_{fin}(\mathcal{K}, \mathcal{K})$.
- 4. $C_k(X)$ satisfies $S_{fin}(\Omega_0, \Omega_0)$ [countable fan tightness];
- 5. $C_k(X)$ satisfies $S_{fin}(\mathcal{D}, \Omega_0)$.

Proof. (2) \Leftrightarrow (3) By Theorem 6 in [14].

(2) \Leftrightarrow (4) see in [11].

The remaining implications are proved similarly to the proof of Theorem 4.2. \Box

Remark 5.2. It is easy to see that every hemicompact space is in the class $S_1(\mathcal{K}, \mathcal{K})$ and, thus, in $S_{fin}(\mathcal{K}, \mathcal{K})$. By Proposition 5 in [4], the converse is also true in the class of first countable spaces.

Corollary 5.3. For a first countable Tychonoff space X with $iw(X) = \aleph_0$ the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_1(\mathcal{D}, \mathcal{D})$;
- 2. $C_k(X)$ satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$;
- 3. *X* satisfies $S_1(\mathcal{K}, \mathcal{K})$.

6. $S_1(\mathcal{S}, \mathcal{D})$

Definition 6.1. A γ_k -cover \mathcal{U} of co-zero sets of X is γ_k -shrinkable if there exists a γ_k -cover $\{F(U) : U \in \mathcal{U}\}$ of zero-sets of X with $F(U) \subset U$ for every $U \in \mathcal{U}$.

For a topological space *X* we denote:

• Γ_k^{sh} — the family of γ_k -shrinkable covers of *X*.

Theorem 6.2. For a Tychonoff space X the following statements are equivalent:

1. $C_k(X)$ satisfies $S_1(\Gamma_0, \Omega_0)$;

2. *X* satisfies $S_1(\Gamma_k^{sh}, \mathcal{K})$.

Proof. (1) \Rightarrow (2) Let $C_k(X)$ satisfies $S_1(\Gamma_0, \Omega_0)$ and $\{\mathcal{F}_i : i \in \mathbb{N}\} \subset \Gamma_k^{sh}$.

For each $i \in \mathbb{N}$ we consider a set $D_i = \{f_{F(U),U,i} \in C(X) : f_{F(U),U,i} \upharpoonright F(U) = 0 \text{ and } f_{F(U),U,i} \upharpoonright (X \setminus U) = 1 \text{ for } U \in \mathcal{F}_i\}.$

Since $\{F(U) : U \in \mathcal{F}_i\}$ is a γ_k -cover of X, we have that D_i converges to $f \equiv \mathbf{0}$ for each $i \in \mathbb{N}$.

Since $C_k(X)$ satisfies $S_1(\Gamma_0, \Omega_0)$, there is a sequence $(f_{F(U_i), U_i, i} : i \in \mathbb{N})$ such that for each $i, f_{F(U_i), U_i, i} \in D_i$, and $\{f_{F(U_i), U_i, i} : i \in \mathbb{N}\}$ is an element of Ω_0 .

Consider $\{U_i : i \in \mathbb{N}\}$.

(a) $U_i \in \mathcal{F}_i$.

(b) $\{U_i : i \in \mathbb{N}\}$ is a *k*-cover of *X*.

Let *K* be a non-empty compact subset of *X* and $U = \langle f, K, \frac{1}{2} \rangle$ be a base neighborhood of *f*, then there is $f_{F(U_{i'}), U_{i'}, i'} \in U$. It follows that $K \subset U_{i'}$. We thus get *X* satisfies $S_1(\Gamma_k^{sh}, \mathcal{K})$.

(2) \Rightarrow (1) Let $(f_{k,i} : k \in \mathbb{N})$ be a sequence converging to f for each $i \in \mathbb{N}$. Without loss of generality we can assume that $f = \mathbf{0}$, a set $W_k^i = \{x \in X : -\frac{1}{i} < f_{k,i}(x) < \frac{1}{i}\} \neq X$ for any $i \in \mathbb{N}$ and $S_k^i = \{x \in X : -\frac{1}{i} \leq f_{k,i}(x) \leq \frac{1}{i}\} \neq X$ for any $i \in \mathbb{N}$.

Consider $\mathcal{V}_i = \{W_k^i : k \in \mathbb{N}\}$ and $\mathcal{S}_i = \{S_k^i : k \in \mathbb{N}\}$ for each $i \in \mathbb{N}$. We claim that \mathcal{V}_i is a γ_k -cover of X. Since $\{f_{k,i}\}_{k\in\mathbb{N}}$ converges to f, for each compact subset $K \subset X$ there is $k_0 \in \mathbb{N}$ such that $f_{k,i} \in \langle f, K, \frac{1}{i} \rangle$ for $k > k_0$. It follows that $K \subset W_k^i$ for any $k > k_0$. Since \mathcal{V}_{i+1} is a γ_k -cover, \mathcal{S}_{i+1} is a γ_k -cover, too. \mathcal{S}_{i+1} is a refinement of the family \mathcal{V}_i , hence, $\mathcal{V}_i \in \Gamma_k^{sh}$.

By X satisfies $S_1(\Gamma_k^{sh}, \mathcal{K})$, there is a sequence $(W_{k(i)}^i : i \in \mathbb{N})$ such that $W_{k(i)}^i \in \mathcal{V}_i$ for each *i*, and $\{W_{k(i)}^i : i \in \mathbb{N}\}$ is an element of \mathcal{K} .

We claim that $f \in \overline{\{f_{k(i),i} : i \in \mathbb{N}\}}$. Let $U = \langle f, K, \epsilon \rangle$ be a base neighborhood of f where $\epsilon > 0$ and $K \in \mathbb{K}(X)$, then there is $i_1 \in \mathbb{N}$ such that $\frac{1}{i_1} < \epsilon$ and $W_{k(i_1)}^{i_1} \supset K$. It follows that $f_{k(i_1),i_1} \in \langle f, K, \epsilon \rangle$ and, hence, $f \in \overline{\{f_{k(i),i} : i \in \mathbb{N}\}}$. \Box

Lemma 6.3. Let $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ be a γ_k -shrinkable cover of a space X. Then the set $S = \{f \in C(X) : f \upharpoonright (X \setminus U_n) \equiv 1 \text{ for some } n \in \mathbb{N}\}$ is sequentially dense in $C_k(X)$.

Proof. Let $h \in C(X)$. For each $n \in \mathbb{N}$, take $f_n \in C(X)$ such that $f_n \upharpoonright F(U_n) = h \upharpoonright F(U_n)$ and $f_n \upharpoonright (X \setminus U_n) \equiv 1$. Then obviously $f_n \in S$, and $f_n \mapsto h$, because $\{F(U_n) : n \in \mathbb{N}\}$ is a γ_k -cover. \Box

Theorem 6.4. For a Tychonoff space X with $iw(X) = \aleph_0$ the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_1(\mathcal{S}, \mathcal{D})$;
- 2. $C_k(X)$ satisfies $S_1(\mathcal{S}, \Omega_0)$;
- 3. $C_k(X)$ satisfies $S_1(\Gamma_0, \Omega_0)$;
- 4. X satisfies $S_1(\Gamma_k^{sh}, \mathcal{K})$.

Proof. (1) \Rightarrow (4) Let { $\mathcal{F}_i : i \in \mathbb{N}$ } $\subset \Gamma_k^{sh}$. By Lemma 6.3, $S_i = \{f \in C(X) : f \upharpoonright (X \setminus F_n^i) \equiv 1 \text{ for some } F_n^i \in \mathcal{F}_i\}$ is a sequentially dense subset of $C_k(X)$ for each $i \in \mathbb{N}$.

By (1), there is $\{f_i : i \in \mathbb{N}\}$ such that $f_i \in S_i$ and $\{f_i : i \in \mathbb{N}\} \in \mathcal{D}$. Consider the sequence $\{F_{n(i)}^i : i \in \mathbb{N}\}$.

(a) $F_{n(i)}^i \in \mathcal{F}_i$ for $i \in \mathbb{N}$.

(b) $\{F_{n(i)}^i : i \in \mathbb{N}\}$ is a *k*-cover of *X*.

Let $K \in \mathbb{K}(X)$ and let $U = \langle \mathbf{0}, K, \frac{1}{2} \rangle$ be a base neighborhood of $\mathbf{0}$, then there is $f_{i'} \in \{f_i : i \in \mathbb{N}\}$ such that $f_{i'} \in U$. It follows that $K \subset F_{n(i')}^{i'}$.

(4) \Rightarrow (3) Let X satisfies $S_1(\Gamma_k^{sh}, \mathcal{K})$ and let $\{f_{i,m}\}_{m \in \mathbb{N}}$ converges to **0** for each $i \in \mathbb{N}$.

Consider $\mathcal{F}_i = \{F_{i,m} : m \in \mathbb{N}\} = \{f_{i,m}^{-1}(-\frac{1}{i}, \frac{1}{i}) : m \in \mathbb{N}\}$ for each $i \in \mathbb{N}$. Without loss of generality we can assume that a set $F_{i,m} \neq X$ for any $i, m \in \mathbb{N}$. Otherwise there is a sequence $(f_{i_k,m_k} : k \in \mathbb{N})$ such that $\{f_{i_k,m_k}\}_{k \in \mathbb{N}}$ uniformly converges to **0** and $\{f_{i_k,m_k} : k \in \mathbb{N}\} \in \Omega_0$.

Note that \mathcal{F}_i is a γ_k -shrinkable cover of X for each $i \in \mathbb{N}$.

By (4), there is a sequence $(F_{i,m(i)} : i \in \mathbb{N})$ such that for each $i, F_{i,m(i)} \in \mathcal{F}_i$, and $\{F_{i,m(i)} : i \in \mathbb{N}\}$ is an element of \mathcal{K} .

We claim that $\mathbf{0} \in \overline{\{f_{i,m(i)} : i \in \mathbb{N}\}}$. Let $W = \langle \mathbf{0}, K, \epsilon \rangle$ be a base neighborhood of $\mathbf{0}$ where $\epsilon > 0$ and $K \in \mathbb{K}(X)$, then there is $i_1 \in \mathbb{N}$ such that $\frac{1}{i_1} < \epsilon$ and $F_{i_1,m(i_1)} \supset K$. It follows that $f_{i_1,m(i_1)} \in \langle \mathbf{0}, K, \epsilon \rangle$ and, hence, $\mathbf{0} \in \overline{\{f_{i,m(i)} : i \in \mathbb{N}\}}$ and $C_k(X)$ satisfies $S_1(\Gamma_0, \Omega_0)$.

(3) \Rightarrow (2) is immediate.

(2) \Rightarrow (1) Suppose that $C_k(X)$ satisfies $S_1(S, \Omega_0)$. Let $D = \{d_n : n \in \mathbb{N}\}$ be a dense subspace of $C_k(X)$. Given a sequence of sequentially dense subspaces of $C_k(X)$, enumerate it as $\{S_{n,m} : n, m \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, pick $d_{n,m} \in S_{n,m}$ so that $d_n \in \overline{\{d_{n,m} : m \in \mathbb{N}\}}$. Then $\{d_{n,m} : m, n \in \mathbb{N}\}$ is dense in $C_k(X)$. \Box

7. $S_{fin}(\mathcal{S}, \mathcal{D})$

The following theorems are proved similarly to Theorems 6.2 and 6.4.

Theorem 7.1. For a Tychonoff space X the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_{fin}(\Gamma_0, \Omega_0)$;
- 2. *X* satisfies $S_{fin}(\Gamma_k^{sh}, \mathcal{K})$.

Theorem 7.2. For a Tychonoff space X with $iw(X) = \aleph_0$ the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_{fin}(\mathcal{S}, \mathcal{D})$;
- 2. $C_k(X)$ satisfies $S_{fin}(\mathcal{S}, \Omega_0)$;
- 3. $C_k(X)$ satisfies $S_{fin}(\Gamma_0, \Omega_0)$;
- 4. X satisfies $S_{fin}(\Gamma_k^{sh}, \mathcal{K})$.

8. $S_1(S, S)$

In [22], we proved the following theorems.

Theorem 8.1. ([22, Theorem 3.3]) For a Tychonoff space X the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_1(\Gamma_0, \Gamma_0)$;
- 2. *X* satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$.

Theorem 8.2. ([22, Theorem 3.5]) For a Tychonoff space X such that $C_k(X)$ is sequentially separable the following statements are equivalent:

- 1. $C_k(X)$ satisfies $S_1(S, S)$;
- 2. $C_k(X)$ satisfies $S_1(\mathcal{S}, \Gamma_0)$;
- 3. $C_k(X)$ satisfies $S_1(\Gamma_0, \Gamma_0)$;
- 4. *X* satisfies $S_1(\Gamma_k^{sh}, \Gamma_k)$;
- 5. $C_k(X)$ satisfies $S_{fin}(S, S)$;
- 6. $C_k(X)$ satisfies $S_{fin}(\mathcal{S}, \Gamma_0)$;
- 7. $C_k(X)$ satisfies $S_{fin}(\Gamma_0, \Gamma_0)$;
- 8. *X* satisfies $S_{fin}(\Gamma_k^{sh}, \Gamma_k)$.

We can summarize the relationships between considered notions in next diagrams.

Diagram 1. The Diagram of selectors for sequences of dense sets of $C_k(X)$.

Diagram 2. The Diagram of selection principles for a space *X* corresponding to selectors for sequences of dense sets of $C_k(X)$.

9. On the Particular Solution to one Problem

Recall that Arens' space S_2 is the set $\{(0,0), (\frac{1}{n}, 0), (\frac{1}{n}, \frac{1}{nm}) : n, m \in \mathbb{N} \setminus \{0\}\} \subset \mathbb{R}^2$ carrying the strongest topology inducing the original planar topology on the convergent sequences $C_0 = \{(0,0), (\frac{1}{n}, 0) : n > 0\}$ and $C_n = \{(\frac{1}{n}, 0), (\frac{1}{n}, \frac{1}{nm}) : m > 0\}, n > 0$. The sequential fan is the quotient space $S_{\omega} = S_2/C_0$ obtained from the Arens's space by identifying the points of the sequence C_0 [12].

Proposition 9.1. If $C_k(X)$ satisfies $S_{fin}(\Gamma_0, \Omega_0)$, then S_ω cannot be embedded into $C_k(X)$.

The following problem was posed in the paper [4].

Problem 9.2. Does a first countable (separable metrizable) space belong to the class $S_1(\Gamma_k, \mathcal{K})$ if and only if it is hemicompact?

A particular answer to this problem is the following

Theorem 9.3. Suppose that X is first countable stratifiable space and $iw(X) = \aleph_0$. Then following the statements are equivalent:

- 1. *X* satisfies $S_{fin}(\Gamma_k^{sh}, \mathcal{K})$;
- 2. *X* satisfies $S_{fin}(\Gamma_k, \mathcal{K})$;
- 3. X satisfies $S_1(\mathcal{K}, \Gamma_k)$;
- 4. *X* is hemicompact.

Proof. (1) \Rightarrow (4) Since *X* is first countable stratifiable space and, by Proposition 9.1, S_{ω} cannot be embedded into $C_k(X)$, then, by Theorem 2.2 (+ Remark) in [7], *X* is a locally compact. A locally compact stratifiable space is metrizable [5]. It is well-known that a locally compact metrizable space can be represented as $X = \bigsqcup X_{\alpha}$ where X_{α} is a σ -compact for each $\alpha < \tau$. Since $iw(X) = \aleph_0$, then $\tau \le c$. Claim that $\tau < \omega_1$.

Assume that $\tau \ge \omega_1$. Then there is a continuous mapping $f : X \mapsto D(f(X_\alpha) = d_\alpha)$ from X onto a discrete space $D = \{d_\alpha : \alpha < \tau\}$. Note that D satisfies $S_{fin}(\Gamma_k^{sh}, \mathcal{K})(S_{fin}(\Gamma, \Omega))$ and, hence, D is Lindelöf, but $|D| > \aleph_0$, a contradiction.

It follows that *X* is a locally compact and Lindelöf, and, hence, *X* is a hemicompact.

(4) \Rightarrow (3) Since *X* is hemicompact and $iw(X) = \aleph_0$, then $C_k(X)$ is a separable metrizable space [17]. Hence, $C_k(X)$ satisfies $S_1(\mathcal{D}, \mathcal{S})$, and, by Theorem 3.3, *X* satisfies $S_1(\mathcal{K}, \Gamma_k)$. \Box

Corollary 9.4. Suppose that X is a separable metrizable space. Then X satisfies $S_{fin}(\Gamma_k, \mathcal{K})$ if and only if X is hemicompact.

Remark 9.5. In the class of first countable stratifiable spaces with $iw(X) = \aleph_0$ (in particular, in the class of separable metrizable spaces) all properties in Diagram 1 (and, hence, Diagram 2) coincide.

References

- A.V. Arhangel'skii, Topological Function Spaces, Moskow. Gos. Univ., Moscow, (1989), 223 pp. (Arhangel'skii A.V., Topological Function Spaces, Kluwer Academic Publishers, Mathematics and its Applications, 78, Dordrecht, 1992 (translated from Russian)).
- [2] A. Bella, M. Bonanzinga, M. Matveev, Variations of selective separability, Topology Appl. 156 (2009) 1241–1252.
- [3] A. Bella, C. Costantini, Sequential separability vs selective sequential separability, Filomat 29 (2015) 121–124.
- [4] A. Caserta, G. Di Maio, Lj.D.R. Kočinac, E. Meccariello, Applications of *k*-covers II, Topology Appl. 153 (2006) 3277–3293.
- [5] J.G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961) 105–126.
- [6] P. Gartside, J.T.H. Lo, A. Marsh, Sequential density, Topology Appl. 130 (2003) 75-86.
- [7] G. Gruenhage, B. Tsaban, L. Zdomskyy, Sequential properties of function spaces with the compact-open topology, Topology Appl. 158 (2011) 387–391.
- [8] Lj.D.R. Kočinac, Selection principles and continuous images, Cubo Math. J. 8:2 (2006) 23–31.
- [9] Lj.D.R. Kočinac, γ -sets, γ_k -sets and hyperspaces, Math. Balkanica 19 (2005) 109–118.
- [10] Lj.D.R. Kočinac, Closure properties of function spaces, Appl. General Topology 4 (2003) 255-261.

- [11] S. Lin, C. Liu, H. Teng, Fan tightness and strong Fréchet property of $C_k(X)$, Advances Math. (Beijing) 23 (1994) 234–237 (in Chinese).
- [12] S. Lin, A note on Arens space and sequential fan, Topology Appl. 81 (1997) 185–196.
- [13] G. Di Maio, Lj.D.R. Kočinac, T. Nogura, Convergence properties of hyperspaces, J. Korean Math. Soc. 44 (2007) 845-854.
- [14] G. Di Maio, Lj.D.R. Kočinac, E. Meccariello, Applications of k-covers, Acta Math. Sinica, English Series 22 (2006) 1151–1160.
- [15] A.J. Marsh, Topology of function spaces, Doctoral Dissertation, University of Pittsburgh, (2004).
- [16] R.A. McCoy, Function spaces which are k-spaces, Topology Proc. 5 (1980) 139–146.
- [17] R.A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math., 1315, Springer-Verlag, Berlin (1988).
- [18] A.W. Miller, A hodgepodge of sets of reals, Note Mat.27, suppl. 1 (2007) 25–39.
- [19] N. Noble, The density character of functions spaces, Proc. Amer. Math. Soc. 42 (1974) 228-233.
- [20] A.V. Osipov, Application of selection principles in the study of the properties of function spaces, Acta Math. Hungar. 154 (2018) 362–377.
- [21] A.V. Osipov, E.G. Pytkeev, On sequential separability of functional spaces, Topology Appl. 221 (2017) 270–274.
- [22] A.V. Osipov, Classification of selectors for sequences of dense sets of $C_p(X)$, Topology Appl. 242 (2018) 20–32.
- [23] A.V. Osipov, The functional characterizations of the Rothberger and Menger properties, Topology Appl. 243 (2018) 146–152.
- [24] A.V. Osipov, Classification of selectors for sequences of dense sets of Baire functions, Topology Appl., submitted.
- [25] A.V. Osipov, On selective sequential separability of function spaces with the compact-open topology, Hacettepe J. Math. Stat., submitted.
- [26] B.A. Pansera, V. Pavlović, Open covers and function spaces, Mat. Vesnik 58 (2006) 57–70.
- [27] M. Sakai, Property C" and function spaces, Proc. Amer. Math. Soc. 104 (1988) 917–919.
- [28] M. Sakai, k-Fréchet-Urysohn property of $C_k(X)$, Topology Appl. 154 (2007) 1516–1520.
- [29] B. Tsaban, Selection principles and the minimal tower problem, Note Mat. 22 (2003) 53-81.