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Weak Markov Operators
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Abstract. Let A and B be f -algebras with unit elements eA and eB respectively. A positive operator T from
A to B satisfying T (eA) = eB is called a Markov operator. In this definition we replace unit elements with
weak order units and, in this case, call T to be a weak Markov operator. In this paper, we characterize
extreme points of the weak Markov operators.

1. Introduction

Let A and B be f -algebras with point separating order duals and unit elements eA and eB respectively.
A positive linear operator T from A to B satisfying T (eA) = eB is called a Markov operator. In this definition
we replace unit elements with weak order units and, in this case, call T to be a weak Markov operator.The
set of all weak Markov operators is convex. In this paper, we characterize extreme points of the weak
Markov operators. In this regard, first we give an alternate and quick proof of [6] for f -algebras instead of
order complete real vector spaces (Proposition 2.5). Then we give an alternate proof of Theorem 5.7 in [5]
(Theorem 2.6). In addition we present another necessary and sufficient condition to this Theorem. Then
we show that a weak Markov operator is a lattice homomorphism if and only if it is an extreme point in the
collection of all weak Markov operators from A into B provided B is order complete.

2. Preliminaries

For unexplained terminology and the basic results on vector lattices and semiprime f -algebras we refer
to [1, 10, 13]. Let us recall some definitions.

Definition 2.1. The real algebra A is called a Riesz algebra or lattice-ordered algebra if A is a Riesz space such that
ab ∈ A whenever a,b are positive elements in A. The Riesz algebra is called an f -algebra if A satisfies the condition
that

a∧b = 0 implies ac∧b = ca∧b = 0 for all 0 ≤ c ∈ A.

In an Archimedean f -algebra A, all nilpotent elements have index 2. Throughout this paper A will
show an Archimedean semiprime f -algebra with point separating order dual. By definition, if zero is the
unique nilpotent element of A, that is, a2 = 0 implies a = 0, A is called semiprime f -algebra. It is well known
that every f -algebra with unit element is semiprime.
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Definition 2.2. The relatively uniform completion of an Archimedean Riesz space A is the closure of A, A, in its
Dedekind completion Â , relative to the uniform topology of Â [9].

If A is an semiprime f -algebra then the multiplication in A can be extended in a unique way into a lattice
ordered algebra multiplication on A such that A becomes a sub-algebra of A and A is an relatively uniformly
complete semiprime f -algebra. We also recall that A satisfies the Stone condition (that is, x∧nI∗ ∈ A, for
all x ∈ A, where I denotes the identity on A of OrthA) due to Theorem 2.5 in [4]. For a ∈ A, the mapping
πa : A→OrthA, defined by πa (b) = a.b is an orthomorphism on A. Since A is a Archimedean semiprime f -
algebra,, the mapping π : A→OrthA, defined by π (a) = πa is an injective f -algebra homomorphism. Hence
we shall identify A with π (A) .The ideal center Z (A)of A is defined as the order ideal in OrthA generated
by the identity mapping I which is a unital f-algebra.

Proposition 2.3. Let A and B be semiprime f -algebras and T : A→ B an order bounded linear operator. If
T (A∩Z (A)) = {0} then T (A) = {0}.

Proof. T can be regarded as an element of the collection of all order bounded linear operators from A to
B̂. Therefore there exist two order bounded positive operators T1 and T2 such that T = T1 −T2. Thus
we can assume that T is positive. Since B̂ is relatively uniformly complete, by Theorem 3.3 in [11] there
exists a unique positive relatively uniformly continuos extension T : A→ B̂ of T to the relatively uniformly
completion A of A, defined by,

T (x) = sup {Ta : 0 ≤ a ≤ x}

for x ∈A. Let 0 ≤ x ∈A∩Z
(
A
)

and a ∈A∩ [0,x]. Then a ≤ λIA holds for some positive real number λ. By the

hypothesis, Ta = 0. From here we conclude that T (x) = 0 for all x ∈ A∩Z
(
A
)
. Let 0 ≤ a ∈ A. Then

(
a∧nI

)
n

is a sequencein A∩Z
(
A
)

and it is converging to a by Proposition 2.1(i) in [5]. It follows from the relatively

uniformly continuity of T that 0 = T (a∧nIA)→ T (a) = T (a) (relatively uniformly). Thus T (a) = 0 for all
a ∈ A.

Proposition 2.4. Let A and B be f -algebras with unit elements eA and eB respectively and T : A→ B an order
bounded linear operator satisfying T (eA) = eB. If | Ta |≤ eB whenever | a |≤ eA, then T is positive.

Proof. T can be regarded as an element of the collection of all order bounded linear operators from A to B̂.
As B̂ is Dedekind complete, | Ta |≤| T | (a) = sup {| Tb |:| b |≤ a,b ∈ A} holds for all 0 ≤ a ∈ A. Let a ∈ A be an
element such that | a |≤ eA. Then by the hypothesis, | Ta |≤ eB. This shows that | TeA |= eB ≤| T | (eA) ≤ eB. Thus
| T | (eA) = eB. Let a ∈A∩Z (A). Then there exists a positive real number λ such that | a |≤ λeA. From here we
derive that

(| T | −T) (| a |) ≤ λ (| T | −T) (eA) = 0

Thus the order bounded operator | T | −T vanishes on A∩Z (A). By Proposition 2.3, we conclude that | T |= T
on A, so T is positive.

The following proposition was proved in [6] for an order complete real vector space. In the following
proposition we will give an alternate and quick proof for Archimedean semiprime f -algebras.

Proposition 2.5. Let A be a semiprime f -algebra. A positive element a0 in A is a weak order unit if and only if
In f {| a−λa0 |: λ ∈R} = 0 for all a ∈ A.
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Proof. Let 0< a0 ∈A be a weak order unit. Assume that, on the contrary, there exist a ∈A and b ∈ Â satisfying
0 < b ≤| a−λa0 |for all λ ∈R. Then

λ2a2
0−2λaa0 + a2

−b2
≥ 0 for all λ ∈R

Using Proposition 3.3 in [3], we get (a0b)2 = 0. Since Â is semiprime, the last equality implies that

0 = a0b = sup {aa0 ∈ A : a ≤ b, a ∈ A} .

As a0 is weak order unit, aa0 = 0 implies that a = 0 for all a ∈ A satisfying a ≤ b. Thus b = 0. Conversely,
suppose that there exists 0 , b ∈ A such that ba0 = 0. Then since 0 < |b|2 ≤| b−λa0 | for all λ ∈ R, we get
In f {| b−λa0 |: λ ∈R} , 0.

A positive linear operator T between two unital f -algebras A and B is said to be a Markov operator
for which T (eA) = eB where eA, eB are the unit elements of A and B respectively. In both [5, Theorem 5.7]
and [12], it is proved that an operator is an extreme point of Markov operators if and only if it is a lattice
homomorphism. In the following theorem we shall give an alternate proof of this theorem and another
sufficient and necessary condition for the extreme point of a Markov operator.

Theorem 2.6. Let A and B be f -algebras with unit elements eA and eB respectively and T : A→ B an order bounded
linear operator satisfying T (eA) = eB and | Ta |≤ eB whenever | a |≤ eA. Then the following are equivalent;
(i) T is an extreme point of Markov operators.
(ii) In f {T | a−λeA |: λ ∈R} = 0 for all a ∈ A.
(iii) T is a lattice homomorphism.

Proof. (i)⇒ (ii) : By Proposition 2.4, T is positive. Suppose, on the contrary, that In f {T | a0−λeA |: λ ∈R} , 0
for some 0 ≤ a0 ∈ A. Then there exists b ∈ B̂ such that 0 < b ≤ T | a0−λeA | for all λ ∈R. Taking square from
both side and applying the Schwarz inequality [3, Corollary 3.5], one can get easily

λ2eB−2λTa0 + T
(
a2

0

)
− b2
≥ 0 for all λ ∈R.

Taking into account Proposition 3.3 in [3], we derive that

(Ta0)2
≤ T

(
a2

0

)
− b2. (1)

Let, an =
a0
n ∧ eA (n = 1,2, ...). Then 0 < an, as In f {T | a0−λeA |: λ ∈R} , 0, for each n. Define,

Tan (b) = T (anb)−T (an)T (b) (2)

for b ∈ A. Clearly the operators T∓Tan are positive and Tan (eA) = 0. Hence T∓Tan are Markov operators.
From here we conclude that Tan = 0, as T is the extreme point of Markov operators. Hence the equality (2)
implies that

nT (anb) = nT (an)T (b)

and by setting an, we have

T((a0∧neA)a0) = T (a0∧neA)T (a0) .

Applying Proposition 2.1(i) in [5] and using the positivity of T, one may get,

T
(
a2

0

)
≤ (T (a0))2 .



H. Duru, S. Ilter / Filomat 32:15 (2018), 5453–5457 5456

Thus the inequality (1) implies that both T
(
a2

0

)
= (T (a0))2 and b2 = 0. From here we conclude that b = 0, as

∧

B
is semiprime whenever B is semiprime.
(ii)⇒ (iii) : Let a ∈ A and λ ∈R. Then

T | a |≤ T | a−λeA | +T | λeA |= T | a−λeA | + | T(λeA) |≤ 2T | a−λeA | + | Ta |

it follows from (ii) that T | a |≤| Ta | and since T is positive, T | a |=| Ta | which implies that T is a lattice
homomorphism.
(iii)⇒ (i) : By Proposition 2.5, we get that In f {| Ta−λeB |: λ ∈R} = 0 for all a ∈ A, as eB is a weak order unit
in B. To prove that T is an extreme point of Markov operators it is enough to show that for any Markov
operator S and 0 < α ∈R satisfying αT−S ≥ 0 implies that T = S. Let a ∈ A and λ ∈R. It follows from

| Sa−S (λeA) |≤ S | a−λeA |≤ αT | a−λeA |= α | Ta−λeB |

that

| Ta−Sa |≤| Ta−λeB | + | Sa−λeB |≤ (1 +α) | Ta−λeB |

Hence Ta = Sa for a ∈ A.

Definition 2.7. Let A and B be f -algebras with point separating order duals and weak order units eA and eB
respectively. In this case, we call a positive linear operator T from A to B satisfying T (eA) = eB to be a weak Markov
operator

(
briefly WMO

)
.

Now we remark that in the last step (iii)⇒ (i) of the above proof we proved the following Corollary as
well;

Corollary 2.8. Let A and B be a semiprime f -algebras with weak order units eA and eB respectively and let T : A→ B
be a weak Markov operator. If T is a lattice homomorphism, then it is an extreme point in the set of all weak Markov
operators.

In [2, Lemma 4.2], it was proved that if A and B are semiprime f -algebras with Stone condition and if
T : A→ B is a linear positive operator satisfying both T(a∧ IA) = T(a)∧ IB, for all a ∈ A and T([0, IA]) ⊆ [0, IB]
then T is a lattice homomorphism. At this point we remark that this result is true for all positive linear
operator between any semiprime f -algebras. For the completeness, we repeat this proof in the following
Proposition.

Proposition 2.9. Let A and B be semiprime f - algebras and T : A→ B a positive linear operator. If there exists
0 ≤ a0 ∈ A and 0 ≤ b0 ∈ B such that T (a∧ a0) = T (a)∧b0, for all a ∈ A, then T is a lattice homomorphism.

Proof. We remark that, for all elements a in A or B, the following equations hold;

(a∧ a0)+ = a+
∧ a0

(a∧ a0)− = a−

Since T is positive, in order to prove that T is a lattice homomorphism it is enough to show that T(a+)≤ (Ta)+

for all a ∈ A. By above remark,

Ta = T
(
a+
− a−− (a∧

1
n

a0)+ + (a∧
1
n

a0)−
)
+ T(a∧

1
n

a0)

= T
(
a+
− (a∧

1
n

a0)+
)
+ (T(a∧

1
n

a0))

and

Ta = (Ta)+
− (Ta)−− (T(a∧

1
n

a0))+ + (T(a∧
1
n

a0))−+ T(a∧
1
n

a0)

= (Ta)+
− (T(a∧

1
n

a0))+ + (T(a∧
1
n

a0))
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combining these results, we get

T
(
a+)
− (Ta)+ =− T

(
a+
∧

1
n

a0

)
− (Ta)+

∧
1
n

b0 ≤
1
n

T (a0)

Passing limit as n→∞, we have the desired result.

Corollary 2.10. Let A and B be semiprime f - algebras with weak order units eA and eB respectively and T : A→ B a
weak Markov operator. If there exists 0 ≤ a0 ∈ A and 0 ≤ b0 ∈ B such that T (a∧ a0) = T (a)∧ b0, for all a ∈ A, then T
is an extreme point of weak Markov operators.

Proof. By Proposition 2.9, T is a lattice homomorphism and by Corollary 2.8, T is an extreme point of weak
Markov operators.

Theorem 2.11. Let A and B be a semiprime f -algebras with weak order units eA and eB respectively and T : A→ B
a weak Markov operator. If B is order complete, then T is an extreme point of the set of all weak Markov operators if
and only if T is a lattice homomorphism.

Proof. First we remark that any weak Markov operator is an extension of the operator f : M→ B, defined
by f (λeA) = λeB, where M = {λeA : λ ∈R}. It is not difficult to see that the extreme point of the collection
of all weak Markov operators is the same of the extreme point of all positive extensions of f to the whole
A. Let T be an extreme point in the set of all weak Markov operators. Then T is an extreme point of
the set of all positive extensions of f to A. Since f is a lattice homomorphism, by Theorem 2(a) in [7], we
derive that T is a lattice homomorphism. Conversely assume that T is a lattice homomorphism. Taking
into account Proposition 2.5 and Theorem 2(b) in [7], we conclude that T is an extreme point of the weak
Markov operators.
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