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Abstract. In this paper, we introduce and consider a feedback control system governed by the system
of evolution hemivariational inequalities. Several sufficient conditions are formulated by virtue of the
properties of multimaps and partial Clarke’s subdifferentials such that the existence result of feasible pairs
of the feedback control systems is guaranteed. Moreover, an existence result of optimal control pairs for an
optimal control system is also established.

1. Introduction

It is well-known that hemivariational inequalities have played an important role in many applications,
such as mechanics and engineering, especially in nonsmooth analysis and optimization (see [1, 8–10, 17–
20, 22, 24, 25]). Some existence theorems and well-posedness results for hemivariational inequalities have
been obtained in the literature; see e.g., [2–6, 27, 30–38] and references therein. Recently, some researchers
devoted to consider the optimal control problems for hemivariational inequalities. In [12], Haslinger
and Panagiotopoulos proved the existence of optimal control pairs for a class of coercive hemivariational
inequalities. In [21], Migorski and Ochal discussed the optimal control problems for the parabolic hemivari-
ational inequalities. Park and Park [24, 25] extended the existence of optimal control pairs to the hyperbolic
linear systems. Furthermore, Tolstonogov [28, 29] made efforts to probe into the optimal control problems
for differential inclusions with subdifferential type.

Our main purpose here is to study the existence result of feasible pairs of feedback optimal control
systems for systems of evolution hemivariational inequalities. To begin with, let us recall several existing
results. Throughout, we assume that H is a separable Hilbert space with the inner product 〈·, ·〉H and norm
‖·‖H, and A : D(A) ⊆ H→ H is the infinitesimal generator of a compact C0-semigroup {T(t)}t≥0 on H. Let E be a
reflexive Banach space, u : [0,T]→ E a control function and B : E→ H a bounded linear operator. Denote by
J◦(t, ·; ·) the Clarke’s generalized directional derivative ([7]) of a locally Lipschitz functional J(t, ·) : H → R.
Denote by P(E) the collection of all nonempty subsets of E. Define two symbols: P f (c)(E) := {Ω ⊆ E :
Ω is nonempty, closed (convex)} and P(w)k(c)(E) := {Ω ⊆ E : Ω is nonempty, (weakly) compact (convex)}.

2010 Mathematics Subject Classification. 49J30; 47H09; 47J20; 49M05.
Keywords. Feedback optimal control, Evolution hemivariational inequalities, Partial Clarke’s subdifferential, Feasible pairs.
Received: 24 December 2017; Accepted: 22 October 2018
Communicated by Adrian Petrusel
Email addresses: zenglc@hotmail.com (Lu-Chuan Ceng), zhhliu@hotmail.com (Zhenhai Liu), yaojc@kmu.edu.tw (Jen-Chih Yao),

yaoyonghong@aliyun.com (Yonghong Yao)



L. C. Ceng et al. / Filomat 32:15 (2018), 5205–5220 5206

Now, we focus on the following evolution hemivariational inequality problem〈−x′(t) + Ax(t) + Bu(t), v〉H + J◦(t, x(t); v) ≥ 0, a.e. t ∈ [0,T], ∀v ∈ H,
x(0) = x0 ∈ H.

(1)

and the following feedback control problem
〈−x′(t) + Ax(t) + Bu(t), v〉H + J◦(t, x(t); v) ≥ 0, a.e. t ∈ [0,T], ∀v ∈ H,
u(t) ∈ U(t, x(t)),
x(0) = x0 ∈ H,

(2)

whereU : [0,T] ×H→ P(E) is a multimap.
In [14], Huang, Liu and Zeng proved the existence of solutions of the evolution hemivariational inequal-

ity problem (1) and the existence of feasible pairs of the feedback control problem (2). To the best of our
knowledge, feedback control problems are ubiquitous around us, including trajectory planning of a robot
manipulator, guidance of a tactical missile toward a moving target, regulation of room temperature, and
control of string vibrations. Li and Yong [16] studied the optimal feedback control of semilinear evolution
equations in Banach spaces. Huang, Liu and Zeng [14] studied the above feedback control problem (2)
governed by evolution hemivariational inequality. By using the properties of multimaps and Clarke’s
generalized subdifferential, they formulated some sufficient conditions to guarantee the existence result of
feasible pairs of feedback control problem. Moreover, they also established an existence result of optimal
control pairs for an optimal control problem.

However, there is little study for the optimal control of feedback control problems described by evolution
hemivariational inequalities in the literature. It is worth pointing out that the study for the optimal control
of feedback control systems described by systems of evolution hemivariational inequalities is still untreated
topic in the literature and this fact is the motivation of the present work.

For our purpose, we assume that Vi is a separable Hilbert space with the inner product 〈·, ·〉Vi and norm
‖ · ‖Vi , and Ai : D(Ai) ⊆ Vi → Vi is the infinitesimal generator of a compact C0-semigroup {Ti(t)}t≥0 on Vi,
where i ∈ {1, 2} and I = [0,T] for some 0 < T < ∞. Let Ui be a reflexive Banach space, ui : [0,T]→ Ui a control
function and Bi : Ui → Vi a bounded linear operator. For i, j = 1, 2 and i , j, the notation J◦i (t, x1, x2; vi)
stands for the partial Clarke generalized directional derivative (cf. [33]) of a locally Lipschitz functional
J(t, ·, ·) : V1 × V2 → R with respect to the ith variable at xi in the direction vi for the given x j.

In the present paper, we aim to study the existence of solutions of the following system of evolution
hemivariational inequalities:

〈−x′1(t) + A1x1(t) + B1u1(t), v1〉V1 + J◦1(t, x1(t), x2(t); v1) ≥ 0, a.e. t ∈ I,∀v1 ∈ V1,

〈−x′2(t) + A2x2(t) + B2u2(t), v2〉V2 + J◦2(t, x1(t), x2(t); v2) ≥ 0, a.e. t ∈ I,∀v2 ∈ V2,

xi(0) = x0
i ∈ Vi, i = 1, 2.

(3)

In what follows we are concerned with the existence of feasible pairs of the following feedback control
systems:

〈−x′1(t) + A1x1(t) + B1u1(t), v1〉V1 + J◦1(t, x1(t), x2(t); v1) ≥ 0, a.e. t ∈ I,∀v1 ∈ V1,

〈−x′2(t) + A2x2(t) + B2u2(t), v2〉V2 + J◦2(t, x1(t), x2(t); v2) ≥ 0, a.e. t ∈ I,∀v2 ∈ V2,

ui(t) ∈ Ui(t, x1(t), x2(t)), i = 1, 2,
xi(0) = x0

i ∈ Vi, i = 1, 2,

(4)

whereUi : [0,T] × V1 × V2 → P(Ui) is a multimap for i = 1, 2.
The rest of this paper is organized as follows. In the next section, we will introduce some useful

preliminaries and physical models. In Section 3, some sufficient conditions and techniques are established
for the existence of feasible pairs of system (4). We first study the existence of solutions of (3) by a fixed
point theorem of multimaps. In Section 4, we will study the optimal control system (4).
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2. Preliminaries and Physical Models

In this section, we first introduce some basic preliminaries which are used throughout this paper. Some
terminologies are borrowed from [14]. Let i ∈ {1, 2} and I = [0,T]. The norm of the Hilbert space Vi will
be denoted by ‖ · ‖Vi . Let V = V1 × V2. Endowed with the norm defined by ‖x‖V := ‖x1‖V1 + ‖x2‖V2 for
all x = (x1, x2) ∈ V, V is a reflexive Banach space ([6]). For a C0-semigroup {Ti(t)}t≥0, there exist constants
ωi and ρi > 0 such that ‖Ti(t)‖ ≤ ρieωit for 0 ≤ t < ∞ and we set supt∈I ‖Ti(t)‖ ≤ supt∈I ρieωit ≤ Mi with
Mi > 0 ([26]). Let C(I,Vi) denote the Banach space of all continuous functions from I into Vi with the norm
‖xi‖C(I,Vi) = supt∈I ‖xi(t)‖Vi , L2(I,Vi) denote the Banach space of all Bochner L2-integrable functions from I

into Vi with the norm ‖xi‖L2(I,Vi) = (
∫ T

0 ‖xi(s)‖2Vi
ds)

1
2 .

Let X and Y be two topological vector spaces. Denote by P(Y) [C(Y),K(Y),Kv(Y)] the collection of all
nonempty [respectively, nonempty closed, nonempty compact, nonempty compact convex] subsets of Y.
A multimap F : I → C(X) is said to be measurable, if F−1(Q) := {t ∈ I : F(t) ∩ Q , ∅} ∈ Σ for every closed
set Q ⊂ X, where Σ denotes the σ-field of Lebesgue measurable sets on I = [0,T]. Every measurable
multimap F admits a measurable selection f : I → X, i.e., f is measurable and f (t) ∈ F(t) for a.e. t ∈ I.
A multimap F : X → C(Y) is said to be upper semicontinuous (for short, u.s.c.), if for every open subset
D ⊂ Y the set F−1

+ (D) = {x ∈ X : F(x) ⊂ D} is open in X; weakly u.s.c., if F : X → C(Yw) is u.s.c., where Yw
is the space Y equipped with a weak topology. A multimap F : X → C(Y) is said to be closed if its graph
Gr(F) := {(x, y) ∈ X × Y : x ∈ X, y ∈ F(x)} is a closed subset of X × Y; compact, if F maps bounded sets of X
into relatively compact sets in Y.

We have the following important property for multimaps.

Lemma 2.1. ([15]). Let X and Y be metric spaces and F : X→ K(Y) a closed compact multimap. Then F is u.s.c.

Definition 2.2. ([16]). Let X be a Banach space and Y be a metric space. Let F : X → P(Y) be a multimap. We
say that F possesses the Cesari property at x0, if

⋂
δ>0 coF(Oδ(x0)) = F(x0), where coD is the closed convex hull of

D, Oδ(x0) is the δ-neighborhood of x0. If F has the Cesari property at every point x ∈ Z ⊂ X, we simply say that F
has the Cesari property on Z.

Lemma 2.3. ([16]). Let X be a Banach space and Y be a metric space. Let F : X → P(Y) be u.s.c. with convex and
closed values. Then F has the Cesari property on X.

Now, let us proceed to the definition of the Clarke’s subdifferential for a locally Lipschitz functional
h : X→ R, where X is a Banach space, X∗ is the dual space of X and 〈·, ·〉X is the duality pairing between X∗

and X. We denote by h◦(x; v) the Clarke’s generalized directional derivative of h at the point x ∈ X in the
direction v ∈ X, that is

h◦(x; v) := lim sup
λ→0+,y→x

h(y + λv) − h(y)
λ

.

Recall also that the Clarke’s subdifferential or generalized gradient of h at x ∈ X, denoted by ∂h(x), is a
subset of X∗ given by ∂h(x) := {x∗ ∈ X∗ : h◦(x; v) ≥ 〈x∗, v〉X, ∀ v ∈ X}.

Lemma 2.4. ([22]). If h : X→ R is a locally Lipschitz functional on an open subset Ω of X, then

(i) the function (x, v) 7→ h◦(x; v) is u.s.c. from Ω×X into R, i.e., for all x ∈ Ω, v ∈ X, {xn} ⊂ Ω, {vn} ⊂ X such
that xn → x in Ω and vn → v in X, we have lim supn→∞ h◦(xn; vn) ≤ h◦(x; v);

(ii) for every x ∈ Ω the gradient ∂h(x) is a nonempty, convex and weakly∗ compact subset of X∗, and ‖x∗‖X∗ ≤ `0
for any x∗ ∈ ∂h(x) (where `0 > 0 is the Lipschitz constant of h near x);

(iii) the graph of ∂h is closed in X × X∗w∗ ;
(iv) the multimap ∂h is u.s.c. from Ω into X∗w∗ ;
(v) for every v ∈ X, one has h◦(x; v) = max{〈x∗, v〉X : x∗ ∈ ∂h(x)}.

The key tool in one of our main results is the following fixed point theorem.
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Theorem 2.5. ([11]). Let X be a Banach space, C a closed convex subset of X, D an open subset of C (relative to C)
and 0 ∈ D. Suppose that F : D→ Kv(C) is an u.s.c. and compact multimap. Then either (i) F has a fixed point in
D, or (ii) there are x ∈ ∂D and λ ∈ (0, 1) with x ∈ λF (x).

In the sequel, we shall study the existence of mild solutions of the following system of semilinear
evolutionary inclusions, which is specified as follows: Find (x1, x2) ∈ C(I,V1) × C(I,V2) such that

x′1(t) ∈ A1x1(t) + B1u1(t) + ∂1 J(t, x1(t), x2(t)), a.e. t ∈ I = [0,T],
x′2(t) ∈ A2x2(t) + B2u2(t) + ∂2 J(t, x1(t), x2(t)), a.e. t ∈ I = [0,T],
xi(0) = x0

i ∈ Vi, i = 1, 2,
(5)

where, for i = 1, 2, Ai : D(Ai) ⊆ Vi → Vi is the infinitesimal generator of a C0-semigroup Ti(t) (t ≥ 0) on a
separable Hilbert space Vi. For i, j = 1, 2 and i , j, the notation ∂i J(t, x1, x2) stands for the partial Clarke
generalized gradient (cf. [33]) of a locally Lipschitz functional J(t, ·, ·) : V1 × V2 → R with respect to the ith
variable at xi for the given x j. The control function ui takes values in L2(I,Ui), the admissible controls set Ui
is a Hilbert space, and Bi is a bounded linear operator from Ui into Vi.

We say that (x1, x2) ∈ W1,2(I,V1) × W1,2(I,V2) is a solution of (5) if there exists a pair of functions
( f1, f2) ∈ L2(I,V1) × L2(I,V2) such that ( f1, f2) ∈ ∂1 J(t, x1(t), x2(t)) × ∂2 J(t, x1(t), x2(t)) and

x′1(t) = A1x1(t) + B1u1(t) + f1(t), a.e. t ∈ I,
x′2(t) = A2x2(t) + B2u2(t) + f2(t), a.e. t ∈ I,
xi(0) = x0

i ∈ Vi, i = 1, 2,

which implies
〈−x′1(t) + A1x1(t) + B1u1(t), v1〉V1 + 〈 f1(t), v1〉V1 = 0, a.e. t ∈ I, ∀v1 ∈ V1,

〈−x′2(t) + A2x2(t) + B2u2(t), v2〉V2 + 〈 f2(t), v2〉V2 = 0, a.e. t ∈ I, ∀v2 ∈ V2,

xi(0) = x0
i ∈ Vi, i = 1, 2.

Since for i = 1, 2, fi(t) ∈ ∂i J(t, x1(t), x2(t)) and 〈 fi(t), vi〉Vi ≤ J◦i (t, x1(t), x2(t); vi), we obtain
〈−x′1(t) + A1x1(t) + B1u1(t), v1〉V1 + J◦1(t, x1(t), x2(t); v1) ≥ 0, a.e. t ∈ I, ∀v1 ∈ V1,

〈−x′2(t) + A2x2(t) + B2u2(t), v2〉V2 + J◦2(t, x1(t), x2(t); v2) ≥ 0, a.e. t ∈ I, ∀v2 ∈ V2,

xi(0) = x0
i ∈ Vi, i = 1, 2.

Hence, any solutions of system (5) are also solutions of system (3).
Similarly, the feedback control system (4) of evolution hemivariational inequalities can be reduced to

the following feedback control system with partial Clarke’s subdifferentials:
x′1(t) ∈ A1x1(t) + B1u1(t) + ∂1 J(t, x1(t), x2(t)), a.e. t ∈ I,
x′2(t) ∈ A2x2(t) + B2u2(t) + ∂2 J(t, x1(t), x2(t)), a.e. t ∈ I,
ui(t) ∈ Ui(t, x1(t), x2(t)), i = 1, 2,
xi(0) = x0

i ∈ Vi, i = 1, 2.

(6)

Therefore, in order to study the system (3) of evolution hemivariational inequalities and the feedback control
system (4) of evolution hemivariational inequalities, we only need to deal with the system (5) of semilinear
evolutionary inclusions, and the feedback control system (6) with partial Clarke’s subdifferentials.

We note that system (3) arises in many important models for distributed parameter control problems
and that a large class of identification problems enter our formulation. Let us indicate a problem which is
one of the motivations for the study of the system (3) of evolution hemivariational inequalities ([21]).
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We consider the following system of heat initial-boundary value problems:
∂
∂t x1(t, y) = ∂2

∂y2 x1(t, y) + B1u1(t, y) + f1(x1, x2), (t, y) ∈ (0, 1) × (0, π),
∂
∂t x2(t, y) = ∂2

∂y2 x2(t, y) + B2u2(t, y) + f2(x1, x2), (t, y) ∈ (0, 1) × (0, π),

xi(t, 0) = xi(t, π) = 0, t ∈ (0, 1), i = 1, 2,
xi(0, y) = x0

i (y), y ∈ (0, π), i = 1, 2.

(7)

This system represents the heat flows with temperature-dependent sources. Let i ∈ {1, 2}. xi = xi(t, y)
represents the temperature at the time t ∈ (0, 1) and point y ∈ (0, π). The temperatures of boundaries are
zero and the initial temperature is x0

i (y) (y ∈ (0, π)). ui is a control function. fi(x1, x2) is a heat source
dependent of temperatures.

We suppose that for i = 1, 2, the control ui is a feedback control by the temperatures such that

ui ∈ Ui(t, x1, x2), a.e. (t, y) ∈ (0, 1) × (0, π), (8)

fi is a known function of the temperatures of the following form

fi(t, y) ∈ ∂i J(t, y, x1(t, y), x2(t, y)), a.e. (t, y) ∈ (0, 1) × (0, π), (9)

where for i, j = 1, 2 and i , j, ∂i J(t, y, η1, η2) denotes the partial Clarke’s generalized gradient of a locally
Lipschitz functional J(t, y, ·, ·) : R2

→ R with respect to the ith variable at ηi for the given η j. The multivalued
mapping ∂i J(t, y, ·, ·) : R2

→ 2R is generally nonmonotone and it includes the vertical jumps which means
that the law is characterized by the partial Clarke’s generalized gradient of a nonsmooth potential J.

Let i ∈ {1, 2}. Take Vi = L2(0, π), xi(t)(·) = xi(t, ·) and the operator Ai : D(Ai) ⊂ Vi → Vi is defined by
Aixi = x′′i , where the domain D(Ai) is given by {xi ∈ Vi : x′i , x

′′

i ∈ Vi, xi(0) = xi(π)}.Then, Ai can be represented
as Aixi = −

∑
∞

n=1 n2
〈xi, en〉en, xi ∈ D(Ai). where en(y) =

√
2/π sin ny (n = 1, 2, ...) is an orthonormal basis of

Vi. We knew that Ai generates a strongly continuous semigroup Ti(t) (t > 0) in Vi, which is compact and
analytic (see [26]), given by Ti(t)xi =

∑
∞

n=1 e−n2t
〈xi, en〉en, xi ∈ Vi, and ‖Ti(t)‖ ≤ e−1 < 1 = Mi.

Now let the function J : (0, 1) × V1 × V2 → R be given by

J(t, x1, x2) =

∫ 1

0
( j(t, y, x1(y)) + j(t, y, x2(y)))dy, t ∈ (0, 1), (x1, x2) ∈ V1 × V2,

where j(t, y, z) =
∫ z

0 φ(t, y, θ)dθ, (t, y) ∈ (0, 1) × (0, π), z ∈ R.
Let φ : (0, 1) × (0, π) × R→ R be a function satisfying the following assumptions:

(i) for all y ∈ (0, π), z ∈ R, φ(·, y, z) : (0, 1)→ R is measurable;
(ii) for all t ∈ (0, 1), z ∈ R, φ(t, ·, z) : (0, π)→ R is continuous;

(iii) for all z ∈ R there exists a constant c1 > 0 such that |φ(·, ·, z)| ≤ c1(1 + |z|) for z ∈ R;
(iv) for every z ∈ R, φ(·, ·, z ± 0) exists.

If φ satisfies (iii), then ∂ j(z) ⊂ [φ(z), φ(z)] for z ∈ R (we omit (t, y) here), where φ(z) and φ(z) denote the
essential supermum and essential infimum of φ at z ([7]), respectively.

If φ satisfies (i)-(iv), then the function j(·, ·, ·) defined above has the following properties:

(i) for all y ∈ (0, π), z ∈ R, j(·, y, z) is measurable and j(·, ·, 0) ∈ L2((0, 1) × (0, π));
(ii) for all t ∈ (0, 1), z ∈ R, j(t, ·, z) : (0, π)→ R is continuous;

(iii) for all (t, y) ∈ (0, 1) × (0, π), j(t, y, ·) : R→ R is locally Lipschitz;
(iv) there exists a constant c2 > 0 such that |ζ| ≤ c2(1 + |z|) for all ζ ∈ ∂ j(t, y, z), (t, y) ∈ (0, 1) × (0, π);
(v) there exists a constant c3 > 0 such that j◦(t, y, z;−z) ≤ c3(1 + |z|) for all (t, y) ∈ (0, 1) × (0, π).



L. C. Ceng et al. / Filomat 32:15 (2018), 5205–5220 5210

Assume that for i = 1, 2, Ui is a reflexive Banach space, ui : (0, 1)→ Ui a control function and Bi : Ui → R
a bounded linear operator. Thus, combining (8)-(9), system (7) turns to be system (6).

Therefore, the variational formulation of the above system leads to the system (3) of evolution hemi-
variational inequalities and is met, for example, in the nonmonotone nonconvex interior semipermeability
problems. For the latter, Panagiotopoulos [23] considered a temperature control problem in which they
regulated the temperature to deviate as little as possible from a given interval. We remark that the monotone
semipermeability problems, leading to variational inequalities, have been studied by Duvaut and Lions
under the assumption that J(t, y, ·) is a proper, lower semicontinuous, convex function which means that
∂J(t, y, ·) is a maximal monotone operator in R2.

3. The Existence of Feasible Pairs

In this section we study the existence of feasible pairs for system (6).
At the first, we study the existence of solutions of system (6). We will make the following conditions.
(HT): Ti(t) (t > 0) is a compact operator for i = 1, 2.
Let J : I × V1 × V2 → R be a functional satisfying the following conditions:
(HJ1) the function t 7→ J(t, x1, x2) is measurable for all (x1, x2) ∈ V1 × V2;
(HJ2) the function (x1, x2)→ J(t, x1, x2) is locally Lipschitz on V1 × V2 for a.e. t ∈ I;
(HJ3) for i = 1, 2, there exist a function φi ∈ L2(I,R+) and a constant Li > 0 such that

‖∂i J(t, x1, x2)‖ = sup{‖ζi‖Vi : ζi ∈ ∂i J(t, x1, x2)} ≤ φi(t) + Li‖xi‖Vi

for a.e. t ∈ I and all (x1, x2) ∈ V1 × V2;
(HJ4) J(t, x1, x2) + J(t, y1, y2) = J(t, x1, y2) + J(t, y1, x2) for a.e. t ∈ I and all (x1, x2), (y1, y2) ∈ V1 × V2.

Lemma 3.1. ([30]). Suppose that the functional J : I×V1 ×V2 → R satisfies the hypotheses (HJ2), (HJ4). Then, for
any sequence xn = (xn

1 , x
n
2) ∈ V = V1 × V2 converging strongly to x = (x1, x2) ∈ V and yn

i ∈ Vi converging strongly
to yi ∈ Vi, one has lim supn→∞ J◦i (t, xn

1 , x
n
2 ; yn

i ) ≤ J◦i (t, x1, x2; yi), a.e. t ∈ I, where i = 1, 2.

Lemma 3.2. ([22]). Let E be a separable reflexive Banach space, 0 < T < ∞ and h : (0,T) × E → R be a function
such that h(·, x) is measurable for all x ∈ E and h(t, ·) is locally Lipschitz on E for all t ∈ (0,T). Then the multifunction
(t, x) ∈ (0,T) × E 7→ ∂h(t, x) ⊂ E∗ is measurable, where ∂h denotes the Clarke generalized gradient of h(t, ·).

Lemma 3.3. ([22]). Let X and Y be two topological spaces, F : X→ 2Y a multivalued mapping.

(i) If F is u.s.c. and closed-valued, then F is closed;
(ii) If F is compact-valued, then F is u.s.c. at x ∈ X if and only if for any net {xα} ⊆ X with xα → x and for any net
{yα} ⊆ Y with yα ∈ F(xα) for all α, there exist y ∈ F(x) and a subnet {yβ} of {yα} such that yβ → y;

(iii) F is l.s.c. at x ∈ X if and only if for any y ∈ F(x) and for any net {xα} with xα → x, there exists a net {yα} with
yα ∈ F(xα) for all α such that yα → y.

We shall make use of the following well-known results in this paper.

Theorem 3.4. ([13]). If (Ω,Σ) is a measurable space, X is a Polish space (i.e., separable completely metric space) and
F : Ω→ P f (X) is measurable, then F(·) admits a measurable selection (i.e., there exists f : Ω→ X measurable such
that for every x ∈ Ω, f (x) ∈ F(x)).

Lemma 3.5. ([22]). Let (Ω,Σ, µ) be a σ-finite measure space, E be a Banach space and 1 ≤ p < ∞. If fn, f ∈
Lp(Ω,E), fn → f weakly in Lp(Ω,E) and fn(x) ∈ G(x) for µ-a.e. x ∈ Ω and all n ∈ N where G(x) ∈ Pwk(E) for
µ-a.e. x ∈ Ω, then f (x) ∈ conv(w− lim sup{ fn(x)}n∈N) for µ−a.e. on x ∈ Ω, where conv denotes the closed convex
hull of a set.
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By the symbol of S2
Ψ

we will denote the set of all Bochner L2-integrable selections of the multimap
Ψ : I → P(H), i.e., S2

Ψ
= {ψ ∈ L2(I,H) : ψ(t) ∈ Ψ (t) for a.e. t ∈ I}. Next, for i = 1, 2, we define the

superposition multioperator Pi
J : C(I,V1) × C(I,V2)→ P(L2(I,Vi)) as follows

P
i
J(x1, x2) = S2

∂i J(·,x1(·),x2(·)) = {wi ∈ L2(I,Vi) : wi(t) ∈ ∂i J(t, x1(t), x2(t)) a.e. t ∈ I},

for all (x1, x2) ∈ C(I,V1) × C(I,V2).
Let C = C(I,V1) × C(I,V2). Endowed with the norm defined by ‖x‖C := ‖x1‖C(I,V1) + ‖x2‖C(I,V2) for all

x = (x1, x2) ∈ C = C(I,V1) × C(I,V2), C is a reflexive Banach space.
We have the following property for the operator Pi

J for i = 1, 2.

Lemma 3.6. Let i ∈ {1, 2}. If conditions (HJ1)-(HJ4) are satisfied, then for every (x1, x2) ∈ C(I,V1) × C(I,V2), the
set Pi

J(x1, x2) has nonempty, convex and weakly compact values.

Proof. First of all, for i = 1, 2, from the reflexivity of Vi and Lemma 2.4(ii), we know that for every
(t, x1, x2) ∈ I×V1×V2, the set ∂i(t, x1, x2) is nonempty, convex and weakly compact in Vi and the multifunction
∂i J is Pwkc(Vi)-valued. Therefore, it is not difficult to check that for i = 1, 2, Pi

J(x1, x2) has convex and weakly
compact values. Next, we show that for i = 1, 2,Pi

J(x1, x2) is nonempty. Indeed, let (x1, x2) ∈ C(I,V1)×C(I,V2).
Then for i = 1, 2, there exists a sequence {ϕn

i } ⊆ C(I,Vi) of step functions such that

ϕn
i (t)→ xi(t), in C(I,Vi), a.e. t ∈ I. (10)

From hypotheses (HJ1), (HJ2) and Lemma 3.2, it follows that for i = 1, 2, the multifunction (t, x1, x2) 7→
∂i J(t, x1, x2) is measurable. Thus, for i = 1, 2, t 7→ ∂i J(t, ϕn

1(t), ϕn
2(t)) is measurable from I into P f c(Vi). For

i = 1, 2, applying Theorem 3.4, for every n ≥ 1, there exists a measurable function ζn
i : I → Vi such that

ζn
i (t) ∈ ∂i J(t, ϕn

1(t), ϕn
2(t)) a.e. t ∈ I. Next, from hypothesis (HJ3), we obtain that for i = 1, 2,

‖ζn
i ‖L2(I,Vi) ≤ ‖φi‖L2(I,R+) + Li‖ϕ

n
i ‖L2(I,Vi).

Hence, for i = 1, 2, {ζn
i } remains in a bounded subset of L2(I,Vi). Thus, for i = 1, 2, by passing to a

subsequence if necessary, we may suppose that ζn
i → ζi weakly in L2(I,Vi) with ζi ∈ L2(I,Vi). Then it

follows from Lemma 3.5 that for i = 1, 2,

ζi(t) ∈ co(w − lim sup{ζn
i (t)}n≥1), a.e. t ∈ I. (11)

We claim that for a.e. t ∈ I, the multifunction (x1, x2) 7→ ∂i J(t, x1, x2) is u.s.c. from V1 × V2 into (Vi)w,
where for i = 1, 2, (Vi)w is the space furnished with the w-topology of Vi.

Indeed, for any sequence {(xn
1 , x

n
2)} ⊆ V1 × V2 with (xn

1 , x
n
2) → (x1, x2) in V = V1 × V2 and for any

sequence {yn
i } ⊆ Vi with yn

i ∈ ∂i J(t, xn
1 , x

n
2) for all n ≥ 1, we know by the definition of the partial Clarke

generalized gradient ∂i J(t, xn
1 , x

n
2) of a locally Lipschitz functional J(t, ·, ·) : V1 × V2 → R, that 〈yn

i , vi〉Vi ≤

J◦i (t, xn
1 , x

n
2 ; vi), ∀vi ∈ Vi. Since (xn

1 , x
n
2) → (x1, x2) in V1 × V2, from Hypotheses (HJ2), (HJ4) and Lemma 3.1

it follows that for i = 1, 2,

lim sup
n→∞

〈yn
i , vi〉Vi ≤ lim sup

n→∞
J◦i (t, xn

1 , x
n
2 ; vi) ≤ J◦i (t, x1, x2; vi), ∀vi ∈ Vi. (12)

Also, for i = 1, 2, from hypotheses (HJ3) and yn
i ∈ ∂i J(t, xn

1 , x
n
2), we get ‖yn

i ‖Vi ≤ φi(t)+Li‖xn
i ‖Vi ,which together

with the boundedness of {xn
i }, implies that {yn

i } is bounded. Taking into account the reflexivity of Vi, we
know that there exists a subsequence {ynk

i } of {yn
i } such that ynk

i → yi weakly in Vi. So, it follows from (12) that
〈yi, vi〉 = limk→∞〈y

nk
i , vi〉Vi ≤ lim supn→∞〈y

n
i , vi〉Vi ≤ J◦i (t, x1, x2; vi), ∀vi ∈ Vi, which yields yi ∈ ∂i J(t, x1, x2).

Therefore, in terms of Lemma 3.3 (ii), we deduce that for a.e. t ∈ I, the multifunction (x1, x2) 7→ ∂iJ(t, x1, x2)
is u.s.c. from V1 × V2 into (Vi)w, where i = 1, 2.

Recalling that the graph of an u.s.c. multifunction with closed values is closed (due to Lemma 3.3 (i), we
obtain that for i = 1, 2 and a.e. t ∈ I, if f n

i ∈ ∂i J(t, ζn
1 , ζ

n
2), f n

i ∈ Vi, f n
i → fi weakly in Vi, ζn

i ∈ C(I,Vi), ζn
i → ζi

in C(I,Vi), then fi ∈ ∂i J(t, ζ1, ζ2).
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Therefore, by (12), we have

w − lim sup ∂i J(t, ζn
1(t), ζn

2(t)) ⊂ ∂i J(t, x1(t), x2(t)) a.e. t ∈ I, (13)

where the Kuratowski limit superior (cf. Definition 3.14 of [22]) is given by

w − lim sup ∂i J(t, ϕn
1(t), ϕn

2(t)) = {ζi ∈ Vi : ζi = w − lim ζnk
i , ζ

nk
i ∈ ∂i J(t, ϕ

nk
1 (t), ϕnk

2 (t)), n1 < · · · < nk < · · · }.

So, from (11) and (13), we get for i = 1, 2,

ζi(t) ∈ co(w − lim sup{ζn
i (t)}n≥1) ⊂ co(w − lim sup ∂i J(t, ϕn

1(t), ϕn
2(t))) ⊂ ∂i J(t, x1(t), x2(t)), a.e. t ∈ I.

Since for i = 1, 2, ζi ∈ L2(I,Vi) and ζi(t) ∈ ∂i J(t, x1(t), x2(t)) a.e. t ∈ I, it is clear that ζi ∈ P
i
J(x1, x2).

Therefore, Pi
J(x1, x2) is nonempty. The proof is completed.

Lemma 3.7. Let i ∈ {1, 2}. If conditions (HJ1)-(HJ4) are satisfied, then operator Pi
J is closed in C × L2

w(I,Vi), where
L2

w(I,Vi) is the space furnished with the w-topology of L2(I,Vi).

Proof. By Lemma 3.6, we know that for each x = (x1, x2) ∈ C = C(I,V1) × C(I,V2), the set Pi
J(x1, x2) has

nonempty, convex and weakly compact values for i = 1, 2. Utilizing the similar arguments to those in the
proof of Lemma 3.6, we can prove that for i = 1, 2 the operator Pi

J : C = C(I,V1) × C(I,V2) → P(L2(I,Vi)) is
u.s.c. from C = C(I,V1) × C(I,V2) into L2

w(I,Vi) where for i = 1, 2. So, it follows from Lemma 3.5(ii) that for
i = 1, 2, the graph of the u.s.c. multifunction Pi

J with closed values is closed (due to Lemma 3.3 (i), which
hence implies that for i = 1, 2, if xn = (xn

1 , x
n
2) → x = (x1, x2) in C = C(I,V1) × C(I,V2), wn

i → wi weakly in
L2(I,Vi) and wn

i ∈ P
i
J(x

n
1 , x

n
2), then wi ∈ P

i
J(x1, x2). The proof is completed.

Lemma 3.8. Let i ∈ {1, 2}. If the conditions (HJ1)-(HJ4) are satisfied, then for a.e. t ∈ I, the multimap ∂i J(t, ·, ·) :
V1 × V2 → P(Vi) has the Cesari property, i.e.,

⋂
δ>0 co∂i J(t,Oδ(x)) = ∂i J(t, x), for all x = (x1, x2) ∈ V = V1 × V2.

Proof. On one hand, it is clear that for any δ > 0, ∂iJ(t, x) ⊂ co∂i J(t,Oδ(x)), for all x = (x1, x2) ∈ V = V1 × V2
and a.e. t ∈ I. Therefore, ∂i J(t, x) ⊂

⋂
δ>0 co∂i J(t,Oδ(x)), for all x = (x1, x2) ∈ V = V1 × V2 and a.e. t ∈ I.

On the other hand, by the proof of Lemma 3.6, we know that for a.e. t ∈ I, the multifunction (x1, x2) 7→
∂i J(t, x1, x2) is u.s.c. from V1 × V2 into (Vi)w. Let t ∈ I, x = (x1, x2) ∈ V be fixed. For any neighborhood
Ωi ⊃ ∂i J(t, x) (in the sense of weak topology of Vi), there exists a δ > 0 such that ∂i J(t,Oδ(x)) ⊂ Ωi. Since
(Vi)w is locally convex, we can choose Ωi to be convex. Therefore, co∂i J(t,Oδ(x)) ⊂ Ωi.

Now, we show that ∂i J(t, x) =
⋂

Ωi for all neighborhood Ωi of ∂i J(t, x). To the contrary, there exists
yi ∈

⋂
Ωi and yi < ∂i J(t, x). Then there exists a closed set Dyi 3 yi such that Dyi ∩ ∂i J(t, x) = ∅. By the

separation property, there exist a neighborhood Ni of Dyi and a neighborhood Ω′i of ∂i J(t, x) such that
Ni ∩Ω′i = ∅. This shows yi < Ω′i which is a contradiction. Therefore,

⋂
δ>0 co∂i J(t,Oδ(x)) ⊂

⋂
Ωi = ∂iJ(t, x).

The proof is complete.

Definition 3.9. A pair of functions x = (x1, x2) ∈ C = C(I,V1) × C(I,V2) is said to be a mild solution of system (5)
on the interval I = [0,T] ifx1(t) = T1(t)x0

1 +
∫ t

0 T1(t − s)(B1u1(s) + f1(s))ds, t ∈ I,
x2(t) = T2(t)x0

2 +
∫ t

0 T2(t − s)(B2u2(s) + f2(s))ds, t ∈ I,

where ( f1, f2) ∈ P1
J (x) × P2

J (x).

Lemma 3.10. ([16]). Let i ∈ {1, 2}. If condition (HT) holds, then operator Gi : Lp(I,Vi) → C(I,Vi) for some p > 1,
given by (Gi fi)(·) =

∫
·

0 Ti(· − s) fi(s)ds, is compact for fi ∈ Lp(I,Vi).
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Now we can obtain the following result.

Theorem 3.11. If the conditions (HT) and (HJ1)-(HJ4) are satisfied, then for any u = (u1,u2) ∈ L2(I,U1)×L2(I,U2),
system (5) has at least one mild solution in C = C(I,V1) × C(I,V2).

Proof. Consider the multimap F : C → Kv(C) defined by

F (x) = {y = (y1, y2) ∈ C : ∃f = ( f1, f2) ∈ P1
J (x) × P2

J (x) s.t. y1(t) = T1(t)x0
1 +

∫ t

0
T1(t − s)(B1u1(s) + f1(s))ds,

y2(t) = T2(t)x0
2 +

∫ t

0
T2(t − s)(B2u2(s) + f2(s))ds}, f or all x = (x1, x2) ∈ C.

Now, we verify that F has a fixed point in C. First, F (x) is convex by the convexity of Pi
J(x) which follows

from Lemma 3.6. Next, we subdivide the proof into five steps.
Step 1. F maps bounded sets into bounded sets in C.
For ∀k0 > 0, let Bk0 = {x = (x1, x2) ∈ C : ‖x‖C ≤ k0}. Actually, it is enough to show that there exists a

positive constant ` such that for each ϕ = (ϕ1, ϕ2) ∈ F (x), x ∈ Bk0 , ‖ϕ‖C ≤ `. If ϕ = (ϕ1, ϕ2) ∈ F (x), then
there exists f = ( f1, f2) ∈ P1

J (x) × P2
J (x) such that for every t ∈ I,ϕ1(t) = T1(t)x0

1 +
∫ t

0 T1(t − s) f1(s)ds +
∫ t

0 T1(t − s)B1u1(s)ds,
ϕ2(t) = T2(t)x0

2 +
∫ t

0 T2(t − s) f2(s)ds +
∫ t

0 T2(t − s)B2u2(s)ds.

By (HJ3) and the Holder inequality, we obtain that for i = 1, 2 and every t ∈ I,

‖ϕi(t)‖Vi ≤ ‖Ti(t)x0
i ‖Vi +

∫ t

0
‖Ti(t − s) fi(s)‖Vi ds +

∫ t

0
‖Ti(t − s)Biui(s)‖Vi ds

≤Mi‖x0
i ‖Vi + Mi

∫ t

0
[φi(s) + Li‖xi(s)‖Vi + ‖Bi‖‖ui(s)‖Ui ]ds

≤Mi‖x0
i ‖Vi + Mi(‖φi‖L2(I,R+) + ‖Bi‖‖ui‖L2(I,Ui))T

1
2 + MiLik0T := `i.

Let ` = `1 + `2. Then it is easy to see that for each ϕ = (ϕ1, ϕ2) ∈ F (x), x ∈ Bk0 , ‖ϕ‖C ≤ `. Thus,
{F (x) : x = (x1, x2) ∈ Bk0 } is bounded in C.

Step 2. F maps bounded sets into equicontinuous sets of C.
In the following, we will show that {F (x) : x = (x1, x2) ∈ Bk0 } is a family of equicontinuous functions.
Indeed, for any x = (x1, x2) ∈ Bk0 , ϕ = (ϕ1, ϕ2) ∈ F (x), there exists f = ( f1, f2) ∈ P1

J (x1, x2) × P2
J (x1, x2)

such that for every t ∈ I,ϕ1(t) = T1(t)x0
1 +
∫ t

0 T1(t − s) f1(s)ds +
∫ t

0 T1(t − s)B1u1(s)ds,
ϕ2(t) = T2(t)x0

2 +
∫ t

0 T2(t − s) f2(s)ds +
∫ t

0 T2(t − s)B2u2(s)ds.

On one hand, for any x = (x1, x2) ∈ Bk0 , when t1 = 0, 0 < t2 ≤ δ0 and δ0 is small enough, we obtain that for
i = 1, 2

‖ϕi(t2) − ϕi(t1)‖Vi ≤ ‖Ti(t2)x0
i − x0

i ‖Vi + ‖

∫ t2

0
Ti(t2 − s)(Biui(s) + fi(s))ds‖Vi

≤ ‖Ti(t2)x0
i − x0

i ‖Vi + Mi(‖φi‖L2(I,R+) + ‖Bi‖‖ui‖L2(I,Ui))δ0
1
2 + MiLik0δ0.

Then, we can easily see that ‖ϕi(t2) − ϕi(t1)‖Vi tends to zero independently of x ∈ Bk0 as δ0 → 0.
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On the other hand, for any x = (x1, x2) ∈ Bk0 and δ0
2 ≤ t1 < t2 ≤ T, we obtain

‖ϕi(t2) − ϕi(t1)‖Vi ≤ ‖Ti(t2)x0
i − Ti(t1)x0

i ‖Vi + ‖

∫ t2

0
Ti(t2 − s)(Biui(s) + fi(s))ds

−

∫ t1

0
Ti(t1 − s)(Biui(s) + fi(s))ds‖Vi

≤ ‖Ti(t2)x0
i − Ti(t1)x0

i ‖Vi + ‖

∫ t2

t1

Ti(t2 − s)(Biui(s) + fi(s))ds‖Vi

+ ‖

∫ t1

0
[Ti(t2 − s) − Ti(t1 − s)](Biui(s) + fi(s))ds‖Vi

:= Qi,1 + Qi,2 + Qi,3.

By (HJ3), we have Qi,2 ≤ Mi(‖φi‖L2(I,R+) + ‖Bi‖‖ui‖L2(I,Ui))(t2 − t1)
1
2 + MiLik0(t2 − t1). For t1 ≥

δ0
2 > 0 and δ > 0

being small enough, we obtain

Qi,3 ≤ [‖
∫ t1−δ

0
[Ti(t2 − s) − Ti(t1 − s)](Biui(s) + fi(s))ds‖Vi + ‖

∫ t1

t1−δ
[Ti(t2 − s) − Ti(t1 − s)](Biui(s) + fi(s))ds‖Vi ]

≤ ((‖φi‖L2(I,R+) + ‖Bi‖‖ui‖L2(I,Ui))(t1 − δ)
1
2 + Lik0(t1 − δ)) × sup

s∈[0,t1−δ]
‖Ti(t2 − s) − Ti(t1 − s)‖

+ 2Mi(‖φi‖L2(I,R+) + ‖Bi‖‖ui‖L2(I,Ui))δ
1
2 + 2MiLik0δ.

Since (HT) implies the continuity of Ti(t) (t > 0) in t in the uniform operator topology, it is easily seen
that Qi,3 tends to zero independently of x = (x1, x2) ∈ Bk0 as t2 → t1, δ → 0. It is clear that Qi,1 and
Qi,2 both tend to zero as t2 → t1 does not depend on particular choice of x = (x1, x2). Thus, for i = 1, 2,
we get that ‖ϕi(t2) − ϕi(t1)‖Vi tends to zero independently of x = (x1, x2) ∈ Bk0 as δ0 → 0. Therefore,
{F (x) : x = (x1, x2) ∈ Bk0 } is equicontinuous.

Step 3. F is a compact multivalued map.
We show that for any t ∈ I, Λ(t) := {ϕ(t) : ϕ = (ϕ1, ϕ2) ∈ F (Bk0 )} is relatively compact in V = V1 × V2.
Clearly, Λ(0) = {x0

} with x0 = (x0
1, x

0
2) is compact. So, it is only necessary to consider t > 0. Let 0 < t ≤ T

be fixed. For any x = (x1, x2) ∈ Bk0 , ϕ = (ϕ1, ϕ2) ∈ F (x), there exists f = ( f1, f2) ∈ P1
J (x) × P2

J (x) such that for
every t ∈ I,ϕ1(t) = T1(t)x0

1 +
∫ t

0 T1(t − s) f1(s)ds +
∫ t

0 T1(t − s)B1u1(s)ds,
ϕ2(t) = T2(t)x0

2 +
∫ t

0 T2(t − s) f2(s)ds +
∫ t

0 T2(t − s)B2u2(s)ds.

Let 0 < t ≤ T be fixed. For ∀ε ∈ (0, t), define ϕε(t) = (ϕε1(t), ϕε2(t)), where for i = 1, 2,

ϕεi (t) = Ti(t)x0
i +

∫ t−ε

0
Ti(t − s)(Biui(s) + fi(s))ds

= Ti(t)x0
i +

∫ t−ε

0
Ti(ε)Ti(t − s − ε)(Biui(s) + fi(s))ds

= Ti(ε)Ti(t − ε)x0
i + Ti(ε)

∫ t−ε

0
Ti(t − s − ε)(Biui(s) + fi(s))ds

:= Ti(ε)zi(t, ε).

where x = (x1, x2) ∈ Bk0 and f = ( f1, f2) ∈ P1
J (x) × P2

J (x). For i = 1, 2, from the boundedness of
∫ t−ε

0 Ti(t − s −
ε)(Biui(s)+ fi(s))ds and the compactness of Ti(t) (t > 0), we obtain that the set {ϕεi (t) : ϕ ∈ F (Bk0 )} is relatively
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compact in Vi for each ε ∈ (0, t). So, it follows that Λε(t) := {ϕε(t) : ϕ ∈ F (Bk0 )} is relatively compact in
V = V1 ×V2 for each ε ∈ (0, t). Moreover, for every ϕ = (ϕ1, ϕ2) ∈ F (x) with x = (x1, x2), we have for i = 1, 2

‖ϕi(t) − ϕεi (t)‖Vi = ‖

∫ t

t−ε
Ti(t − s)(Biui(s) + fi(s))ds‖Vi

≤Mi(‖φi‖L2(I,R+) + ‖Bi‖‖ui‖L2(I,Ui))ε
1
2 + MiLik0ε,

which implies that for i = 1, 2, the set {ϕi(t) : ϕ ∈ F (Bk0 )} (t > 0) is totally bounded, i.e., relatively compact
in Vi. So, it follows that Λ(t) (t > 0) is totally bounded, i.e., relatively compact in V = V1 × V2. Therefore,
from Steps 1-3, {F (x) : x = (x1, x2) ∈ Bk0 } is relative compact by the generalized Ascoli-Arzela theorem.
Thus, F is a compact multivalued map.

Step 4. F has a closed graph.
Let xn = (xn

1 , x
n
2) → x∗ = (x∗1, x

∗

2) in C, ϕn = (ϕn
1 , ϕ

n
2) ∈ F (xn) and ϕn

→ ϕ∗ = (ϕ∗1, ϕ
∗

2) in C. We will show
that ϕ∗ ∈ F (x∗). Indeed, ϕn

∈ F (xn) means that there exists a fn = ( f n
1 , f n

2 ) ∈ P1
J (xn) × P2

J (xn) such that for
each t ∈ I,ϕn

1(t) = T1(t)x0
1 +
∫ t

0 T1(t − s)(B1u1(s) + f n
1 (s))ds,

ϕn
2(t) = T2(t)x0

2 +
∫ t

0 T2(t − s)(B2u2(s) + f n
2 (s))ds.

For i = 1, 2, from (HJ3) it is not difficult to show that { f n
i }n≥1 ⊆ L2(I,Vi) is bounded, and hence we may

assume that f n
i ⇀ f ∗i for some f ∗i ∈ L2(I,Vi). Define the continuous linear operator Gi : L2(I,Vi) → C(I,Vi)

as follows (Gi fi)(·) =
∫
·

0 Ti(· − s) fi(s)ds, for fi ∈ L2(I,Vi). Since xn
→ x∗ in Cwith xn = (xn

1 , x
n
2) and x∗ = (x∗1, x

∗

2),
it follows from Lemmas 3.7 and 3.10 thatϕ∗1(t) = T1(t)x0

1 +
∫ t

0 T1(t − s)(B1u1(s) + f ∗1 (s))ds,
ϕ∗2(t) = T2(t)x0

2 +
∫ t

0 T2(t − s)(B2u2(s) + f ∗2 (s))ds.

and f∗ := ( f ∗1 , f ∗2 ) ∈ P1
J (x∗)×P2

J (x∗), i.e., F has a closed graph. Therefore, since F takes compact values, from
Lemma 2.1 we deduce that F is u.s.c.

Step 5. According to Theorem 2.5, it is sufficient to show that there exists an open set D ⊂ C such that
there is no x ∈ ∂D satisfying x ∈ λF (x) for ∀λ ∈ (0, 1). Indeed, let x = (x1, x2) ∈ λF (x) for some λ ∈ (0, 1).
Then, there exists f = ( f1, f2) ∈ P1

J (x) × P2
J (x) such that for each t ∈ I,x1(t) = λT1(t)x0

1 + λ
∫ t

0 T1(t − s)(B1u1(s) + f1(s))ds,
x2(t) = λT2(t)x0

2 + λ
∫ t

0 T2(t − s)(B2u2(s) + f2(s))ds.

Then by the assumptions, we get that for i = 1, 2 and each t ∈ I

‖xi(t)‖Vi ≤ ‖Ti(t)x0
i ‖Vi + ‖

∫ t

0
Ti(t − s) fi(s)ds‖Vi + ‖

∫ t

0
Ti(t − s)Biui(s)ds‖Vi

≤Mi‖x0
i ‖Vi + Mi

∫ t

0
(φi(s) + Li‖xi(s)‖Vi + ‖Bi‖‖ui(s)‖Ui )ds

≤ ρi + MiLi

∫ t

0
‖xi(s)‖Vi ds,

where ρi = Mi[‖x0
i ‖Vi + (‖φi‖L2(I,R+) + ‖Bi‖‖ui‖L2(I,Ui))T

1
2 ]. It follows from the standard Gronwall inequality [?

] that for i = 1, 2 and each t ∈ I ‖xi(t)‖Vi ≤ ρieMiLiT. Hence,

‖x‖C = ‖x1‖C(I,V1) + ‖x2‖C(I,V2)

= sup
t∈I
‖x1(t)‖V1 + sup

t∈I
‖x2(t)‖V2

≤ ρ1eM1L1T + ρ2eM2L2T := `,
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Set D = {x = (x1, x2) ∈ C : ‖x‖C < ` + 1}. Clearly, D is an open subset of C, F : D → Kv(C) is u.s.c. and
compact. From the choice of D, there is no x ∈ ∂D satisfying x ∈ λF (x) for some λ ∈ (0, 1). Therefore, by
Theorem 2.5 we deduce that F has a fixed point x∗ in C. Consequently, the system (5) has at least one mild
solution in C. The proof is completed.

Now, we give the following definition.

Definition 3.12. A pair (x,u) is said to be feasible if (x,u) satisfies system (6) for t ∈ I.

For convenience, we denote U[0,T] = {u : [0,T]→ U | u(·) is measurable}where U = U1×U2 is the reflexive
Banach space endowed by the norm ‖u‖U = ‖u1‖U1 + ‖u2‖U2 for all u = (u1,u2) ∈ U = U1 × U2,V[0,T] =
{(x,u) ∈ C ×U[0,T] | (x,u) is feasible}.

Now, we study the existence result of feasible pairs for system (6). We assume that for i = 1, 2, the
feedback multimapUi : I × V1 × V2 → P(Ui) satisfies the following conditions:

(U1) there exist a function φ1
i ∈ L2(I,R+) and a constant L1

i > 0, such that

‖Ui(t, x1, x2)‖ = sup
zi∈Ui(t,x1,x2)

‖zi‖Ui ≤ φ
1
i (t) + L1

i ‖xi‖Vi

for all (t, x1, x2) ∈ I × V1 × V2;
(U2) for a.e. t ∈ I, x = (x1, x2) ∈ V = V1 × V2, the setUi(t, x) satisfies the following⋂

δ>0

coUi(Oδ(t, x)) =Ui(t, x).

Remark 3.13. ([14]). Let i ∈ {1, 2}. Then by Lemma 2.1, condition (U2) is fulfilled ifUi is u.s.c. with convex and
closed values.

Now, we are in a position to present the main result of this section.

Theorem 3.14. If conditions (HT), (HJ1)-(HJ4) and (U1)-(U2) are satisfied, then the set V[0,T] is nonempty.

Proof. For any integer k > 0, let t j = j T
k , 0 ≤ j ≤ k − 1. We define uk = (uk

1,u
k
2) where i = 1, 2,

uk
i (t) =

k−1∑
j=0

ui, jχ[t j,t j+1)(t), t ∈ I,

where χ[t j,t j+1) is the character function of interval [t j, t j+1). The sequence {ui, j}
k−1
j=0 is constructed as follows.

Firstly, for i = 1, 2, we take ui,0 ∈ Ui(0, x0) with x0 = (x0
1, x

0
2). By Theorem 3.11, there exists xk(·) =

(xk
1(·), xk

2(·)) given byxk
1(t) = T1(t)x0

1 +
∫ t

0 T1(t − s)(B1u1,0(s) + f k
1 (s))ds, t ∈ [0, T

k ],

xk
2(t) = T2(t)x0

2 +
∫ t

0 T2(t − s)(B2u2,0(s) + f k
2 (s))ds, t ∈ [0, T

k ].

where fk = ( f k
1 , f k

2 ) ∈ P1
J (xk) × P2

J (xk). Then take ui,1 ∈ Ui( T
k , x

k( T
k )) for i = 1, 2. We can repeat this procedure

to obtain xk = (xk
1, x

k
2) on [ T

k ,
2T
k ], etc. By induction, we end up with the following: for i = 1, 2,xk

i (t) = Ti(t)x0
i +
∫ t

0 Ti(t − s)(Biuk
i (s) + f k

i (s))ds, t ∈ I,
uk

i (t) ∈ Ui(
jT
k , x

k( jT
k )), t ∈ [ jT

k ,
( j+1)T

k ), 0 ≤ j ≤ k − 1,

where fk = ( f k
1 , f k

2 ) ∈ P1
J (xk) × P2

J (xk). From the proof of Theorem 3.11, it is easy to prove that for i = 1, 2,
there exists r0

i > 0 such that ‖xk
i ‖C(I,Vi) ≤ r0

i . Moreover, it follows from (HJ3) and (U1) that for i = 1, 2 there
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exist r1
i , r

2
i > 0 such that ‖uk

i (·)‖L2(I,Ui) ≤ r1
i , ‖ f k

i (·)‖L2(I,Vi) ≤ r2
i . Therefore, there are subsequences of {uk(·)} and

{fk(·)}, denoted by {uk(·)} and {fk(·)} again, such that for i = 1, 2,

uk
i (·) ⇀ u∗i (·) in L2(I,Ui), f k

i (·) ⇀ f ∗i (·) in L2(I,Vi). (14)

From (HT), by Lemma 3.10 we have that for i = 1, 2 and any t ∈ I∫ t

0
Ti(t − s)(Biuk

i (s) + f k
i (s))ds→

∫ t

0
Ti(t − s)(Biu∗i (s) + f ∗i (s))ds.

For i = 1, 2, we let x∗i (t) = Ti(t)x0
i +
∫ t

0 Ti(t− s)(Biu∗i (s)+ f ∗i (s))ds, t ∈ I. Then, for i = 1, 2, xk
i (t)→ x∗i (t), uniformly

in t ∈ I, i.e., xk
i (·)→ x∗i (·) in C(I,Vi). So it follows that

xk(·)→ x∗(·) in C.

Hence, for any δ > 0, there exists an integer k0 > 0 such that

xk(t) ∈ Oδ(x∗(t)), t ∈ I, k ≥ k0. (15)

On the other hand, by the definition of uk(·) for k large enough, we have

uk
i (t) ∈ Ui(t j, xk(t j)) ⊂ Ui(Oδ(t, x∗(t))), ∀t ∈ [

jT
k
,

( j + 1)T
k

), 0 ≤ j ≤ k − 1. (16)

Secondly, by (14) and Mazur Theorem [16], let am,l, bm,l ≥ 0 and
∑

m≥1 am,l =
∑

m≥1 bm,l = 1 such that for i = 1, 2,

φl
i(·) =

∑
m≥1

am,lum+l
i (·)→ u∗i (·) in L2(I,Ui), ψl

i(·) =
∑
m≥1

bm,l f m+l
i (·)→ f ∗i (·) in L2(I,Vi).

Then, there are subsequences of {φl
} and {ψl

} with φl = (φl
1, φ

l
2) and ψl = (ψl

1, ψ
l
2), denoted by {φl

} and {ψl
}

again, such that for i = 1, 2, φl
i(t)→ u∗i (t) in Ui, ψl

i(t)→ f ∗i (t) in Vi, a.e. t ∈ I. Hence, from (15) and (16), for l
large enough, φl

i(t) ∈ coUi(Oδ(t, x∗(t))), ψl
i(t) ∈ co∂i J(t,Oδ(x∗(t))), a.e. t ∈ I. Thus, for any δ > 0,

u∗i (t) ∈ coUi(Oδ(t, x∗(t))), f ∗i (t) ∈ co∂i J(t,Oδ(x∗(t))), a.e. t ∈ I.

From (U2) and Lemma 3.8, we have u∗i (t) ∈ Ui(t, x∗(t)), f ∗i (t) ∈ ∂i J(t, x∗(t)), a.e. t ∈ I. Therefore, (x∗,u∗) is a
feasible pair on I. The proof is completed.

Remark 3.15. It is worth pointing out that the system (5) of semilinear inclusions and the feedback control system
(6) reduce to the semilinear inclusion (2.1) and the feedback control problem (2.2) in [14], respectively, via choosing
appropriately the operators Ai,Bi, J,Ui and ui, xi for i = 1, 2. By introducing the operators Pi

J : C = C(I,V1) ×
C(I,V2) → P(L2(I,Vi)), i = 1, 2 and using Theorem 2.5 for the existence of fixed points of u.s.c. and compact
multimaps, we prove Theorem 3.11 for the existence of mild solutions of system (5), which generalizes and extends
Theorem 3.5 in [14] from the semilinear inclusion (2.1) in [14] to the system (5) of semilinear inclusions. By using
Theorem 3.11 and the conditions (U1)-(U2) on the feedback multimaps Ui : I × V1 × V2 → P(Ui), i = 1, 2, we
establish Theorem 3.14 for the existence of feasible pairs of system (6), which generalizes and extends Theorem 3.8 in
[14] from the feedback control problem (2.2) in [14] to the feedback control system (6).

4. Existence of Optimal State-Control Pairs

In this section, we consider the optimal control system stated as follows.
System (ϕ): find a pair (x∗,u∗) ∈ V[0,T] such thatϕ1(x∗1,u

∗

1) ≤ ϕ1(x1,u1),
ϕ2(x∗2,u

∗

2) ≤ ϕ2(x2,u2),
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for all (x,u) ∈ V[0,T], where ϕi(xi,ui) =
∫ T

0 f 0
i (t, xi(t),ui(t))dt for i = 1, 2.

We make the following assumptions on f0 = ( f 0
1 , f 0

2 ):
(f01) the functional f 0

i : I × Vi ×Ui → R ∪ {±∞} is Borel measurable in (t, xi,ui) for i = 1, 2;
(f02) f 0

i (t, ·, ·) is lower semicontinuous on Vi ×Ui a.e. t ∈ I for i = 1, 2 (i.e., for all xi ∈ Vi, ui ∈ Ui, {xn
i } ⊂

Vi, {un
i } ⊂ Ui such that xn

i → xi in Vi and un
i → ui in Ui, we have lim infn→∞ f 0

i (t, xn
i ,u

n
i ) ≥ f 0

i (t, xi,ui)) and
there exists a constant Mi,1 > 0 such that f 0

i (t, xi,ui) ≥ −Mi,1, (t, xi,ui) ∈ I × Vi ×Ui.
For any (t, x) ∈ I × V with x = (x1, x2) ∈ V = V1 × V2, we set the set

εi(t, x) = {(z0
i , z

1
i , z

2
i ) ∈ R × Vi ×Ui z0

i ≥ f 0
i (t, xi, z2

i ), z1
i ∈ ∂i J(t, x), z2

i ∈ Ui(t, x)}.

To obtain the existence result of optimal state-control pairs for system (ϕ), we assume that:
(Vε): for a.e. t ∈ I, the map εi(t, ·, ·) : V1 × V2 → P(R × Vi ×Ui) has the Cesari property, i.e.,⋂

δ>0

coεi(t,Oδ(x)) = εi(t, x), ∀x ∈ V.

Theorem 4.1. If conditions (HT), (HJ1)-(HJ4), (U1)-(U2), (f01)-(f02), (Vε) are satisfied, then system (ϕ) admits at
least one optimal state-control pair.

Proof. For i = 1, 2, without considering the situation inf{ϕi(xi,ui) (x,u) ∈ V[0,T]} = +∞, we assume that
inf{ϕi(xi,ui) (x,u) ∈ V[0,T]} = mi < +∞. By (f02), we have ϕi(xi,ui) ≥ mi ≥ −Mi,1T > −∞ for i = 1, 2. Then
there exists a sequence {(xn,un)}n≥1 ⊂ V[0,T] such that for i = 1, 2

ϕi(xn
i ,u

n
i )→ mi.

From the proof of Theorem 3.14, without loss of generality, we obtain that for i = 1, 2

xn
i (·)→ x∗i (·) in C(I,Vi),

and

un
i (·) ⇀ u∗i (·) in L2(I,Ui), f n

i (·) ⇀ f ∗i (·) in L2(I,Vi),

where x∗i (t) = Ti(t)x0
i +
∫ t

0 Ti(t − s)(Biu∗i (s) + f ∗i (s))ds, t ∈ I.
By Mazur Theorem again, let am,l, bm,l ≥ 0 and

∑
m≥1 am,l =

∑
m≥1 bm,l = 1 such that for i = 1, 2,

φl
i(·) =

∑
m≥1

am,lum+l
i (·)→ u∗i (·) in L2(I,Ui), ψl

i(·) =
∑
m≥1

bm,l f m+l
i (·)→ f ∗i (·) in L2(I,Vi).

For i = 1, 2, we let ψ̄l
i(·) =

∑
k≥1 bk,l f 0

i (·, xk+l
i (·),uk+l

i (·)), and f̄ 0
i (t) = liml→+∞ψ̄

l
i(t) ≤ −Mi,1, a.e. t ∈ I. For any

δ > 0 and l large enough, from (f02) we have for i = 1, 2,

(ψ̄l
i(t), ψ

l
i(t), φ

l
i(t)) ∈ εi(t,Oδ(x∗(t))), a.e. t ∈ I,

with x∗ = (x∗1, x
∗

2). Then for i = 1, 2, ( f̄ 0
i (t), f ∗i (t),u∗i (t)) ∈ coεi(t,Oδ(x∗(t))), a.e. t ∈ I. From (Vε), we have for

i = 1, 2,

( f̄ 0
i (t), f ∗i (t),u∗i (t)) ∈ εi(t, x∗(t)), a.e. t ∈ I,

i.e., 
f̄ 0
i (t) ≥ f 0

i (t, x∗i (t),u
∗

i (t)), t ∈ I,
f ∗i (t) ∈ ∂i J(t, x∗(t)), t ∈ I,
u∗i (t) ∈ Ui(t, x∗(t)), t ∈ I.
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Therefore, (x∗,u∗) ∈ V[0,T]. By Fatou’s Lemma, we obtain that for i = 1, 2,∫ T

0
f̄ 0
i (t)dt =

∫ T

0
liml→+∞ψ̄

l
i(t)dt ≤ liml→+∞

∫ T

0
ψ̄l

i(t)dt

= liml→+∞

∫ T

0

∑
k≥1

bk,l f 0
i (t, xk+l

i (t),uk+l
i (t))dt

= liml→+∞

∑
k≥1

bk,l

∫ T

0
f 0
i (t, xk+l

i (t),uk+l
i (t))dt

=
∑
k≥1

bk,lliml→+∞

∫ T

0
f 0
i (t, xk+l

i (t),uk+l
i (t))dt

= mi.

Therefore, for i = 1, 2,

mi ≤ ϕi(x∗i ,u
∗

i ) =

∫ T

0
f 0
i (t, x∗i (t),u

∗

i (t))dt ≤ mi,

i.e., ∫ T

0
f 0
i (t, x∗i (t),u

∗

i (t))dt = mi = inf
(x,u)∈V[0,T]

ϕi(xi,ui)

with x = (x1, x2) and u = (u1,u2).
Thus, (x∗,u∗) is an optimal state-control pair. The proof is completed.

Remark 4.2. It is worth pointing out that the optimal control system (ϕ) reduce to the optimal control problem
(ϕ) in [14], via choosing appropriately the functions f 0

i , ϕi and ui, xi for i = 1, 2. By introducing the operators
εi : I × V1 × V2 → P(R × Vi × Ui), i = 1, 2 and using Mazur Theorem and the proof of Theorem 3.14, we prove
Theorem 4.1 for the existence of optimal state-control pairs of system (ϕ), which generalizes and extends Theorem 4.1
in [14] from the optimal control problem (ϕ) in [14] to the optimal control system (ϕ).
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