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Abstract. The purpose of this article is to analyze the existence of solutions for a system of integral
equations of Volterra type in the Fréchet space Lp

loc(R+) and prove a fixed point theorem of Darbo-type in
this space. The technique of measure of noncompactness by applying fixed point theorem is the main tool
in carrying out our proof. Moreover, we present an example to show the efficiency of our results.

1. Introduction

The notion of a measure of noncompactness (MNC) was introduced by Kuratowski [12] in 1930. Darbo’s
fixed point theorem [10] which ensures the existence of fixed point is a significant application of this
measure. Measure of noncompactness, Darbo fixed point theorem and generalizations of Darbo fixed
point theorem have been successfully applied to investigate the solvability and behavior of solutions of
differential equations and nonlinear integral equations ( see, for example, [2, 5, 7, 9]).

Recently, many authors studied solvability of a system of integral equations in different spaces. For
example: Aghajani et al. [2] generalized Darbo’s theorem and applied it to study the solvability of a system
of integral equations in Banach space. Allahyari et al.[4] analyzed the existence of solution for a class
of systems of functional integral equations of Volterra with two variables in Banach space and Olszowy
introduced a new family of measures of noncompactness in the spaces C(R+) and L1

loc(R+), then discussed
the solvability of a nonlinear functional integral equation with the initial value and differential equation of
neutral type with deviated argument in [13, 14].

The aim of this work is to study the existence of solutions for a system of integral equations of Volterra
type in the Fréchet space Lp

loc(R+). The structure of this paper is as follows. In Section 2, some preliminaries,
concepts and Tychonoff fixed point are recalled. Section 3 is devoted to prove a fixed point theorems
of Darbo-type in the spaces Lp

loc(R+). Finally in section 4, as an application of the results, we present an
existence result for a system of nonlinear functional integral equations of Volterra type

xi(t) = fi
(
t, x1(t), x2(t), . . . , xn(t),

∫ t

0
ki(t, s)xi(s)ds

)
, (1 ≤ i ≤ n) (1)

and an example is given to illustrate our results.
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2. Preliminaries

First, we introduce some notations and definitions which are used throughout this paper.
Let Lp(U) denote the space of Lebesgue integrable functions on U (U ⊂ R+) with the standard norm

‖x‖Lp(U) =
( ∫

U
|x(t)|pdt

) 1
p
.

We say that a function f : R+ −→ R belongs to Lp
loc(R+) if χK f ∈ Lp(R+) for every compact set K ⊂ R+. In

other word, f ∈ Lp
loc(R+) if and only if f ∈ Lp[0,T] for all T > 0. Let us consider the set Lp

loc(R+) equipped
with the family of seminorms ‖χ[0,T] f ‖p for each T > 0. Lp

loc(R+) becomes a Fréchet space furnished with the
distance

d(x, y) = sup
{ 1
2n min{1, ‖χ[0,n](x − y)‖p} : n ∈N

}
= sup

{ 1
2n min{1,

( ∫ n

0
|x(t) − y(t)|pdt

) 1
p
} : n ∈N

}
.

A sequence (xn) is convergent to x in Lp
loc(R+) if and only if for each T > 0, (xn) is convergent to x in Lp

[0,T](R+).

A nonempty subset X ⊂ Lp
loc(R+) is said to be bounded if

sup
{∥∥∥∥χ[0,T] f

∥∥∥∥
p

=
( ∫ T

0
| f (t)|pdt

) 1
p : f ∈ X

}
< ∞

for all T > 0.

The symbol MLp
loc(R+) stands for the family of nonempty bounded subset of Lp

loc(R+) and NLp
loc(R+) denote

its subfamily consisting of all relatively compact sets.

Definition 2.1. [8] A family of functions {µm}m∈N, where µm : MLp
loc(R+) −→ R+, is said to be a family of measures

of noncompactness in Lp
loc(R+) if it satisfies the following conditions:

1◦ The family ker{µm} = {X ∈ MLp
loc(R+) : µm(X) = 0 f or T > 0} is nonempty and kerµm ⊆ NLp

loc(R+), for any
m ∈N.

2◦ X ⊂ Y =⇒ µm(X) ≤ µm(Y).

3◦ µm(X) = µm(X) for T ≥ 0.

4◦ µm(ConvX) = µm(X) for T ≥ 0.

5◦ µm(λX + (1 − λ)Y) ≤ λµm(X) + (1 − λ)µm(Y), for λ ∈ [0, 1] and T ≥ 0.

6◦ If {Xn} is a sequence of closed sets fromMLp
loc(R+) such that Xn+1 ⊂ Xn, for n = 1, 2, · · · and if lim

n→∞
µm(Xn) = 0

for each T ≥ 0 then X∞ = ∩∞n=1Xn , ∅.

We say that a family of measures of noncompactness is regular [3], if it additionally satisfies the following
conditions:

7◦ µm(X ∪ Y) = max{µm(X), µm(Y)}.

8◦ µm(X + Y) ≤ µm(X) + µm(Y).

9◦ µm(λX) = |λ|µm(X) for λ ∈ R+.
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10◦ ker{µm} = NLp
loc(R+).

Now, we recall Tychonoff fixed point theorem that is basic for our main results.

Theorem 2.2. ([1]) Let E be a Hausdorff locally convex linear topological space, C a convex subset of E and F : C −→ E
a continuous mapping such that

F(C) ⊆ A ⊆ C

with A compact. Then F has at least one fixed point.

3. A Fixed Point Theorem in Lp

loc
(R+)

In this section, we recall a family of measures of noncompactness in the Fréchet space Lp
loc(R+) and prove

a Darbo-type fixed point theorem. First we characterize the compact subsets of Lp
loc(R+).

Theorem 3.1. ([11]) Let F be a bounded subset in Lp
loc(R+), 1 ≤ p < ∞. Then F is relatively compact if and only if

for every T > 0 and ε > 0, there exists δ > 0 such that

( ∫ T

0
| f (t) − f (t + h)|pdt

) 1
p
≤ ε

for all f ∈ F and |h| < δ.

Let X be a bounded subset of the space Lp
loc(R+), 1 ≤ p < ∞ and T > 0. For x ∈ X, and ε > 0. Let us

denote

ωT(x, ε) = sup{
( ∫ T

0
|x(t + h) − x(t)|pdt

) 1
p : |h| < ε},

ωT(X, ε) = sup{ωT(x, ε) : x ∈ X},

µT(X) = lim
ε→0

ωT(X, ε).

We have the following fact.

Theorem 3.2. ([6]) The family of mappings {µT
}T>0, where µT : MLp

loc(R+) −→ R+ is a family of measures of
noncompactness on Lp

loc(R+) and ker{µT
} = NLp

loc(R+).

Now, we give a fixed point theorem for continuous operators in the Fréchet space Lp
loc(R+).

Theorem 3.3. Let Ω be a nonempty, closed and convex subset of a Fréchet space Lp
loc(R+) and {µT

}T>0 is a family of
measures of noncompactness on Lp

loc(R+). Let Fi : Ωn
−→ Ω (0 ≤ i ≤ n) be a continuous operator such that

µT(F(X1,X2, . . . ,Xn) ≤ kT max
1≤i≤n

µT(Xi), (2)

where Xi ∈MLp
loc

and kT ∈ [0, 1) for all T > 0. Then there exist x1, x2, . . . , xn ∈ Ω such that

Fi(x∗1, x
∗

2, . . . , xn∗) = x∗i (3)

for all i = 1, 2, . . . ,n.
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Proof. Consider the operator F̃ : Ωn
−→ Ωn defined by

F̃(x1, x2, . . . , xn) = (F1(x1, . . . , xn), . . . ,Fn(x1, . . . , xn)).

Also, µ̃T(X) := max1≤i≤n{µT
i (Xi), } is a family of measures of noncompactness in the space Ωn where Xi,

i = 1, 2, . . . ,n denote the natural projections of X. Now, by induction, we define a sequence {Ωm} such that
Ω0 = Ωn and Ωm = Conv(F̃(Ωm−1)), m ≥ 1. Then we have F̃Ω0 = F̃Ωn

⊆ Ωn = Ω0,Ω1 = Conv(F̃Ω0) ⊆ Ωn = Ω0,
and by continuing this process we obtain

Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ · · · .

If there exists an integer N ≥ 0 such that µ̃T(ΩN) = 0 for all T > 0, then ΩN is relatively compact and since
F̃ΩN ⊆ Conv(F̃ΩN) = ΩN+1 ⊆ ΩN, thus Tychonoff fixed point theorem implies that F̃ has a fixed point. So
there exists T1 > 0 such that µ̃T1 (Ωn) , 0 for n ≥ 0. By our assumptions, we get

µ̃T1 (Ωn+1)) = µ̃T1 (Conv(F̃Ωn)) = µ̃T1 (F̃Ωn) ≤ kT1 µ̃T1 (Ωn). (4)

Since kT1 ∈ [0, 1), so µ̃T1 (Ωn) is a positive decreasing sequence of real numbers. thus, there is a r ≥ 0 such
that µ̃T1 (Ωn) −→ r as n −→ ∞. On the other hand, in view of (4) we obtain

lim sup
n−→∞

µ̃T1 (Ωn+1)) ≤ lim sup
n−→ ∞

kT1 µ̃T1 (Ωn).

This show that r ≤ kT1 r. Consequently r = 0. Hence we deduce that µ̃T1 (Ωn) −→ 0 as n −→ ∞. Since

the sequence (Ωn) is nested, in view of axiom (6◦) of Definition 2.1 we derive that the set Ω∞ =

∞⋂
n=1

Ωn is

nonempty, closed and convex subset of the set Ωn. Moreover, the set Ω∞ is invariant under the operator
F̃ and belongs to KerµT. Now, using Tychonoff fixed point theorem implies that F̃ has a fixed point in set
Ωn.

4. Application

In this section, we present an existence result for a system of large class nonlinear functional integral
equations of Volterra type in the spaces Lp

loc(R+).

Definition 4.1. A function f : R+ ×Rn
−→ R is said to have the Carathéodory property if

(i) For all x ∈ Rn the function t→ f (t, x) is measurable on R+.

(ii) For almost all t ∈ R+ the function x→ f (t, x) is continuous on Rn.

Lemma 4.2. [5] Let Ω be a Lebesgue measurable subset of Rn and 1 ≤ p ≤ ∞. If { fn} is convergent to f ∈ Lp(Ω) in
the Lp-norm, then there is a subsequence { fnk } which converges to f a.e., and there is 1 ∈ Lp(Ω), 1 ≥ 0, such that

| fnk (x)| ≤ 1(x), a.e.x ∈ Ω (5)

Theorem 4.3. ( Minkowki’s Inequality for Integrals)[5]. Suppose that (X,M, µ) and (Y,N , ν) are σ-finite measure
spaces, and let f be an (M⊗N)-measurable function on X × Y. If f ≥ 0 and 1 ≤ p < ∞, then[ ∫ (∫

f (x, y)dν(y)
)p

dµ(x)
] 1

p
≤

∫ (∫
f (x, y)pdµ(x)

) 1
p dν(y).

We will consider the Equation (1) under the following assumptions:
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(i) fi : R+ × Rn+1
−→ R (1 ≤ i ≤ n) satisfies the Carathéodory conditions, there exists λ ∈ [0, 1) and

a ∈ Lp
loc(R+) such that

| fi(t, x1, x2, . . . , xn+1) − fi(s, y1, y2, . . . .yn+1)| ≤ |a(t) − a(s)| + λmax
1≤k≤n
{|xk − yk|} + |xn+1 − yn+1|, (6)

for any xk, yk ∈ R and almost all s, t ∈ R+.

(ii) fi(., 0, 0, . . . , 0) ∈ Lp
loc(R+) (1 ≤ i ≤ n).

(iii) ki : R+ ×R+ −→ R (1 ≤ i ≤ n) is measurable function and there exist 1, b ∈ Lp
loc such that |k(t, s)| ≤ 1(t)

for all t, s ∈ R+ and

ess sup
s∈[0,T]

∫ T

0
|ki(t, s)|dt ≤ b(T),

and

ess sup
t∈[0,T]

∫ T

0
|ki(t, s)|ds ≤ b(T).

for all T > 0 and 1 ≤ i ≤ n.

(iv) There exists a positive increasing function r such that

λr(T) + max
1≤i≤n
{‖ fi(., 0, 0, . . . , 0)‖Lp[0,T]} + b(T)r(T) ≤ r(T), (7)

Remark 4.4. Under the hypothesis (iii) the linear operator Ki : Lp[0,T]→ Lp[0,T],
(1 ≤ i ≤ n) defined by

(Kix)(t) =

∫ t

0
ki(t, s)x(s)ds (8)

is a continuous linear operator and ‖Kix‖Lp[0,T] ≤ b(T)‖x‖Lp[0,T] for all T > 0.

Theorem 4.5. Under assumptions (i)-(iv), the Equation (1) has at least a solution in the space Lp
loc(R+).

Proof. In the first step, we define the operator Fi :
{
Lp

loc(R+)
}n
→ Lp

loc(R+),
(1 ≤ i ≤ n) by

Fi(x1, . . . , xn)(t) = fi(t, x1(t), . . . , xn(t),
∫ t

0
ki(t, s)xi(s)ds).

Fix i ∈ {1, 2, . . . ,n}. In view of the Carathéodory conditions, we infer that Fi(x1, . . . , xn) is measurable for any
x1, . . . , xn ∈ Lp

loc(R+).

Now, we show that Fi(x1, . . . , xn) ∈ Lp
loc(R+) for any x1, . . . , xn ∈ Lp

loc(R+). For this purpose, we only need to
prove that Fi(x1, . . . , xn) ∈ Lp[0,T] for all T > 0. Let us fix T > 0. Then, applying assumptions (i)-(iv), we
have

|Fi(x1, . . . , xn)(t)| ≤ | fi(t, x1(t), . . . , xn(t),
∫ t

0
ki(t, s)xi(s)ds) − f (t, 0, . . . , 0) + f (t, 0, . . . , 0)|

≤ λmax
1≤k≤n
{|xk(t)|} + | fi(t, 0, . . . , 0)| +

∣∣∣∣ ∫ t

0
ki(t, s)xi(s)ds

∣∣∣∣
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for any x ∈ R and almost all t ∈ R+. Therefore,

‖Fi(x1, . . . , xn)‖Lp[0,T] ≤ λmax
1≤k≤n
{‖xk‖Lp[0,T]} + ‖ fi(., 0, . . . , 0)‖Lp[0,T]

+
( ∫ T

0

∣∣∣∣ ∫ t

0
ki(t, s)xi(s)ds

∣∣∣∣pdt
) 1

p

≤ λmax
1≤k≤n
{‖xk‖Lp[0,T]} + ‖ fi(., 0, . . . , 0)‖Lp[0,T]

+
( ∫ T

0

∣∣∣∣ ∫ T

0
χ[0,t](s)ki(t, s)xi(s)ds

∣∣∣∣pdt
) 1

p

≤ λmax
1≤k≤n
{‖xk‖Lp[0,T]} + ‖ fi(., 0, . . . , 0)‖Lp[0,T] + b(T)‖xi‖Lp[0,T].

Thus, Fi(x1, . . . , xn) ∈ Lp
loc(R+), and Fi is well defined and if we define the subset Q of Lp

loc(R+) by

Q = {x ∈ Lp
loc(R+) : ‖x‖Lp[0,T] ≤ r(T) f or T > 0}

then Q is nonempty, convex, and closed in Lp
loc(R+). Next, observe that condition (iv) ensure that Fi trans-

forms Qn into Q for all i = 1, 2, . . . ,n. Now, we show that the map F is continuous. To this end, we only
need to show that Fi (x1, . . . , xn) is a continuous operator from {Lp[0,T]}n into Lp[0,T] for all T > 0. Let T > 0
be fixed and {(xm

1 , . . . , x
m
n } be an arbitrary sequence in {Lp[0,T]}n which converges to (x1, . . . , xn) ∈ {Lp[0,T]}n

in the Lp[0,T]-norm. Since the Volterra integral operator Ki generated by ki maps (continuously) the space
Lp[0,T] into itself, so Kxn converges to Kx. By using Lemma 4.2, there is a subsequence {(xmk

1 , . . . , x
mk
n }which

converges to (x1, . . . , xn) a.e. ,{Kix
mk
i } converges to Kixi a.e. and there is h ∈ Lp[0,T], h ≥ 0, such that

max{|xmk
i (t)|, |Kix

mk
i (t)| : 1 ≤ i ≤ n} ≤ h(t). a.e. on [0,T] (9)

Since xmk
i → xi almost everywhere in [0,T] and f satisfies the Carathéodory conditions, so

fi(t, x
mk
1 (t), . . . , xmk

n (t),Kix
mk
i (t)) −→ fi(t, x1(t), . . . , xn(t),Kixi(t)), (10)

for almost all t ∈ [0,T]. From inequalities (6) and (9), we infer that

| fi(t, x
mk
1 (t), . . . , xmk

n (t),Kix
mk
i (t))| ≤ 2h(t) + | fi(t, 0, . . . , 0)|, a.e. on [0,T]. (11)

As a consequence of the Lebesgue’s Dominated Convergence Theorem, (10) and (11) yield∫ T

0

(
fi(s, x

mk
1 (s), . . . , xmk

n (s),Kix
mk
i (s)) − fi(s, x1(s), . . . , xn(s),Kixi(s))

)p
ds −→ 0

and
‖Fi(x

mk
1 , . . . , x

mk
n ) − F(x1, . . . , xn)‖Lp −→ 0.

Since any sequence {(xm
1 , . . . , x

m
n )} converging to (x1, . . . , xn) ∈ {Lp[0,T]}n has a subsequence {(xmk

1 , . . . , x
mk
n )}

such that Fi(x
mk
1 , . . . , x

mk
n ) −→ Fi(x1, . . . , xn) in Lp[0,T], we can conclude that Fi is a continuous operator.

In order to finish the proof, Now we show that F satisfies assumptions imposed in Theorem 3.3. The
proof will be divided into two steps.

Step 1: If we define ki,s : R+ −→ R+ by ki,s(t) := ki(t, s) for all s ∈ R+, then we show thatωT({ki,s : s ∈ [0,T]}) = 0.
To do this, fix arbitrary ε > 0. We define the function ϑi : [0,T] −→ R as follows

ϑi(s) =

∫ T

0
|ki(t, s)|pdt. (12)
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Since there exists 1 ∈ Lp
loc(R+) such that |ki(t, s)| ≤ 1(t) for all t, s ∈ [0,T], so ϑi is continuous and there exists

δ1 > 0 such that |ϑi(v) − ϑi(w)| < ε for all v,w ∈ [0,T] with |v − w| < δ1. Moreover, there exist s1, . . . , sm such
that [0,T] ⊆ ∪m

i=1Bδ1 (si). Since {ki,s1 , . . . , ki,sm } is a compact subset of Lp
loc(R+), so we haveωT({ki,s1 , . . . , ki,sm }) = 0.

In the other word there exists δ2 > 0 such that∫ T

0
|ki,sl (t + h) − ki,sl (t)|

pdt ≤ ε

where |h| ≤ δ2. for every s ∈ [0,T] and |h| ≤ δ2, there exist sl0 such that |s − sl0 | ≤ δ1 and

( ∫ T

0
|ki,s(t) − ki,s(t + h)|pdt

) 1
p
≤

( ∫ 1

0
|ki,s(t) − ki,sl0

(t)|pdt
) 1

p

+
( ∫ T

0
|ki,sl0

(t) − ki,s0
(t + h)|pdt

) 1
p

+
( ∫ T

0
|ki,s(t + h) − ki,sl0

(t + h)|pdt
) 1

p

≤2|ϑi(s) − ϑi(sl0 )|p + ε

≤2εp + ε.

So, we have

ωT(ki,s, δ2) ≤ 2εp + ε,

ωT({ki,s : s ∈ [0,T]}, δ2) ≤ 2εp + ε,

and

µT({ki,s : s ∈ [0,T]}) = 0.

Step 2: Let X1,X2, . . . ,Xn be nonempty and bounded subsets of Lp
loc(R+), and T > 0. Then Fi satisfies condition

2.
Let X1, . . . ,Xn be a nonempty and bounded subset of Lp

loc(R+), and assume that T > 0 and ε > 0 are chosen
arbitrarily. Let t, h ∈ [0,T], with |h| < ε and x ∈ X, we obtain

|Fi(x1, . . . , xn)(t) − Fi(x1, . . . , xn)(t + h)| ≤
∣∣∣∣ fi(t, x1(t), . . . , xn(t),

∫ t

0
ki(t, s)xi(s)ds

)
− fi

(
t + h, x1(t + h), . . . , xn(t + h)

,

∫ t+h

0
ki(t + h, s)xi(s)ds

)∣∣∣∣
≤ |a(t) − a(t + h)| + λmax

1≤k≤n
|xk(t) − xk(t + h)|

+|

∫ t

0
ki(t, s)xi(s)ds −

∫ t

0
ki(t + h, s)xi(s)ds|

+|

∫ t+h

t
ki(t + h, s)xi(s)ds|
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Thus,

( ∫ T

0
|Fi(x1, . . . , xn)(t + h) − Fi(x1, . . . , xn)(t)|pdt

) 1
p
≤

( ∫ T

0
|a(t) − a(t + h)|pdt

) 1
p

+
( ∫ T

0
λmax

1≤k≤n
|xk(t) − xk(t + h)|pdt)

1
p
)

+
( ∫ T

0
|

∫ t

0
ki(t, s) − ki(t + h, s)||xi(s)|ds|pdt

) 1
p

+
( ∫ T

0
|

∫ t+h

t
ki(t + h, s)|xi(s)|ds|pdt

) 1
p

≤ ωT(a, ε) + λmax
1≤k≤n
{ωT(xk, ε)} +

∫ T

0
|xi(s)|

( ∫ T

0
|ki(t, s) − ki(t + h, s)|pdt

) 1
p ds

+
( ∫ T

0
|

∫ t+h

t
|1(t)||xi(s)|ds|pdt

) 1
p

≤ ωT(a, ε) + λmax
1≤k≤n
{ωT(x, ε)}

+T‖xi‖Lp[0,T]ω
T({ki,s : s ∈ [0,T]}, ε)

+h‖xi‖Lp[0,T]‖1‖Lp[0,T]

By using the above estimate we have

ωT(F(X1 × . . . × Xn), ε) ≤ ωT(a, ε) + λmax
1≤k≤n
{ωT(Xk, ε)} + Tr(T)ωT({ki,s : s ∈ [0,T]}, ε)

+hr(T)‖1‖Lp[0,T]

Since the singleton {a} is a compact set and µT({ki,s : s ∈ [0,T]}) = 0, so we have ωT(a, ε) → 0 and
ωT({ki,s : s ∈ [0,T]}, ε) −→ 0 as ε −→ 0. Then we obtain

µT(Fi(X1 × . . . × Xn)) ≤ λmax
1≤k≤n
{µT(Xk)}, (13)

Obviously, Fi satisfies condition 2 and thus by Theorem 3.3, there exist x∗1, . . . x
∗
n ∈ Lp

loc(R+) that are solutions
of the system of integral Equation (1), and the proof is complete.

Example 4.6. Consider the following functional integral equation

xi(t) = t3 + (
1
2i

i∑
j=1

|x j(t)|) +

∫ t

0
e−2(t+s)x(s)ds, (1 ≤ i ≤ n). (14)

Eq. (14) is a special case of Eq. (1) with

fi(t, x1, x2, ..., xn+1) = t3 + (
1
2i

i∑
j=1

|x j(t)|) + xn+1, (1 ≤ i ≤ n),

ki(t, s) = e−2(t+s).
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Let us put a(t) = t3 and λ = 1
2i , (1 ≤ i ≤ n). We show that the assumptions of Theorem 4.5 are satisfied. Indeed,

we have

| fi(t, x1, x2, ..., xn+1) − fi(s, y1, y2, ..., yn+1)| = |(t3 + (
1
2i

i∑
j=1

|x j(t)| + xn+1)

−(s3 + (
1
2i

i∑
j=1

|y j(s)| + yn+1)|

≤ |t3
− s3
| + (

1
2i

i∑
j=1

|x j(t) − y j(s)|

+|xn+1 − yn+1|

≤ |t3
− s3
| + (

1
2i

max
1≤ j≤n
{

i∑
j=1

|x j(t) − y j(s)|}

+|xn+1 − yn+1|, (1 ≤ i ≤ n).

Moreover, the function f is continuous on the set R+ ×Rn+1 and condition (i) and (ii) hold.
Obviously, k is measurable function and if we define 1(t) = e−2t and b(T) = 1−e−T

2 we obtain

ess sup
s∈[0,T]

∫ T

0
|k(t, s)|dt = ess sup

s∈[0,T]

∫ T

0
e−2(t+s)dt ≤

1 − e−T

2
= b(T),

for all T > 0 and condition (iii) holds. It is also easy to verify that there exists a function r satisfies the inequality in
condition (iv), i.e.

λr(T) + max
1≤i≤n

‖ fi(., 0, 0, . . . , 0)‖Lp[0,T] + b(T)r(T) =
1
2i

r(T) +
T4

4
+

1 − e−T

2
r(T) ≤ r(T).

Consequently, all the conditions of Theorem 4.5 are satisfied. This implies that the functional integral Eq. (14) has at
least one solution which belongs to the space Lp

loc(R+).
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