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Abstract. We determine the representation theorem, distortion theorem, coefficients estimate and Bohr’s
radius for log-harmonic starlike mappings of order α, which are generalization of some earlier results. In
addition, the inner mapping radius of log-harmonic mappings is also established by constructing a family
of 1-slit log-harmonic mappings. Finally, we introduce pre-Schwarzian, Schwarzian derivatives and Bloch’s
norm for non-vanishing log-harmonic mappings, several properties related to these are also obtained.

1. Introduction

LetB denote the set of all bounded analytic functions defined on the unit diskD = {z : |z| < 1} satisfying
|ω(z)| < 1 for all z ∈ D. Then the differential operators

∂
∂z

=
1
2

(
∂
∂x
− i

∂
∂y

)
and

∂

∂z
=

1
2

(
∂
∂x

+ i
∂
∂y

)
show that the Laplacian is given by

∆ = 4
∂2

∂z∂z
=
∂2

∂x2 +
∂2

∂y2 .

Thus a C2-function f defined on the unit diskD is said to be harmonic inD if ∆ f = 0 therein. Analogously,
a log-harmonic mapping defined onD is a solution of the nonlinear elliptic partial differential equation

fz
f

= µ
fz
f
,
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for some µ ∈ B, where µ is called the second complex-dilatation of f . It follows that the Jacobian

J f = | fz|2 − | fz|2 = | fz|2(1 − |µ|2)

is positive and all non-constant log-harmonic mappings are therefore sense-preserving and open inD. If f
does not vanish inD, then f can be expressed as

f (z) = h(z)1(z),

where h and 1 are analytic in D. On the other hand, if f is a non-constant log-harmonic mapping that
vanishes only at z = 0, then f admits the representation

f (z) = zm
|z|2βmh(z)1(z), (1)

where m is a non-negative integer, Reβ > −1/2, h and 1 are analytic in D satisfying h(0) , 0 and 1(0) = 1
(see [4]). We see that β in (1) depends only on µ(0) and can be expressed as

β = µ(0)
1 + µ(0)

1 − |µ(0)|2
.

Note that f (0) , 0 if and only if m = 0, and that a univalent log-harmonic mapping inD vanishes at the
origin if and only if m = 1. In other words, every univalent log-harmonic mapping inDwhich vanishes at
the origin has the form

f (z) = z|z|2βh(z)1(z),

where Reβ > −1/2 and 0 < (h1)(D). The class of such functions has been widely studied. See for example
[4, 5, 7, 8].

In this paper, our emphasis is primarily on sense-preserving univalent log-harmonic mappings in D
with µ(0) = 0. These mappings have the form

f (z) = zh(z)1(z), (2)

where h and 1 are analytic inD such that

h(z) = exp

 ∞∑
n=1

anzn

 and 1(z) = exp

 ∞∑
n=1

bnzn

 . (3)

Here h(z) and 1(z) may be called as analytic and co-analytic factors of f (z). Denote by SLh the class which
consists of all such mappings.

It follows from (2) that the functions h, 1 and the dilatation µ satisfy

µ(z) =
z1′(z)/1(z)

1 + zh′(z)/h(z)
=

z
(
log 1

)′ (z)

1 + z
(
log h

)′ (z)
. (4)

We say that a univalent log-harmonic mapping f of the form (2) is log-harmonic starlike mapping of
order α, denoted by f ∈ S∗Lh(α), if

∂
∂θ

(
arg f (reiθ)

)
= Re

(
D f (z)

f (z)

)
= Re

(
z fz(z) − z fz(z)

f (z)

)
> α,

for all z = reiθ
∈ D\{0} and for some 0 ≤ α < 1. If α = 0, then we get the class of log-harmonic starlike

mappings, S∗Lh(0) =: S∗Lh. If f is analytic inD, then denote by S∗(α) the class of analytic starlike function of
order α, and S∗(0) =: S∗.

The following theorem establishes a link between the classes S∗Lh(α) and S∗(α).
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Theorem 1.1. ([5, Lemma 2.4] and [1, Theorem 2.1]) Let f (z) = zh(z)1(z) be a log-harmonic mapping on D,
0 < (h1)(D). Then f ∈ S∗Lh(α) if and only if ϕ ∈ S∗(α), where ϕ(z) = zh(z)/1(z).

In [1], Abdulhadi and Abumuhanna obtained the following representation theorem and distortion
theorem for functions in S∗Lh(α).

Theorem 1.2. ([1, Theorem 2.2]) f (z) = zh(z)1(z) ∈ S∗Lh(α) with µ(0) = 0 if and only if there are two probability
measures δ and κ such that

f (z) = z exp
(∫

∂D

∫
∂D

K(z, η, ξ) dδ(η)dκ(ξ)
)
,

where

K(z, η, ξ) = (1 − α) log
(

1 + ξz
1 − ηz

)
+ T(z, η, ξ).

Here

T(z, η, ξ) =


− 2(1 − α)Im

(
η + ξ

η − ξ

)
arg

(
1 − ξz
1 − ηz

)
− 2α log |1 − ξz| if |η| = |ξ| = 1, η , ξ,

(1 − α)Re
(

4ηz
1 − ηz

)
− 2α log |1 − ηz| if |η| = |ξ| = 1, η = ξ.

Theorem 1.3. ([1, Theorem 3.1]) Let f (z) = zh(z)1(z) ∈ S∗Lh(α) with µ(0) = 0. Then for z ∈ D we have

|z|
(1 + |z|)2α exp

(
(1 − α)

−4|z|
1 + |z|

)
≤ | f (z)| ≤

|z|
(1 − |z|)2α exp

(
(1 − α)

4|z|
1 − |z|

)
.

The equalities occur if and only if f (z) is one of the functions of the form η fα(ηz), |η| = 1, where fα(z) is given by

fα(z) =
z

1 − z
1

(1 − z)2α−1 exp
(
(1 − α)Re

( 4z
1 − z

))
. (5)

The paper is organized as follows. In Section 2, we present the representation theorem for the analytic
and the co-analytic products of S∗Lh(α) and use them to derive distortion theorems, coefficients estimates
and Bohr’s radius. In Section 4, the inner mapping radius of log-harmonic mappings is established by
constructing a family of 1-slit log-harmonic mappings and propose a problem of the inner mapping radius
for log-harmonic mappings. In Section 5, we introduce pre-Schwarzian, Schwarzian derivatives and log-
harmonic Bloch mappings and in Section 6, we continue to discuss the log-harmonic Bloch space BLh of
non-vanishing log-harmonic mappings.

2. Coefficients Estimate

In order to prove our main results, we shall need the following lemmas.

Lemma 2.1. ([22, Corollary 3.6]) Let p(z) be analytic in D with p(0) = 1. Then Re p(z) > 0 in D if and only if
there is a probability measure δ on ∂D such that

p(z) =

∫
∂D

1 + ηz
1 − ηz

dδ(η), z ∈ D.

Since each p has the form

p(z) =
1 + µ(z)
1 − µ(z)

= 1 +
2µ(z)

1 − µ(z)

for some µ ∈ B, we have the following equivalent version of Lemma 2.1.
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Lemma 2.2. If µ ∈ B with µ(0) = 0, then

µ(z)
1 − µ(z)

=

∫
∂D

ξz
1 − ξz

dκ(ξ), z ∈ D,

for some probability measure κ on ∂D.

Theorem 2.3. A log-harmonic mapping f (z) = zh(z)1(z) ∈ S∗Lh(α) if and only if there are two probability measures
δ and κ on ∂D such that

h(z) = exp
(∫

∂D

∫
∂D

K1(z, η, ξ) dδ(η) dκ(ξ)
)
, (6)

where

K1(z, η, ξ) =


(

(1 − 2α)η + ξ

η − ξ
log

(
1 − ξz
1 − ηz

)
− log(1 − ηz)

)
if |η| = |ξ| = 1, η , ξ,

2(1 − α)ηz
1 − ηz

− log(1 − ηz) if |η| = |ξ| = 1, η = ξ,

(7)

and

1(z) = exp
(∫

∂D

∫
∂D

K2(z, η, ξ) dδ(η) dκ(ξ)
)
, (8)

where

K2(z, η, ξ) =


(1 − 2α)η + ξ

η − ξ
log

(
1 − ξz
1 − ηz

)
+ (1 − 2α) log(1 − ηz) if η , ξ,

2(1 − α)ηz
1 − ηz

+ (1 − 2α) log(1 − ηz) if η = ξ.

Proof. The proof could be extracted from Theorem 1.2 after some computation. Because of it is independent
interest and use in our investigation, we need explicit representation for the analytic and co-analytic parts
h(z) and 1(z) of f (z), and thus we include the proof.

According to Theorem 1.1, we see that f (z) = zh(z)1(z) ∈ S∗Lh(α) if and only if ϕ(z) = zh(z)/1(z) ∈ S∗(α),
i.e.,

zϕ′(z)
ϕ(z)

= (1 − α)p(z) + α,

where p is analytic inD such that p(0) = 1 and Re p(z) > 0 inD. Thus, by Lemma 2.1, it follows that

zϕ′(z)
ϕ(z)

= (1 − α)
∫
∂D

1 + ηz
1 − ηz

dδ(η) + α, (9)

and therefore, we have the following well-known representation for ϕ(z) ∈ S∗(α):

ϕ(z) = z exp
(
−2(1 − α)

∫
∂D

log(1 − ηz) dδ(η)
)
. (10)

From (4), (9) and Lemma 2.2, it follows that

1(z) = exp
(∫ z

0

(
µ(s)

1 − µ(s)
·
ϕ′(s)
ϕ(s)

)
ds

)
(11)
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so that

1(z) = exp
(∫ z

0

∫
∂D

∫
∂D

ξ
1 − ξs

(
(1 − α)

1 + ηs
1 − ηs

+ α

)
dδ(η) dκ(ξ) ds

)
(12)

for some probability measures δ and κ on ∂D.
Moreover, if η , ξ, we may reduce 1 in the form

1(z) = exp
(∫

∂D

∫
∂D

∫ z

0

ξ
1 − ξs

(
(1 − α)

1 + ηs
1 − ηs

+ α

)
ds dδ(η) dκ(ξ)

)
= exp

(∫
∂D

∫
∂D

(
(1 − 2α)η + ξ

η − ξ
log(1 − ξz) −

2(1 − α)ξ
η − ξ

log(1 − ηz)
)

dδ(η) dκ(ξ)
)

= exp
(∫

∂D

∫
∂D

(
(1 − 2α)η + ξ

η − ξ
log

(
1 − ξz
1 − ηz

)
+ (1 − 2α) log(1 − ηz)

)
dδ(η) dκ(ξ)

)
.

On the other hand, if η = ξ, then from (12) we see that

1(z) = exp
(∫

∂D

∫
∂D

∫ z

0

η

1 − ηs

(
(1 − α)

1 + ηs
1 − ηs

+ α

)
ds dδ(η) dκ(η)

)
= exp

(∫
∂D

∫
∂D

(
2(1 − α)ηz

1 − ηz
+ (1 − 2α) log(1 − ηz)

)
dδ(η) dκ(η)

)
.

Finally, by writing

h(z) =
ϕ(z)

z
1(z)

the representation for h can easily be obtained from the last expression for 1 and (10).

Theorem 2.4. Let f (z) = zh(z)1(z) ∈ S∗Lh(α) with µ(0) = 0. Then for z ∈ D,

(1) 1
1+|z| exp

(
(1 − α)−2|z|

1+|z|

)
≤ |h(z)| ≤ 1

1−|z| exp
(
(1 − α) 2|z|

1−|z|

)
;

(2) 1
(1+|z|)2α−1 exp

(
(1 − α)−2|z|

1+|z|

)
≤ |1(z)| ≤ 1

(1−|z|)2α−1 exp
(
(1 − α) 2|z|

1−|z|

)
.

The equalities occur if and only if f (z) is one of the functions of the form η fα(ηz), |η| = 1, where fα(z) is given by (5).

Proof. Let ϕ(z) = zh(z)/1(z) ∈ S∗(α) so that

h(z) =
ϕ(z)

z
1(z) and f (z) = ϕ(z)|1(z)|2.

For |z| = r < 1, by Theorem 1.1, we know that∣∣∣∣∣zϕ′(z)
ϕ(z)

∣∣∣∣∣ ≤ (1 − α)
1 + r
1 − r

+ α.

Because µ ∈ Bwith µ(0) = 0, we have∣∣∣∣∣ µ(z)
z(1 − µ(z))

∣∣∣∣∣ ≤ 1
1 − r

and |ϕ(z)| ≤
r

(1 − r)2(1−α)
,

which by (9) and (11) imply that

|1(z)| ≤ exp
(∫ r

0

1
1 − s

[
(1 − α)

1 + s
1 − s

+ α
]

ds
)

= exp
(
(1 − α)

2r
1 − r

− (2α − 1) log(1 − r)
)

=
1

(1 − r)2α−1 exp
(
(1 − α)

2r
1 − r

)
.
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The known estimate for ϕ ∈ S∗(α) and the last inequality give

|h(z)| =
∣∣∣∣∣ϕ(z)

z

∣∣∣∣∣ |1(z)|

≤
1

(1 − r)2(1−α)
·

1
(1 − r)2α−1 exp

(
(1 − α)

2r
1 − r

)
=

1
1 − r

exp
(
(1 − α)

2r
1 − r

)
.

Equality occurs if and only if µ(z) = ηz and ϕ(z) = z
(1−z)2(1−α) , |η| = 1, which leads to f (z) = η fα(ηz), where

fα(z) is given by (5).
For the left side estimates of (2), by (6), we obtain that

log |h(z)| = Re
(∫

∂D

∫
∂D

K1(z, ξ, η) dδ(η) dκ(ξ)
)
,

where K1(z, ξ, η) dδ(η) is defined by (7) and may be rewritten as

K1(z, ξ, η) =


(1 − α)

η + ξ

η − ξ
log

(
1 − ξz
1 − ηz

)
− α log(1 − ξz) − (1 − α) log(1 − ηz) if η , ξ,

2(1 − α)ηz
1 − ηz

− log(1 − ηz) if η = ξ,

and |η| = |ξ| = 1, Then for |z| = r, we have

log |h(z)| = Re
(∫

∂D

∫
∂D

K1(z, ξ, η) dδ(η) dκ(ξ)
)

≥ min
δ, κ

{
min
|z|=r

Re
(∫

∂D

∫
∂D

K1(z, ξ, η) dδ(η) dκ(ξ)
)}

= min
{

min
|z|=r

inf
0<|l|≤π/2

[
−(1 − α)Im

(
1 + e2il

1 − e2il

)
arg

(
1 − e2il(ηz)

1 − ηz

)]
− log(1 + r),

(1 − α)
−2r
1 + r

− log(1 + r)
}
,

where e2il = ηξ. Now, we let

Φr(l) =


min
|z|=r

[
−(1 − α)Im

(
1 + e2il

1 − e2il

)
arg

(
1 − e2il(ηz)

1 − ηz

)]
− log(1 + r) if 0 < |l| < π/2,

(1 − α)
−2r
1 + r

− log(1 + r) if l = 0.

In a manner similar in the proof of [11, Theorem 2], we see that the function Φr(l) is continuous and is
even in the interval |l| ≤ π/2. Hence

log |h(z)| ≥ inf
0≤|l|≤π/2

Φr(l) = (1 − α)
−2r
1 + r

− log(1 + r).

For the lower bound of |1(z)| in Theorem 2.4(2), a similar discussion applied to (8) yields

log |1(z)| ≥ inf
0≤|l|≤π/2

(
Φr(l) + 2(1 − α) log(1 + r)

)
= (1 − α)

−2r
1 + r

− (2α − 1) log(1 + r).

The proof is complete.

Corollary 2.5. Let f (z) = zh(z)1(z) ∈ S∗Lh(α). Also, let H(z) = zh(z) and G(z) = z1(z). Then
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(1) 1
2 e1−α ≤ d(0, ∂H(D)) ≤ 1;

(2) 1
22α−1 e1−α ≤ d(0, ∂G(D)) ≤ 1;

(3) 1
22α e2(1−α) ≤ d(0, ∂ f (D)) ≤ 1.

The equalities occur if and only if f (z) is one of the functions of the form η fα(ηz), |η| = 1, where fα(z) is given by (5).

Proof. By Theorem 2.4,

d(0, ∂H(D)) = lim inf
|z|→1

|H(z) −H(0)| = lim inf
|z|→1

|H(z) −H(0)|
|z|

= lim inf
|z|→1

|h(z)| ≥
1

2 e1−α .

On the other hand, the minimum modulus principle shows that

d(0, ∂H(D)) = lim inf
|z|→1

|h(z)| ≤ 1,

since |h(0)| = 1. The same approach may be applied to G(z) and f (z) to find proofs of the remaining
inequalities.

Now, we give a sharp upper bound for the coefficients of h(z) and 1(z).

Theorem 2.6. Let f (z) = zh(z)1(z) ∈ S∗Lh(α). Then

|an| ≤ 2(1 − α) +
1
n

and |bn| ≤ 2(1 − α) +
2α − 1

n
(13)

for all n ≥ 1. The equalities occur if and only if f (z) is one of the functions of the form η fα(ηz), |η| = 1, where fα(z) is
given by (5).

Proof. From (6) and (8), we get the following expressions

an =
1
n

∫
∂D

∫
∂D

(
ηn +

(1 − 2α)η + ξ

η − ξ

(
ηn
− ξn)) dδ(η)dκ(ξ)

=
1
n

∫
∂D

ηn +

∫
∂D

((1 − 2α)η + ξ
) n−1∑

k=0

ηn−k−1ξk

 dκ(ξ)

 dδ(η)

and

bn =
1
n

∫
∂D

∫
∂D

(
(2α − 1)ηn +

(1 − 2α)η + ξ

η − ξ

(
ηn
− ξn)) dδ(η)dκ(ξ)

=
1
n

∫
∂D

(2α − 1)ηn +

∫
∂D

((1 − 2α)η + ξ
) n−1∑

k=0

ηn−k−1ξk

 dκ(ξ)

 dδ(η).

The maximum of |an| (resp. |bn|) is attained when δ and κ are Dirac measures. Therefore, we have

|an| ≤ max

1
n

∣∣∣∣∣∣∣ηn +
(
(1 − 2α)η + ξ

) n−1∑
k=0

ηn−k−1ξk

∣∣∣∣∣∣∣ : |η| = |ξ| = 1


≤ 2(1 − α) +

1
n

and

|bn| ≤ max

1
n

∣∣∣∣∣∣∣(2α − 1)ηn +
(
(1 − 2α)η + ξ

) n−1∑
k=0

ηn−k−1ξk

∣∣∣∣∣∣∣ : |η| = |ξ| = 1


≤ 2(1 − α) +

2α − 1
n

.
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The equalities occur if and only if f (z) is one of the functions of the form η fα(ηz), |η| = 1, where fα(z) is given
by (5), which may be rewritten as

fα(z) = z exp

 ∞∑
n=1

(
2(1 − α) +

1
n

)
zn

 exp

 ∞∑
n=1

(
2(1 − α) +

2α − 1
n

)
zn

.
This completes the proof.

3. Bohr’s Radius for S∗
Lh

(α)

The classical Bohr inequality states that if f (z) =
∑
∞

n=0 anzn is analytic inD and | f (z)| ≤ 1 inD, then

Mr( f ) =

∞∑
n=0

|an|rn
≤ 1

for all |z| = r ≤ 1/3 (see Bohr [13]). Bohr actually obtained the inequality only for |z| ≤ 1/6, Wiener, Riesz
and Schur independently established the sharp inequality for |z| ≤ 1/3 and showed that the bound 1/3 was
sharp. See the recent survey on this topic [12] and the references therein. In recent years, the space of
subordinations and the space of complex-valued bounded harmonic mappings are considered in the study
of Bohr’s inequality, for example in [9, 10, 24].

The following results concern Bohr’s radius of log-harmonic starlike mappings of order α.

Theorem 3.1. Let f (z) = zh(z)1(z) ∈ S∗Lh(α), H(z) = zh(z) and G(z) = z1(z). Then

(1) |z| exp

 ∞∑
n=1

|an||z|n
 ≤ d(0, ∂H(D)) for |z| ≤ rH, where rH is the unique root in (0, 1) of the equation

r
1 − r

exp
(
(1 − α)

2r
1 − r

)
=

1
2 e1−α , (14)

(2) |z| exp

 ∞∑
n=1

|bn||z|n
 ≤ d(0, ∂G(D)) for |z| ≤ rG, where rG is the unique root in (0, 1) of the equation

r
(1 − r)2α−1 exp

(
(1 − α)

2r
1 − r

)
=

1
22α−1 e1−α , (15)

(3) |z| exp

 ∞∑
n=1

(|an| + |bn|) |z|n
 ≤ d(0, ∂ f (D)) for |z| ≤ r f , where r f is the unique root in (0, 1) of the equation

r
(1 − r)2α exp

(
(1 − α)

4r
1 − r

)
=

1
22α e2(1−α)

. (16)

All the radius are sharp and attained by a suitable rotation of the log-harmonic right-half plane mapping fα(z), where
fα(z) is given by (5).

Proof. By assumption

H(z) = z exp

 ∞∑
n=1

anzn

 and G(z) = z exp

 ∞∑
n=1

bnzn

 .
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Firstly, we have

r exp

 ∞∑
n=1

|an|rn

 ≤ r exp

 ∞∑
n=1

(
2(1 − α) +

1
n

)
rn

 (by Theorem 2.6)

=
r

1 − r
exp

(
2(1 − α)

r
1 − r

)
=

1
2 e1−α ≤ d(0, ∂H(D)) (by (14) and Corollary 2.5).

Similarly, using Theorem 2.6, (15) and Corollary 2.5, we have

r exp

 ∞∑
n=1

|bn|rn

 ≤ r exp

 ∞∑
n=1

(
2(1 − α) +

2α − 1
n

)
rn


=

r
(1 − r)2α−1 exp

(
2(1 − α)

r
1 − r

)
≤ d(0, ∂G(D)).

Furthermore, using Theorem 2.6, (16) and Corollary 2.5, we have

r exp

 ∞∑
n=1

(|an| + |bn|) rn

 ≤ r exp

 ∞∑
n=1

(
4(1 − α) +

2α
n

)
rn


=

r
(1 − r)2α exp

(
(1 − α)

4r
1 − r

)
≤ d(0, ∂ f (D)).

Finally, it is evident that all radius are attained by suitable rotations of the log-harmonic right half plane
mapping fα(z), where fα(z) is given by (5).

If α = 0, then Theorem 3.1 reduces to Theorem 3 in [11]. If α→ 1, then rH = rG = 1/3, and r f = 3 − 2
√

2
which is same as Bohr’s radius of the subordinating family of univalent functions (see [9, Theorem 1])
which we recall for a ready reference below.

Theorem 3.2. Suppose that f , 1 are analytic in D such that f is univalent in D and 1(z) =
∑
∞

n=0 bnzn belongs to
S( f ) = {ϕ : ϕ ≺ f }, where ≺ denotes the usual subordination. Then inequality

∞∑
n=1

|bn|rn
≤ dist ( f (0), ∂ f (D))

holds with r f = 3 − 2
√

2 ≈ 0.17157. The sharpness of r f is shown by the Koebe function f (z) = z/(1 − z)2.

4. The Inner Mapping Radius of Log-harmonic Mappings

In [25], the authors have proposed the following two conjectures.

Conjecture 4.1. Let f (z) = zh(z)1(z) ∈ SLh, where the representation of h(z) and 1(z) are given by (3). Then for all
n ≥ 1,

(1) |an| ≤ 2 + 1
n ;

(2) |bn| ≤ 2 − 1
n ;

(3) |an − bn| ≤
2
n ;
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This conjecture has been verified for starlike log-harmonic mappings, see [6, Theorem 3.3] and [25,
Theorem 3.3]. The log-harmonic Koebe function f0(z) given by (5) gives the sharpness. In [25, Theorem 3.3],
it was also proposed that {w : |w| < 1/e2

} ⊆ f (D) if f (z) = zh(z)1(z) ∈ SLh.

Definition 4.2. For f (z) = zh(z)1(z) ∈ SLh , the inner mapping radius ρ0( f ) of the domain f (D) is to be the real
number ψ′(0), where ψ is the analytic function that mapsD onto f (D) such that ψ(0) = 0 and ψ′(0) > 0.

Recall that the tip of the slit of the log-harmonic Koebe function f0(z) is at −1/e2 while the tip of the slit
for the analytic Koebe function k(z) = z

(1−z)2 is at −1/4. Obviously, the images of the unit disk under 4
e2 k(z)

and under f0(z) are the same, i.e.,

4
e2 k(D) = f0(D).

This multiplier factor of 4/e2 is the inner mapping radius for f0(D). For other log-harmonic functions inSLh,
the inner mapping radius may be different. For example, consider log-harmonic right half-plane mapping
LR(z) and log-harmonic two-slits mapping LS(z) (see from Examples 2 and 3 in [25]) given by

LR(z) =
z

1 − z
exp

(
Re

( 2z
1 − z

))
and

LS(z) =
z

1 − z2 |1 − z2
| exp

(
Re

(
2z2

1 − z2

))
,

respectively. The inner mapping radius for LR(D) and LS(D) is 1/e, since

1
e

R(D) = LR(D) and
1
e

S(D) = LS(D),

where R(z) = z/(1 − z) and S(z) = z/(1 − z2) denote the analytic right half-plane mapping and two-slits
mapping, respectively.

In the example above ψ(z) = 4
e2 k(z), and the inner mapping radius ρ0( f0) = 4

e2 . In the following example,
we show that 4

e2 ≤ ρ0( f ) ≤ 4 for one slit log-harmonic mappings f ∈ SLh.

Example 4.3. Consider the family of functions Fλ(z) = f λ1 (z) f 1−λ
2 (z) (0 ≤ λ ≤ 1), where

f1(z) =
z

(1 − z)2 |1 − z|2 and f2(z) =
z

(1 − z)2 |1 − z|2 exp
(
Re

( 4z
1 − z

))
.

Simple calculations show that f1 and f2 are starlike log-harmonic with dilatations µ1(z) = −z and µ2(z) = z. Also
Fλ is log-harmonic with the dilatation

µ(z) =
z[(1 − 2λ) + z]
1 + (1 − 2λ)z

.

It is clear that |µ(z)| < 1 for 0 ≤ λ ≤ 1, and therefore Fλ is sense-preserving in D. Since the conditions of Theorem
3 in [2] are satisfied (or see the details in Example 3 in [2]), we thus have that Fλ is univalent and starlike in D.
Moreover,

Fλ(z) = f λ1 (z) f 1−λ
2 (z) =

z
(1 − z)2 |1 − z|2 exp

(
(1 − λ)Re

( 4z
1 − z

))
.

Because k(D) is C minus the slit on the negative real axis from −1/4 to ∞, and Fλ(D) is C minus the slit on the
negative real axis from −e−2(1−λ) to∞, we obtain that for 0 < λ < 1,

4
e2 ≤ ρ0(Fλ) ≤ 4.
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Problem 4.4. Show that the inner mapping radius of log-harmonic mapping f ∈ SLh satisfy

4
e2 ≤ ρ0( f ) ≤ 4;

or else find a class of log-harmonic mappings f ∈ SLh such that either ρ0( f ) > 4 or ρ0( f ) < 4
e2 .

5. Pre-Schwarzian Derivatives and Log-harmonic Mappings

In this section, we introduce pre-Schwarzian, Schwarzian derivatives and log-harmonic Bloch function
for non-vanishing log-harmonic mappings analogous to analytic and harmonic mappings.

The pre-Schwarzian and Schwarzian derivatives of a locally univalent analytic function h are given (cf.
[21]) by

Ph(z) =
h′′(z)
h′(z)

and Sh(z) =

(
h′′(z)
h′(z)

)′
−

1
2

(
h′′(z)
h′(z)

)2

,

respectively. These notions for complex valued harmonic mappings was presented by Chuaqui et al. [17]
and investigated by a number of authors. See [16, 18, 19, 23] and the references therein. In [26], Mao and
Ponnusamy investigated the Schwarzian derivative of log-harmonic mappings, and they obtained several
necessary and sufficient conditions for Schwarzian derivative S f to be analytic. In this paper, we modify
the definitions of pre-Schwarzian P f and Schwarzian S f derivatives for the sense-preserving univalent log-
harmonic mappings and notice that the new definitions preserve the standard properties of the classical
Schwarzian derivative and they are given in the following way:

P f (z) =
(
log J f

)
z

=

(
h′′(z)
h′(z)

−
h′(z)
h(z)

)
−
µ(z)µ′(z)
1 − |µ(z)|2

,

S f (z) =
(
P f (z)

)′
−

1
2

(
P f (z)

)2

=

(
h′′(z)
h′(z)

−
h′(z)
h(z)

)′
−

1
2

(
h′′(z)
h′(z)

−
h′(z)
h(z)

)2

+

(
h′′(z)
h′(z)

−
h′(z)
h(z)

)
µ(z)µ′(z)
1 − |µ(z)|2

−
µ(z)µ′′(z)
1 − |µ(z)|2

−
3
2

 µ(z)µ′(z)
1 − |µ(z)|2

2

,

where

J f (z) =

∣∣∣∣∣h′(z)
h(z)

∣∣∣∣∣2 (1 − |µ(z)|2) and µ(z) =
|1′(z)/1(z)|
|h′(z)/h(z)|

are the Jacobian of log-harmonic mapping f and the dilatation of f , respectively. The pre-Schwarzian and
Schwarzian derivatives of log-harmonic mappings have the chain rule property exactly in the same form as
in the analytic case: if f is a sense- preserving log-harmonic mapping and ϕ is a locally univalent analytic
function for which the composition f ◦ ϕ is defined, then a straightforward calculation shows that

P f◦ϕ(z) =
(
P f ◦ ϕ(z)

)
· ϕ′(z) + Pϕ(z) and S f◦ϕ(z) =

(
S f ◦ ϕ(z)

)
· (ϕ′(z))2 + Sϕ(z).

If we assume that the pre-Schwarzian derivative P f of a log-harmonic mapping f = h1 with dilatation
µ(z) is analytic, then we get that

∂P f

∂z
=

|µ′(z)|2

(1 − |µ(z)|2)2 = 0 (z ∈ D),

which implies that µ(z) is constant. In other words, P f is analytic if and only if the dilatation of f is constant.
Actually, we get the following more general result.
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Theorem 5.1. Suppose that f (z) = h(z)1(z) is a sense-preserving log-harmonic mapping inD. Then pre-Schwarzian
derivative P f of f (z) is harmonic if and only if the dilatation µ(z) of f (z) is constant.

Proof. By a straightforward calculation, we obtain

∂2P f

∂z∂z
=
µ′

(
µ′′(1 − |µ|2) + 2µ′2 µ

)
(1 − |µ|2)3 . (17)

If µ is constant, then it is clear that ∆P f ≡ 0 and so P f (z) is harmonic inD.
Now we assume that P f (z) is harmonic. By (17), we get

µ′
(
µ′′(1 − |µ|2) + 2µ′2 µ

)
= 0.

If µ is not constant, then the last relation reduced to

µ′′

µ′2
= −

2µ
1 − |µ|2

,

which is analytic in D. Thus, we see that µ is a constant which contradicts our assumption. The proof is
complete.

6. Log-harmonic Bloch Space

Definition 6.1. A non-vanishing log-harmonic mapping f (z) = h(z)1(z) in D is said to be a log-harmonic Bloch
function if

β( f ) = sup
z∈D

(1 − |z|2)
(∣∣∣∣∣h′(z)

h(z)

∣∣∣∣∣ +

∣∣∣∣∣1′(z)
1(z)

∣∣∣∣∣) < +∞,

where h and 1 are analytic inD,

h(z) = exp

 ∞∑
n=0

anzn

 and 1(z) = exp

 ∞∑
n=1

bnzn

 .
The space of all log-harmonic Bloch functions is denoted by BLh.

The space BLh forms a complex Banach space with the norm ‖ · ‖BLh given by (see [20])

‖ f ‖BLh = | f (0)| + sup
z∈D

(1 − |z|2)
(∣∣∣∣∣h′(z)

h(z)

∣∣∣∣∣ +

∣∣∣∣∣1′(z)
1(z)

∣∣∣∣∣)
= | f (0)| + sup

z∈D
(1 − |z|2)

∣∣∣∣∣h′(z)
h(z)

∣∣∣∣∣ (1 +
∣∣∣µ(z)

∣∣∣) .
We refer it as the log-harmonic Bloch norm and the elements of the log-harmonic Bloch space are called
log-harmonic Bloch functions.

Now we will show that BLh has the affine and linear invariance. To do this, we let

φα(z) =
z + α

1 + αz
, z ∈ D,

where |α| < 1.

Proposition 6.2. If f (z) = h(z)1(z) ∈ BLh, then
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(i) f a f
b
∈ BLh for any a, b ∈ C (affine invariance)

(ii) f ◦ φα ∈ BLh for any α ∈ D (linear invariance).

Proof. For the proof of (i), we let f = h1, and consider

F = f a f
b

= ha1bhb1a.

Elementary computations give

β(F) = sup
z∈D

(1 − |z|2)


∣∣∣∣∣∣∣∣
(
ha(z)1b(z)

)′
ha(z)1b(z)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
(
hb(z)1a(z)

)′
hb(z)1a(z)

∣∣∣∣∣∣∣∣


= sup
z∈D

(1 − |z|2)
(∣∣∣∣∣ah′(z)

h(z)
+ b
1′(z)
1(z)

∣∣∣∣∣ +

∣∣∣∣∣bh′(z)
h(z)

+ a
1′(z)
1(z)

∣∣∣∣∣)
≤ (|a| + |b|) β( f ) < +∞.

By Definition 6.1, the desired assertion follows.
For the proof of (ii), we write F = f ◦ φα = HG so that

H′(z)
H(z)

=
h′

(
φα(z)

)
h
(
φα(z)

) · 1 − |α|2

(1 + αz)2 and
G′(z)
G(z)

=
1′

(
φα(z)

)
1
(
φα(z)

) · 1 − |α|2

(1 + αz)2 .

Consequently,

β(F) = sup
z∈D

(1 − |z|2)(1 − |α|2)
|1 + αz|2


∣∣∣∣∣∣∣h
′
(
φα(z)

)
h
(
φα(z)

) ∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣1
′
(
φα(z)

)
1
(
φα(z)

) ∣∣∣∣∣∣∣


= sup
z∈D

(1 − |φα(z)|2)


∣∣∣∣∣∣∣h
′
(
φα(z)

)
h
(
φα(z)

) ∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣1
′
(
φα(z)

)
1
(
φα(z)

) ∣∣∣∣∣∣∣
 ,

which gives that β(F) = β( f ). The proof is complete.
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