Hermite-Hadamard Type Inequalities for F-Convex Function Involving Fractional Integrals

Hüseyin Budaka, Mehmet Zeki Sarıkayaa, Mustafa Kemal Yıldızb

aDepartment of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
bDepartment of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon, Turkey

Abstract. In this study, we firstly give some properties the family F and F–convex function which are defined by B. Samet. Then, we establish Hermite–Hadamard type inequalities involving fractional integrals via F–convex function. Some previous results are also recaptured as special cases.

1. Introduction

Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on the interval I of real numbers and $a, b \in I$ with $a < b$. If f is a convex function then the following double inequality, which is well known in the literature as the Hermite–Hadamard inequality, holds [14]

$$f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \leq \frac{f(a) + f(b)}{2}.$$ (1)

Note that some of the classical inequalities for means can be derived from (1) for appropriate particular selections of the mapping f. Both inequalities hold in the reversed direction if f is concave (1).

It is well known that the Hermite–Hadamard inequality plays an important role in nonlinear analysis. Over the last decade, this classical inequality has been improved and generalized in a number of ways; there have been a large number of research papers written on this subject, (see, [2, 3, 7, 8, 10, 13, 19, 20]) and the references therein.

Over the years, many type of convexity have been defined, such as quasi-convex [1], pseudo-convex [11], strongly convex [16], ε–convex [6], s–convex [5], h–convex [22] etc. Recently, Samet [17] have defined a new concept of convexity that depends on a certain function satisfying some axioms, that generalizes different types of convexity, including ε–convex functions, α–convex functions, h–convex functions, and many others.

Recall the family F of mappings $F : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0, 1] \rightarrow \mathbb{R}$ satisfying the following axioms:

2010 Mathematics Subject Classification. Primary 26D07; Secondary 26D10, 26D15, 26A33

Keywords. Hermite-Hadamard inequality, F–convex, fractional integral

Received: 28 May 2017; Revised: 27 September 2017; Accepted: 30 September 2017

Communicated by Ljubiša D.R. Kočinac

Email addresses: hsyn.budak@gmail.com (Hüseyin Budak), sarikayamz@gmail.com (Mehmet Zeki Sarıkaya), myildiz@aku.edu.tr (Mustafa Kemal Yıldız)
(A1) If $u_i \in L^1(0, 1), i = 1, 2, 3$, then for every $\lambda \in [0, 1]$, we have
\[
\int_0^1 F(u_1(t), u_2(t), u_3(t), \lambda) dt = F \left(\int_0^1 u_1(t) dt, \int_0^1 u_2(t) dt, \int_0^1 u_3(t) dt, \lambda \right).
\]

(A2) For every $u \in L^1(0, 1), w \in L^\infty(0, 1)$ and $(z_1, z_2) \in \mathbb{R}^2$, we have
\[
\int_0^1 F(w(t)u(t), w(t)z_1, w(t)z_2) dt = T_{F,w} \left(\int_0^1 w(t)u(t) dt, z_1, z_2 \right),
\]
where $T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a function that depends on (F, w), and it is nondecreasing with respect to the first variable.

(A3) For any $(w, u_1, u_2, u_3) \in \mathbb{R}^4, u_4 \in [0, 1]$, we have
\[
wF(u_1, u_2, u_3, u_4) = F(wu_1, wu_2, wu_3, u_4) + L_w
\]
where $L_w \in \mathbb{R}$ is a constant that depends only on w.

Definition 1.1. Let $f : [a, b] \to \mathbb{R}, (a, b) \in \mathbb{R}^2, a < b$, be a given function. We say that f is a convex function with respect to some $F \in \mathcal{F}$ (or F-convex function) if
\[
F(f(tx + (1 - t)y), f(x), f(y), t) \leq 0, \quad (x, y, t) \in [a, b] \times [a, b] \times [0, 1].
\]

Remark 1.2. 1) Let $\varepsilon \geq 0$, and let $f : [a, b] \to \mathbb{R}, (a, b) \in \mathbb{R}^2, a < b$, be an ε-convex function, that is (see [6])
\[
f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y) + \varepsilon, \quad (x, y, t) \in [a, b] \times [a, b] \times [0, 1].
\]

Define the functions $F : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R}$ by
\[
F(u_1, u_2, u_3, u_4) = u_1 - u_4u_2 - (1 - u_4)u_3 - \varepsilon
\]
and $T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by
\[
T_{F,w}(u_1, u_2, u_3) = u_1 - \left(\int_0^1 tw(t) dt \right)u_2 - \left(\int_0^1 (1 - t)w(t) dt \right)u_3 - \varepsilon.
\]
For
\[
L_w = (1 - w)\varepsilon,
\]
it is clear that $F \in \mathcal{F}$ and
\[
F(f(tx + (1 - t)y), f(x), f(y), t) = f(tx + (1 - t)y) - tf(x) - (1 - t)f(y) - \varepsilon \leq 0,
\]
that is f is an F-convex function. Particularly, taking $\varepsilon = 0$, we show that if f is a convex function then f is an F-convex function with respect to F defined above.

2) Let $f : [a, b] \to \mathbb{R}, (a, b) \in \mathbb{R}^2, a < b$, be an α-convex function, $\alpha \in (0, 1)$, that is
\[
f(tx + (1 - t)y) \leq t^\alpha f(x) + (1 - t^\alpha)f(y), \quad (x, y, t) \in [a, b] \times [a, b] \times [0, 1].
\]

Define the functions $F : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R}$ by
\[
F(u_1, u_2, u_3, u_4) = u_1 - u_4^\alpha u_2 - (1 - u_4^\alpha)u_3
\]
and $T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$T_{F,w}(u_1, u_2, u_3) = u_1 - \left(\int_0^1 t^w w(t) dt \right) u_2 - \left(\int_0^1 (1 - t^w) w(t) dt \right) u_3. \tag{6}$$

For $L_w = 0$, it is clear that $F \in \mathcal{F}$ and

$$F(f(tx + (1-t)y), f(x), f(y), t) = f(tx + (1-t)y) - t^w f(x) - (1 - t^w) f(y) \leq 0,$$

that is f is an F-convex function.

3) Let $h : J \rightarrow [0, \infty)$ be a given function which is not identical to 0, where J is an interval in \mathbb{R} such that $(0, 1) \subseteq J$. Let $f : [a, b] \rightarrow [0, \infty), (a, b) \in \mathbb{R}^2, \ a < b$, be an h-convex function, that is (see [22])

$$f(tx + (1-t)y) \leq h(t)f(x) + h(1-t)f(y), \quad (x, y, t) \in [a, b] \times [a, b] \times [0, 1].$$

Define the functions $F : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$F(u_1, u_2, u_3, u_4) = u_1 - h(u_4)u_2 - h(1 - u_4)u_3 \tag{7}$$

and $T_{F,w} : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$T_{F,w}(u_1, u_2, u_3) = u_1 - \left(\int_0^1 h(t) w(t) dt \right) u_2 - \left(\int_0^1 h(1 - t) w(t) dt \right) u_3. \tag{8}$$

For $L_w = 0$, it is clear that $F \in \mathcal{F}$ and

$$F(f(tx + (1-t)y), f(x), f(y), t) = f(tx + (1-t)y) - h(t)f(x) - h(1-t)f(y) \leq 0,$$

that is f is an F-convex function.

In [17], the author established the following Hermite-Hadamard type inequalities using the new convexity concept:

Theorem 1.3. Let $f : [a, b] \rightarrow \mathbb{R}, (a, b) \in \mathbb{R}^2, a < b$, be an F-convex function, for some $F \in \mathcal{F}$. Suppose that $f \in L_1[a, b]$. Then

$$F \left(f \left(\frac{a + b}{2} \right), \frac{1}{b - a} \int_a^b f(x) dx, \frac{1}{b - a} \int_a^b f(x) dx, \frac{1}{2} \right) \leq 0,$$

$$T_{F,1} \left(\frac{1}{b - a} \int_a^b f(x) dx, f(a), f(b) \right) \leq 0.$$

Theorem 1.4. Let $f : I^* \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I^*, $(a, b) \in I^* \times I^*, \ a < b$. Suppose that

(i) $|f'|$ is F-convex on $[a, b]$, for some $F \in \mathcal{F}$

(ii) the function $t \in (0, 1) \rightarrow L_w(t)$ belongs to $L^1(0, 1)$, where $w(t) = |1 - 2t|$. Then,

$$T_{F,w} \left(\frac{2}{b - a} \left| f(a) + f(b) \right|, \frac{1}{b - a} \int_a^b f(x) dx, \left| f'(a) \right|, \left| f'(b) \right| \right) + \int_0^1 L_w(t) dt \leq 0.$$
Theorem 1.5. Let \(f : I' \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \(I' \), \((a, b) \in I' \times I'\), \(a < b\) and let \(p > 1\). Suppose that \(\left| f' \right|^{p/(p-1)} \) is \(F \)-convex on \([a, b]\), for some \(F \in \mathcal{F}' \) and \(\int f' \in \mathcal{L}^{p/(p-1)}(a, b)\). Then

\[
T_{E,1}(A(p, f), \left| f'(a) \right|^{p/(p-1)}, \left| f'(b) \right|^{p/(p-1)}) \leq 0
\]

where

\[
A(p, f) = \left(\frac{2}{b-a} \right)^{1/p} (p+1)^{1/p} \left| \frac{1}{2} \right| \int_a^b f(x)dx \right|^{1/p}.
\]

In the following we will give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further in this paper. More details, one can consult [4, 9, 12, 15].

Definition 1.6. Let \(f \in L_1[a, b] \). The Riemann-Liouville integrals \(J_{a+}^a f \) and \(J_{b-}^a f \) of order \(\alpha > 0 \) with \(x \geq a \) are defined by

\[
J_{a+}^a f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t)dt, \quad x > a
\]

and

\[
J_{b-}^a f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t)dt, \quad x < b
\]

respectively. Here, \(\Gamma(\alpha) \) is the Gamma function and \(J_{a+}^a f(x) = J_{b-}^a f(x) = f(x) \).

It is remarkable that Sarikaya et al. [21] first give the following interesting integral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 1.7. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a positive function with \(0 \leq a < b \) and \(f \in L_1[a, b] \). If \(f \) is a convex function on \([a, b]\), then the following inequalities for fractional integrals hold:

\[
f \left(\frac{a+b}{2} \right) \leq \frac{\Gamma(\alpha+1)}{2^{\alpha}(b-a)^{\alpha}} \left(J_{a+}^a f(b) + J_{b-}^a f(a) \right) \leq \frac{f(a) + f(b)}{2}
\]

with \(\alpha > 0 \).

Meanwhile, Sarikaya et al. [21] presented the following important integral identity including the first-order derivative of \(f \) to establish many interesting Hermite-Hadamard type inequalities for convexity functions via Riemann-Liouville fractional integrals of the order \(\alpha > 0 \).

Lemma 1.8. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a differentiable mapping on \((a, b)\) with \(a < b \). If \(f' \in L[a, b] \), then the following equality for fractional integrals holds:

\[
\frac{f(a) + f(b)}{2} = \frac{\Gamma(\alpha+1)}{2^{\alpha}(b-a)^{\alpha}} \left(J_{a+}^a f(b) + J_{b-}^a f(a) \right) = \frac{b-a}{2} \int_0^1 [(1-t)^{\alpha} - t^\alpha] f'(ta + (1-t)b) dt.
\]

2. Hermite-Hadamard Type Inequality Involving Fractional Integrals

In this section, we establish some inequalities of Hermite-Hadamard type including fractional integrals via \(F \)-convex functions.
Theorem 2.1. Let $I \subseteq \mathbb{R}$ be an interval, $f : I' \subseteq \mathbb{R} \to \mathbb{R}$ be a mapping on I', $a, b \in I'$, $a < b$. If f is F-convex on $[a, b]$, for some $F \in \mathcal{F}$, then we have the inequalities

$$F \left(f \left(\frac{a+b}{2} \right) \right), \frac{\Gamma(a+1)}{(b-a)^a} f(a) \cdot \frac{1}{2} + \int_0^1 L_{a(t)}dt \leq 0 \tag{11}$$

and

$$T_{F,a} \left(\frac{\Gamma(a+1)}{(b-a)^a} [f'(a), f'(b)] f(a) \right), f(a) + f(b), f(a) + f(b) \cdot \frac{1}{2} + \int_0^1 L_{a(t)}dt \leq 0 \tag{12}$$

where $w(t) = at^{a-1}$.

Proof. Since f is F-convex, we have

$$F \left(f \left(\frac{x+y}{2} \right) \right), f(x), f(y), \frac{1}{2} \leq 0, \; x, y \in [a, b]$$

For $x = ta + (1-t)b$ and $y = tb + (1-t)a$, we have

$$F \left(f \left(\frac{a+b}{2} \right) \right), f(ta + (1-t)b), f(tb + (1-t)a), \frac{1}{2} \leq 0, \; t \in [0, 1]$$

Multiplying this inequality by $w(t) = at^{a-1}$ and using axiom (A3), we get

$$F \left(\frac{\alpha}{(b-a)^a} f(a) \right), at^{a-1} f(ta + (1-t)b), at^{a-1} f(tb + (1-t)a), \frac{1}{2} + L_{a(t)} \leq 0$$

for $t \in [0, 1]$. Integrating over $[0, 1]$ with respect to the variable t and using axiom (A1), we obtain

$$F \left(f \left(\frac{a+b}{2} \right) \right) \alpha \int_0^1 t^{a-1}dt, \alpha \int_0^1 t^{a-1} f(ta + (1-t)b)dt, \alpha \int_0^1 t^{a-1} f(tb + (1-t)a)dt, \frac{1}{2} + \int_0^1 L_{a(t)}dt \leq 0$$

Using the facts that

$$\int_0^1 t^{a-1} f(ta + (1-t)b)dt = \frac{1}{(b-a)^a} \int_a^b (b-x)^{a-1} f(x)dx = \frac{\Gamma(a)}{(b-a)^a} f(b)$$

and

$$\int_0^1 t^{a-1} f(tb + (1-t)a)dt = \frac{1}{(b-a)^a} \int_a^b (x-a)^{a-1} f(x)dx = \frac{\Gamma(a)}{(b-a)^a} f(a)$$

we obtain

$$F \left(f \left(\frac{a+b}{2} \right) \right), \frac{\Gamma(a+1)}{(b-a)^a} f(b), \frac{\Gamma(a+1)}{(b-a)^a} f(a), \frac{1}{2} + \int_0^1 L_{a(t)}dt \leq 0$$

which gives (11).

On the other hand, since f is F-convex, we have

$$F \left(f \left(ta + (1-t)b, f(a), f(b), t \right) \right) \leq 0, \; t \in [0, 1]$$

and

$$F \left(f \left(tb + (1-t)a, f(b), f(a), t \right) \right) \leq 0, \; t \in [0, 1]$$
Using the linearity of F, we get

$$F(f(ta + (1-t)b) + f((tb + (1-t)a), f(a) + f(b), f(a) + f(b), t) \leq 0, \quad t \in [0,1].$$

Applying the axiom (A3) for $\omega(t) = at^{\alpha-1}$, we obtain

$$F(at^{\alpha-1} [f(ta + (1-t)b) + f((tb + (1-t)a)], at^{\alpha-1} [f(a) + f(b)], at^{\alpha-1} [f(a) + f(b)], t] + L_{\omega(t)} \leq 0,$$

for $t \in [0,1]$. Integrating over $[0,1]$ and using axiom (A2), we have

$$T_{F,\omega} \left(\int_0^1 at^{\alpha-1} [f(ta + (1-t)b) + f((tb + (1-t)a)] dt, f(a) + f(b), f(a) + f(b) \right) \leq 0,$$

that is

$$T_{F,\omega} \left(\Gamma(a+1) (\frac{1}{b-a})^a f(b) + \Gamma(a+1) (\frac{1}{b-a})^b f(a), f(a) + f(b), f(a) + f(b) \right) \leq 0.$$

This completes the proof. □

Corollary 2.2. If we choose $F(u_1, u_2, u_3, u_4) = u_1 - u_4 u_2 - (1 - u_4) u_3 - \epsilon$ in Theorem 2.1, then the function f is ϵ-convex on $[a, b]$, $\epsilon \geq 0$ and we have the inequality

$$f\left(\frac{a+b}{2}\right) - \epsilon \leq \frac{\Gamma(a+1)}{2(b-a)^{\alpha}} \left[f(a) + f(b) \right] \leq \frac{f(a) + f(b)}{2} + \frac{\epsilon}{2}.$$

Proof. Using (4) with $\omega(t) = at^{\alpha-1}$, we have

$$\int_0^1 L_{\omega(t)} dt = \epsilon \int_0^1 (1 - at^{\alpha-1}) dt = 0. \quad (13)$$

Using (2), (11) and (13), we get

$$0 \geq F\left(\frac{a+b}{2}\right) - \frac{\Gamma(a+1)}{2(b-a)^{\alpha}} \left[f(a) + f(b) \right] \geq f\left(\frac{a+b}{2}\right) - \frac{\Gamma(a+1)}{2(b-a)^{\alpha}} \left[f(a) + f(b) \right] - \epsilon,$$

that is

$$f\left(\frac{a+b}{2}\right) - \epsilon \leq \frac{\Gamma(a+1)}{2(b-a)^{\alpha}} \left[f(a) + f(b) \right].$$

On the other hand, using (3) with $\omega(t) = at^{\alpha-1}$, we have

$$T_{F,\omega}(u_1, u_2, u_3) = u_1 - \alpha \left(\int_0^1 t^\alpha dt \right) u_2 - \alpha \left(\int_0^1 (1-t)t^{\alpha-1} dt \right) u_3 - \epsilon = u_1 - \frac{\alpha u_2 + u_3}{\alpha + 1} - \epsilon \quad (14)$$
for $u_1, u_2, u_3 \in \mathbb{R}$. Hence, from (12) and (14), we obtain

$$0 \geq T_{F, \omega} \left(\frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] + f(a) + f(b), f(a) + f(b) \right) + \int_0^1 L_{\omega(t)} dt$$

$$= \frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] - \frac{1}{\alpha + 1} \left[\int_0^1 h(t) t^{\alpha-1} dt \right]$$

$$= \frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] - \left(f(a) + f(b) \right) - \varepsilon.$$

This implies that

$$\frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] \leq f(a) + f(b) + \varepsilon$$

and thus the proof is completed. \(\square\)

Remark 2.3. If we take $\varepsilon = 0$ in Corollary 2.2, then f is convex and we have the inequality (9).

Corollary 2.4. If we choose $F(u_1, u_2, u_3, u_4) = u_1 - h(u_4) u_2 - h(1 - u_4) u_3$ in Theorem 2.1, then the function f is h-convex on $[a, b]$ and we have the inequality

$$\frac{1}{2h(\frac{1}{2})} \left(a + b \right) \leq \frac{\Gamma(\alpha + 1)}{2(b-a)^{\alpha}} \left[\int_0^b f(b) \right] + f(a) + f(b) \leq \alpha \left(\int_0^1 \left[h(t) + h(1-t) \right] t^{\alpha-1} dt \right) \frac{f(a) + f(b)}{2}.$$

Proof. Using (4) and (11) with $L_{\omega(t)} = 0$, we have

$$0 \geq F \left(\left(\frac{a + b}{2} \right), \quad \frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] \right) + \frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right],$$

that is

$$\frac{1}{2h(\frac{1}{2})} \left(a + b \right) \leq \frac{\Gamma(\alpha + 1)}{2(b-a)^{\alpha}} \left[\int_0^b f(b) \right] + f(a) + f(b).$$

On the other hand, using (8) and (12) with $\omega(t) = at^{\alpha-1}$, we obtain

$$0 \geq T_{F, \omega} \left(\frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] \right) + f(a) + f(b), f(a) + f(b) \right) + \int_0^1 L_{\omega(t)} dt$$

$$= \frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] - \alpha \left(\int_0^1 h(t) t^{\alpha-1} dt + \int_0^1 h(1-t) t^{\alpha-1} dt \right)$$

$$= \frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] - \alpha \left(\int_0^1 \left[h(t) + h(1-t) \right] t^{\alpha-1} dt \right)$$

$$= \frac{\Gamma(\alpha + 1)}{(b-a)^{\alpha}} \left[\int_0^b f(b) \right] \leq \alpha \left(\int_0^1 \left[h(t) + h(1-t) \right] t^{\alpha-1} dt \right) \frac{f(a) + f(b)}{2}.$$

and thus the proof is completed. \(\square\)
Theorem 2.5. Let $I \subseteq \mathbb{R}$ be an interval, $f : I^2 \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I^a, $a, b \in I^a$, $a < b$. Suppose that $|f'|$ is F-convex on $[a, b]$, for some $F \in \mathcal{F}$ and the function $t \in [0, 1] \to L_{w(t)}$ belongs to $L_1[0, 1]$, where $w(t) = |(1 - t)^a - t^a|$. Then, we have the inequality

$$T_{F,w} \left(\frac{2}{b-a} \left| \frac{f(a) + f(b)}{2} - \Gamma(\alpha + 1) \frac{1}{2(b-a)^\alpha} \left[f'_0, f(b) + f'_0, f(a) \right] \right|, \left| f'(a) \right|, \left| f'(b) \right| \right) + \int_0^1 L_{w(t)}dt \leq 0.$$

Proof. Since $|f'|$ is F-convex, we have

$$F \left(\left| f'(ta + (1-t)b) \right|, \left| f'(a) \right|, \left| f'(b) \right|, t \right) \leq 0, \ t \in [0, 1].$$

Using axiom (A3) with $w(t) = |(1-t)^a - t^a|$, we get

$$F \left(w(t) \left| f'(ta + (1-t)b) \right|, w(t) \left| f'(a) \right|, w(t) \left| f'(b) \right|, t \right) + L_{w(t)} \leq 0, \ t \in [0, 1].$$

Integrating over $[0, 1]$ and using axiom (A2), we obtain

$$T_{F,w} \left(\int_0^1 w(t) \left| f'(ta + (1-t)b) \right| dt, \left| f'(a) \right|, \left| f'(b) \right| \right) + \int_0^1 L_{w(t)}dt \leq 0, \ t \in [0, 1].$$

From Lemma 1.8, we have

$$\frac{2}{b-a} \left| \frac{f(a) + f(b)}{2} - \Gamma(\alpha + 1) \frac{1}{2(b-a)^\alpha} \left[f'_0, f(b) + f'_0, f(a) \right] \right| \leq \int_0^1 w(t) \left| f'(ta + (1-t)b) \right| dt.$$

Since $T_{F,w}$ is nondecreasing with respect to the first variable, we establish

$$\frac{2}{b-a} \left| \frac{f(a) + f(b)}{2} - \Gamma(\alpha + 1) \frac{1}{2(b-a)^\alpha} \left[f'_0, f(b) + f'_0, f(a) \right] \right| + \int_0^1 L_{w(t)}dt \leq 0.$$

The proof is completed. \qed

Corollary 2.6. Under assumptions of Theorem 2.5, if we choose $F(u_1, u_2, u_3, u_4) = u_1 - u_4 u_2 - (1 - u_4) u_3 - \varepsilon$, then the function $|f'|$ is ε-convex on $[a, b]$, $\varepsilon \geq 0$ and we have the inequality

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[f'_0, f(b) + f'_0, f(a) \right] \right| \leq \frac{b-a}{2(\alpha + 1)} \left(1 - \frac{1}{2^\alpha} \right) \left[\left| f'(a) \right| + \left| f'(b) \right| + 2\varepsilon \right].$$

Proof. From (4) with $w(t) = |(1-t)^a - t^a|$, we have

$$\int_0^1 L_{w(t)}dt = \varepsilon \int_0^1 (1 - |(1-t)^a - t^a|)dt$$

$$= \varepsilon \int_0^{1/2} (1 - (1-t)^a + t^a)dt + \int_{1/2}^1 (1 + (1-t)^a - t^a)dt$$

$$= \varepsilon \left(1 - \frac{2}{\alpha + 1} \left(1 - \frac{1}{2^\alpha} \right) \right),$$

$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[f'_0, f(b) + f'_0, f(a) \right] \right| \leq \frac{b-a}{2(\alpha + 1)} \left(1 - \frac{1}{2^\alpha} \right).$$

H. Budak et al. / Filomat 32:16 (2018), 5509–5518
Using (3) with $w(t) = |(1 - t)^a - t^a|$

\[
T_{F,w}(u_1, u_2, u_3) = u_1 - \alpha \left(\int_0^1 t |(1 - t)^a - t^a| \, dt \right) u_2 - \alpha \left(\int_0^1 (1 - t) |(1 - t)^a - t^a| \, dt \right) u_3 - \varepsilon
\]

\[
= u_1 - \frac{1}{\alpha + 1} \left(1 - \frac{1}{2^a} \right) (u_2 + u_3) - \varepsilon
\]

for $u_1, u_2, u_3 \in \mathbb{R}$. Then, by Theorem 2.5, we have

\[
0 \geq T_{F,w} \left(\frac{2}{b - a} \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^a} \left[\int_{\alpha}^{\infty} f(b) + f'(a) \right] \gamma \right| \right) + \int_0^1 L_{\alpha(t)} \, dt
\]

\[
= \frac{2}{b - a} \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^a} \left[\int_{\alpha}^{\infty} f(b) + f'(a) \right] \right|
\]

\[
- \frac{1}{\alpha + 1} \left(1 - \frac{1}{2^a} \right) \left(|f'(a)| + |f'(b)| \right) - \varepsilon \left(1 - \frac{2}{\alpha + 1} \left(1 - \frac{1}{2^a} \right) \right).
\]

This completes the proof.

Remark 2.7. If we choose $\varepsilon = 0$ in Corollary 2.6, then $|f'|$ is convex and we have the inequality

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^a} \left[\int_{\alpha}^{\infty} f(b) + f'(a) \right] \right| \leq \frac{b - a}{2(\alpha + 1)} \left(1 - \frac{1}{2^a} \right) \left(|f'(a)| + |f'(b)| \right)
\]

which is given by Sarikaya et al. in [21].

Corollary 2.8. Under assumption of Theorem 2.5, if we choose $F(u_1, u_2, u_3, u_4) = u_1 - h(u_4)u_2 - h(1 - u_4)u_3$, then the function $|f'|$ is h-convex on $[a, b]$ and we have the inequality

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^a} \left[\int_{\alpha}^{\infty} f(b) + f'(a) \right] \right| \leq \frac{b - a}{2} \left(\int_0^1 h(t) |(1 - t)^a - t^a| \, dt \right) \left(|f'(a)| + |f'(b)| \right).
\]

Proof. From (8) with $w(t) = |(1 - t)^a - t^a|$, we have

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^a} \left[\int_{\alpha}^{\infty} f(b) + f'(a) \right] \right| \leq \frac{b - a}{2} \left(\int_0^1 h(t) |(1 - t)^a - t^a| \, dt \right) \left(|f'(a)| + |f'(b)| \right).
\]
for \(u_1, u_2, u_3 \in \mathbb{R} \). Then, by Theorem 2.5,

\[
T_{\frac{\alpha}{\alpha+1}} \left(\frac{2}{b-a} \left[\int_a^b f'(t) \, dt \right] \right) = \frac{2}{b-a} \left[\int_a^b f'(t) \, dt \right] = \int_0^1 (1-t^\alpha - t) \, dt \leq 0.
\]

This completes the proof. \(\Box \)

References