Large Deviations for Lotka-Nagaev Estimator of a Randomly Indexed Branching Process

Zhenlong Gao ${ }^{\text {a }}$, Lina Qiu ${ }^{\text {a }}$
${ }^{a}$ School of Statistics, Qufu Normal University, Qufu 273165, China

Abstract

Consider a continuous time process $\left\{Y_{t}=Z_{N_{t}}, t \geq 0\right\}$, where $\left\{Z_{n}\right\}$ is a supercritical GaltonWatson process and $\left\{N_{t}\right\}$ is a renewal process which is independent of $\left\{Z_{n}\right\}$. Firstly, we study the asymptotic properties of the harmonic moments $\mathbb{E}\left(Y_{t}^{-r}\right)$ of order $r>0$ as $t \rightarrow \infty$. Then, we obtain the large deviations of the Lotka-Negaev estimator of offspring mean.

1. Introduction

Classical Galton-Watson process (GW) $\left\{Z_{n}\right\}$ has been naturally extended to branching process in random environments (BPRE) starting in 1970's, see [2], etc. In recent years, researchers focus on the study of large deviation results for GW and BPRE, see [1]and [3] for example.

Let $\left\{N_{t}\right\}$ be a Poisson process and be independent of $\left\{Z_{n}\right\} .\left\{Y_{t}=Z_{N_{t}}, t \geq 0\right\}$ is said to be a Poisson randomly indexed branching process(PRIBP). PRIBP has been firstly used to study the evolution of stock prices in [6] and its statistical investigation has been done in [5]. It was pointed out in [5] that the discrete observations $\left\{Y_{1}, Y_{2}, \cdots\right\}$ is a BPRE.

For a PRIBP with offspring distribution $\left\{p_{i}\right\}$, we distinguish between the Shröder case and the Böttcher case depending on whether $p_{0}+p_{1}>0$ or $p_{0}+p_{1}=0$.

Recently, PRIBP has been brought to attention in the following two directions.
In applied direction, a formula for the fair price of an European call option was derived in [13]. Later on, [14] obtained a formula for the fair price of an up-and-out call option.

On more theoretical side, [16] indicated that $R_{t}:=Z_{N_{t}+1} Z_{N_{t}}^{-1}$ is a reasonable estimator of the offspring mean m, which is a naturally extension of the classical Lotka-Nagaev estimator, see [1] and [15]. They consider the supercritical PRIBP and obtained the exponential rate of decay for the large deviation probability $\mathbb{P}\left(\left|R_{t}-m\right| \geq x\right)$ under the conditions that the offspring distribution $\left\{p_{i}\right\}$ has finite exponential moments and belongs to the Shröder case. On the other hand, [11] showed that $(\lambda t)^{-1} \log Y_{t}$ is an estimator of $\log m$ and derived the consistency, asymptotic normality, large deviation and moderate deviation of the estimator when the PRIBP belongs to the Böttcher case. In [7], we gave the error bound in asymptotic normality. The large deviations in the Shröder case were given in [8], where the rate function $I(x)$ is deferent from the

[^0]Böttcher case for small positive x. Similar results for branching process indexed by a renewal process were done in [9] and [10].

In this paper, we consider the rates of large deviation probability $\mathbb{P}\left(\left|R_{t}-m\right| \geq x\right)$ when the indexed process is a renewal process and the offspring distribution belongs to the Shröder case.

Let F be the distribution of interarrival time X of renewal process. Throughout the paper, we assume the following condition:

A1: $p_{0}=0, m=\mathbb{E}\left(Z_{1}\right) \in(1, \infty), \quad \sigma^{2}=\mathbb{E}\left(Z_{1}-m\right)^{2} \in(0, \infty), Z_{0}=1$.
A2: $F(0)=0$, there exists $\theta_{0}>0, \forall \theta<\theta_{0}, M(\theta):=\mathbb{E}(\exp (\theta X))<\infty$ and $M(\theta)$ is differentiable when $\theta<\theta_{0}$.

Our first result is the asymptotic properties of harmonic moments $\mathbb{E}\left(Y_{t}^{-r}\right)$ of order $r>0$ as $n \rightarrow \infty$.
Theorem 1.1. Under condition $\mathbf{A 1}$ and $\mathbf{A 2}$, for any $r>0, t^{-1} \log \mathbb{E}\left(Y_{t}^{-r}\right) \rightarrow A(r)$, where

$$
A(r)= \begin{cases}-M^{-1}\left(p_{1}^{-1}\right), & p_{1} m^{r} \geq 1 ; \tag{1}\\ -M^{-1}\left(m^{r}\right), & p_{1} m^{r}<1\end{cases}
$$

and M^{-1} is the inverse function of M.
Basic properties for M^{-1} are needed in following proofs. By condition A2,
(1) $M(\theta)$ is strictly increasing, then M^{-1} exists.
(2) $M(\theta)$ is differentiable when $\theta<\theta_{0}$, then M^{-1} is continuous and differentiable in the range of M. Furthermore, if $y=M(\theta)$, then

$$
\left(M^{-1}\right)^{\prime}(y)=\left(M^{\prime}(\theta)\right)^{-1}
$$

We divided our results on large deviation probability $\mathbb{P}\left(\left|R_{t}-m\right| \geq x\right)$ into two parts depending on whether the offspring distribution satisfies the Cramér's condition or not.

Theorem 1.2 (Shröder case with light tails). Assume that there exists a constant $\alpha>0$ such that $\mathbb{E}\left(\exp \left(\alpha \mathrm{Z}_{1}\right)\right)<$ ∞ and $p_{1} \in(0,1)$, under conditions A1 and A2,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{P}\left(\left|R_{t}-m\right| \geq x\right)=-M^{-1}\left(p_{1}^{-1}\right)
$$

Remark 1.3. Cramér's condition $\mathbb{E}\left(\exp \left(\alpha Z_{1}\right)\right)<\infty$ can be weakened to $\mathbb{E}\left(Z_{1}^{2 r+\delta}\right)<\infty$ for some positive constants δ and r such that $p_{1} m^{r}>1$, see [1].

Remark 1.4. If $\left\{N_{t}\right\}$ is a Poisson process with parameter $\lambda>0$, then

$$
M(\theta)=\frac{\lambda}{\lambda-\theta}, \theta<\lambda ; \quad M^{-1}\left(p_{1}^{-1}\right)=\lambda\left(1-p_{1}\right)
$$

The following Theorem 1.5 shows that there is a " phase transition" in large deviation rates of convergence from R_{t} to m when the supercritical branching process indexed by a renewal process belongs to the Shröder case and the offspring distribution has Pareto type tails(Cramér's condition fails).

Theorem 1.5 (Shröder case with heavy tails). Assume that $p_{0}=0, p_{1} \in(0,1)$ and there exists a constant $r>0$ such that

$$
\log \left(P\left(Z_{1} \geq x\right)\right) / \log x \rightarrow-(r+1)
$$

as $x \rightarrow \infty$. Then

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{P}\left(\left|R_{t}-m\right| \geq x\right)=A(r)
$$

where $A(r)$ is defined in (1).

2. Harmonic Moments

In this section, we deal with the following asymptotic properties of harmonic moments $\mathbb{E}\left(Y_{t}^{-r}\right)$ of order $r>0$ as $t \rightarrow \infty$. We need several lemmas to prove Theorem 1.1. Lemma 2.1 comes from [9].

Lemma 2.1. Under condition $\mathbf{A} 2$, for any $\theta \in \mathbb{R}$,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left(m^{\theta N_{t}}\right)=-M^{-1}\left(m^{-\theta}\right),
$$

where M^{-1} is the inverse function of M.
Lemma 2.2. Under condition A2,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left(N_{t} p_{1}^{N_{t}}\right)=-M^{-1}\left(p_{1}^{-1}\right)
$$

Proof. For any $1-p_{1}>\epsilon>0$, there exists n_{0} such that for all $n \geq n_{0}$, one has

$$
n \leq\left(1+\epsilon / p_{1}\right)^{n} .
$$

Note that

$$
\begin{aligned}
\mathbb{E}\left(N_{t} p_{1}^{N_{t}}\right) & =\mathbb{E}\left(N_{t} p_{1}^{N_{t}} I\left\{N_{t} \geq n_{0}\right\}\right)+\mathbb{E}\left(N_{t} p_{1}^{N_{t}} I\left\{N_{t}<n_{0}\right\}\right) \\
& \leq \mathbb{E}\left(\left(p_{1}+\epsilon\right)^{N_{t}} I\left\{N_{t} \geq n_{0}\right\}\right)+\mathbb{E}\left(n_{0} p_{1}^{N_{t}} I\left\{N_{t}<n_{0}\right\}\right) \\
& \leq \mathbb{E}\left(\left(p_{1}+\epsilon\right)^{N_{t}}\right)+\mathbb{E}\left(n_{0} p_{1}^{N_{t}}\right),
\end{aligned}
$$

where $I\{A\}$ is the indictor function of set A. According to Lemma 2.1 and Lemma 1.2.15 of [4], we have

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left(N_{t} p_{1}^{N_{t}}\right) & \leq \limsup _{t \rightarrow \infty} \frac{1}{t} \log \left\{\mathbb{E}\left(\left(p_{1}+\epsilon\right)^{N_{t}}\right)+\mathbb{E}\left(n_{0} p_{1}^{N_{t}}\right)\right\} \\
& =\max \left\{\limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left(\left(p_{1}+\epsilon\right)^{N_{t}}\right), \limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left(n_{0} p_{1}^{N_{t}}\right)\right\} \\
& =\max \left\{-M^{-1}\left(\left(p_{1}+\epsilon\right)^{-1}\right),-M^{-1}\left(p_{1}^{-1}\right)\right\} \\
& =-M^{-1}\left(\left(p_{1}+\epsilon\right)^{-1}\right) .
\end{aligned}
$$

By condition A2, M^{-1} is continuous. According to the arbitrariness of ϵ, one has

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left(N_{t} p_{1}^{N_{t}}\right)=-M^{-1}\left(p_{1}^{-1}\right)
$$

On the other hand

$$
\mathbb{E}\left(N_{t} p_{1}^{N_{t}}\right) \geq \mathbb{E}\left(p_{1}^{N_{t}}\right)
$$

by Lemma 2.1, we have

$$
\liminf _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left(N_{t} p_{1}^{N_{t}}\right)=-M^{-1}\left(p_{1}^{-1}\right) .
$$

We complete the proof of Lemma 2.2.
The following Lemma 2.3 belongs to [15], which characterizes the asymptotic properties of harmonic moments of a classical supercritical Galton-Watson process.

Lemma 2.3. Under condition A1, $A_{n}(r) E\left(Z_{n}^{-r}\right) \rightarrow C(r)$, where

$$
A_{n}(r)= \begin{cases}p_{1}^{-n}, & \text { if } p_{1} m^{r}>1 ; \\ \left(n p_{1}^{n}\right)^{-1}, & \text { if } p_{1} m^{r}=1 ; \\ \left(m^{r}\right)^{n}, & \text { if } p_{1} m^{r}<1\end{cases}
$$

and

$$
C(r)= \begin{cases}\frac{1}{\Gamma(r)} \int_{0}^{\infty} Q\left(e^{-v}\right) v^{r-1} d v, & \text { if } p_{1} m^{r}>1 ; \\ \frac{1}{\Gamma(r)} \int_{0}^{m} Q(\phi(v)) v^{r-1} d v, & \text { if } p_{1} m^{r}=1 ; \\ \frac{1}{\Gamma(r)} \int_{0}^{\infty} \phi(v) v^{r-1} d v, & \text { if } p_{1} m^{r}<1,\end{cases}
$$

where $\phi(v)=\lim _{n} E\left(e^{-v Z_{n} / m^{n}}\right)$ and $Q(s)$ is the unique solution of the functional equation

$$
\left\{\begin{array}{l}
Q(f(s))=p_{1} Q(s), 0 \leq s<1 \\
Q(0)=0
\end{array}\right.
$$

where $f(s)$ is the generating function of the offspring distribution $\left\{p_{i}\right\}$. Furthermore, $\{C(r), r>0\}$ are positive and finite.

The proof of Theorem 1.1.

Let us see that by the total probability formula,

$$
\begin{align*}
\mathbb{E}\left(Y_{t}^{-r}\right) & =\sum_{n=0}^{\infty} \mathbb{E}\left(Z_{n}^{-r}\right) \mathbb{P}\left(N_{t}=n\right) \\
& =\sum_{n=0}^{\infty} C(r)\left(A_{n}(r)\right)^{-1} \mathbb{P}\left(N_{t}=n\right)+\sum_{n=0}^{\infty}\left(\mathbb{E}\left(Z_{n}^{-r}\right)-C(r)\left(A_{n}(r)\right)^{-1}\right) \mathbb{P}\left(N_{t}=n\right) \\
& =I_{1}+I_{2} \tag{2}
\end{align*}
$$

where $I_{2}=\sum_{n=0}^{\infty}\left(\mathbb{E}\left(Z_{n}^{-r}\right)-C(r)\left(A_{n}(r)\right)^{-1}\right) \mathbb{P}\left(N_{t}=n\right)$ and

$$
\begin{align*}
I_{1} & =\sum_{n=0}^{\infty} C(r)\left(A_{n}(r)\right)^{-1} \mathbb{P}\left(N_{t}=n\right) \\
& = \begin{cases}C(r) \mathbb{E}\left(p_{1}^{N_{t}}\right), & \text { if } p_{1} m^{r}>1 ; \\
C(r) \mathbb{E}\left(N_{t} p_{1}^{N_{t}}\right), & \text { if } p_{1} m^{r}=1 ; \\
C(r) \mathbb{E}\left(m^{-r N_{t}}\right), & \text { if } p_{1} m^{r}<1\end{cases} \tag{3}
\end{align*}
$$

According to Lemma 2.3, for any $\epsilon>0$, there exists a constant $M=M(\epsilon, r)$ such that for any $n \geq M$,

$$
\mathbb{E}\left(Z_{n}^{-r}\right) \in\left[(C(r)-\epsilon)\left(A_{n}(r)\right)^{-1},(C(r)+\epsilon)\left(A_{n}(r)\right)^{-1}\right]
$$

Then

$$
\begin{align*}
\left|I_{2}\right| & \left.\leq \sum_{n=0}^{+\infty} \epsilon\left(A_{n}(r)\right)^{-1} P\left(N_{t}=n\right)+\sum_{n=0}^{M} \mid \mathbb{E}\left(Z_{n}^{-r}\right)-C(r)\left(A_{n}(r)\right)^{-1}\right) \mid \mathbb{P}\left(N_{t}=n\right) \\
& \leq \epsilon I_{1} / C(r)+L(r) \mathbb{P}\left(N_{t} \leq M\right) \tag{4}
\end{align*}
$$

where

$$
\left.L(r)=\max _{1 \leq n \leq M}\left\{\mid \mathbb{E}\left(Z_{n}^{-r}\right)-C(r)\left(A_{n}(r)\right)^{-1}\right) \mid\right\}<\infty .
$$

By (2)-(4),

$$
\mathbb{E}\left(Y_{t}^{-r}\right) \geq(C(r)-\epsilon) \begin{cases}\mathbb{E}\left(p_{1}^{N_{t}}\right), & \text { if } p_{1} m^{r}>1 ; \\ \mathbb{E}\left(N_{t} p_{1}^{N_{t}}\right), & \text { if } p_{1} m^{r}=1 ;-L(r) \mathbb{P}\left(N_{t} \leq M\right) \\ \mathbb{E}\left(m^{-r N_{t}}\right), & \text { if } p_{1} m^{r}<1\end{cases}
$$

and

$$
\mathbb{E}\left(Y_{t}^{-r}\right) \leq(C(r)+\epsilon) \begin{cases}\mathbb{E}\left(p_{1}^{N_{t}}\right), & \text { if } p_{1} m^{r}>1 ; \\ \left.\mathbb{E}\left(N_{t}\right)_{1}^{N_{t}}\right), & \text { if } p_{1} m^{r}=1 ;+L(r) \mathbb{P}\left(N_{t} \leq M\right) . \\ \mathbb{E}\left(m^{-r N_{t}}\right), & \text { if } p_{1} m^{r}<1\end{cases}
$$

According to the large deviations for renewal process, see [12], one has

$$
\frac{1}{t} \log \left(\mathbb{P}\left(N_{t} \leq M\right)\right) \rightarrow-\infty
$$

Note that ϵ is arbitrary, Theorem 1.1 follows from Lemma 2.1 and Lemma 2.2.

3. Large Deviation Probability

In this section, we deal with Theorem 1.2. The proof is dependent on the following lemma which belongs to [1].

Lemma 3.1. Assume that $\mathrm{Z}_{0}=1, p_{0}=0, p_{1} \in(0,1)$ and there there exists a constant $\alpha>0$ such that $\mathbb{E}\left(\exp \left(\alpha Z_{1}\right)\right)<$ ∞, then for any $x>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{p_{1}^{n}} \mathbb{P}\left(\left|\frac{Z_{n+1}}{Z_{n}}-m\right| \geq x\right)=V(x) \in(0, \infty) .
$$

The proof of Theorem 1.2.

Write $\psi(x)=\mathbb{P}\left(\left|Z_{n+1} / Z_{n}-m\right| \geq x\right)$. First, let us note that

$$
\begin{align*}
\mathbb{P}\left(\left|R_{t}-m\right| \geq x\right) & =\sum_{n=0}^{\infty} \mathbb{P}\left(\left|Z_{n+1} / Z_{n}-m\right| \geq x\right) \mathbb{P}\left(N_{t}=n\right) \\
& =\sum_{n=0}^{\infty} V(x) p_{1}^{n} \mathbb{P}\left(N_{t}=n\right)+\sum_{n=0}^{\infty}\left(\psi(x)-V(x) p_{1}^{n}\right) \mathbb{P}\left(N_{t}=n\right) \\
& =: U_{1}+U_{2}, \tag{5}
\end{align*}
$$

where $U_{1}=V(x) \mathbb{E}\left(p_{1}^{N_{t}}\right)$. On the other hand, by Lemma 3.1, for any $\epsilon>0$, there exists n_{0}, if $n \geq n_{0}$, then $\psi(x) \in\left((V(x)-\epsilon) p_{1}^{n},(V(x)+\epsilon) p_{1}^{n}\right)$. Thus,

$$
\begin{align*}
\left|U_{2}\right| & \leq \sum_{n=0}^{+\infty} \epsilon p_{1}^{n} \mathbb{P}\left(N_{t}=n\right)+\sum_{n=0}^{n_{0}}\left|\psi(x)-V(x) p_{1}^{n}\right| \mathbb{P}\left(N_{t}=n\right) \\
& \leq \epsilon \mathbb{E}\left(p_{1}^{N_{t}}\right)+G(x) \mathbb{P}\left(N_{t} \leq n_{0}\right), \tag{6}
\end{align*}
$$

where

$$
G(x)=\max _{1 \leq n \leq n_{0}}\left\{\psi(x)-V(x) p_{1}^{n}\right\}<\infty .
$$

By (5)-(6),

$$
\psi(x) \geq(V(x)-\epsilon) \mathbb{E}\left(p_{1}^{N_{t}}\right)-G(x) \mathbb{P}\left(N_{t} \leq n_{0}\right)
$$

and

$$
\psi(x) \geq(V(x)+\epsilon) \mathbb{E}\left(p_{1}^{N_{t}}\right)+G(x) \mathbb{P}\left(N_{t} \leq n_{0}\right)
$$

According to the large deviations for renewal process, see [12], one has

$$
\frac{1}{t} \log \left(\mathbb{P}\left(N_{t} \leq n_{0}\right)\right) \rightarrow-\infty
$$

Note that $0<V(x)<\infty$ for $x \in(0,+\infty)$ and ϵ is arbitrary, Theorem 1.2 follows from Lemma 2.1.

The proof of Theorem 1.5.

The proof is similar to that of Theorem 1.1. The only change is that Lemma 2.3 is substitute by the following lemma which belongs to [15].

Lemma 3.2. Assume that $p_{0}=0, p_{1} \in(0,1)$ and there exists a constant $r>0$ such that

$$
\log \left(P\left(Z_{1} \geq x\right)\right) / \log x \rightarrow-(r+1)
$$

as $x \rightarrow \infty$. Then

$$
\lim _{t \rightarrow \infty} A_{n}(r) \mathbb{P}\left(\left|\frac{Z_{n+1}}{Z_{n}}-m\right| \geq a\right)=U(a) \in(0, \infty)
$$

where $A_{n}(r)$ is defined in Lemma 2.3.

References

[1] Athreya, K.B.(1994). Large deviation rates for braching processes I. single type case. Ann. Appl. Prob., 4(3), 779-900.
[2] Athreya, K.B., Karlin, S.(1971). Branching processes with random environments, I: extinction probabilities. Ann. Math. Statist., 42(5), 1499-1520.
[3] Bansaye, V., Berestycki, J.(2009). Large Deviations for Branching Processes in Random Environment. Markov Processes and Related Filelds, 15(4), 493-524.
[4] Dembo, A., Zeitouni, O. (1998). Large deviations techniques and applications, 2nd edn. Springer, New York.
[5] Dion, J.P., Epps, T.W.(1999). Stock prices as branching processes in random environments: estimation, Comm. Statist. Simulation Comput. 28(4), 957-975.
[6] Epps, T.W.(1996). Stock prices as branching processes, Stochastic Models 12(4), 529-558.
[7] Gao, Z.L.(2018). Berry-Esseen type inequality for a Poisson randomly indexed branching process via Stein's method. Journal of Mathematical Inequalities, 12(2): 573-582.
[8] Gao, Z.L., Wang, W.G.(2015). Large deviations for a Poisson random indexed branching process. Statist. Probab. Lett., 105, 143-148.
[9] Gao, Z.L., Wang, W.G.(2016). Large and moderate deviations for a renewal random indexed branching process, Statist. Probab. Lett., 116, 139-145.
[10] Gao, Z.L., Zhang, Y.H.(2015). Large and moderate deviations for a class of renewal random indexed branching process, Statist. Probab. Lett., 103, 1-5.
[11] Gao, Z.L., Zhang, Y.H.(2016). Limit theorems for a supercritical Poisson random indexed branching process, J. Appl. Probab., 53(1), 307-314.
[12] Jiang, T.F.(1994). Large deviations for renewal processes. Stochast. Proce. Appl., 50, 57-71.
[13] Mitov, G.K., Mitov, K.V.(2007). Option pricing by branching process, Pliska Stud. Math. Bulgar., 18, 213-224.
[14] Mitov, G.K., Rachev, S.T., Kim, Y.S., Fabozzi, F.J.(2009). Barrier option pricing by branching processes, Int. J. Theor. Appl. Finance, 12(7), 1055-1073.
[15] Ney, P.E. and Vidyashankar, A.N. (2003). Harmonic moments and large deviation rates for supercritical branching processes. Ann. Appl. Prob., 13, 475-489.
[16] Wu, S.J.(2012). Large deviation results for a randomly indexed branching process with applications to finance and physics. Doctoral Thesis, Graduate Faculty of North Carolina State University.

[^0]: 2010 Mathematics Subject Classification. Primary 60J80; Secondary 60F10
 Keywords. Branching process; renewal process; large deviations; harmonic moments
 Received: 05 February 2018; Accepted: 07 October 2018
 Communicated by Miljana Jovanović
 Research supported by National Natural Science Foundation of China (Grant No.11601260)
 Email addresses: gzlkygz@163.com (Zhenlong Gao),1600418526@qq.com (Lina Qiu)

