Biprojectivity and Biflatness of Generalized Module Extension Banach Algebras

Mina Ettefagh ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

We investigate biprojectivity and biflatness of generalized module extension Banach algebra $A \bowtie B$, in which A and B are Banach algebras and B is an algebraic Banach A-bimodule, with multiplication: $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, a b^{\prime}+b a^{\prime}+b b^{\prime}\right)$.

1. Introduction

Let A and B be Banach algebras and let B be a Banach A-bimodule. Then, we will say that B is an algebraic Banach A-bimodule if for all $a \in A$ and $b, b^{\prime} \in B$

$$
a\left(b b^{\prime}\right)=(a b) b^{\prime},\left(b b^{\prime}\right) a=b\left(b^{\prime} a\right),(b a) b^{\prime}=b\left(a b^{\prime}\right)
$$

The Cartesian product $A \times B$ with the multiplication

$$
(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, a b^{\prime}+b a^{\prime}+b b^{\prime}\right)
$$

and with the norm $\|(a, b)\|=\|a\|+\|b\|$, becomes a Banach algebra, which is called the "generalized module extension Banach algebra", and it is denoted by $A \bowtie B$. Also $A \cong A \times\{0\}$ is a closed subalgebra, while $B \cong\{0\} \times B$ is a closed ideal of $A \bowtie B$, and $A \bowtie B / B \cong A$. The authors in [11] have studied some properties of this kind of algebra, such as bounded approximate identity, spectrum, topological centers and n-weak amenability. This algebra can be a generalization of the following known algebras:
(a) Let $A \times B$ be the direct product of two Banach algebras A and B, with multiplication

$$
(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right) .
$$

If we define the A-bimodule actions on B by $a b=b a=0$, for $a \in A$ and $b \in B$, then $A \times B=A \bowtie B$.
(b) Let $A \oplus X$ be the module extension Banach algebra, in which X is a Banach A-bimodule, with multiplication

$$
(a, x) \cdot\left(a^{\prime}, x^{\prime}\right)=\left(a a^{\prime}, a x^{\prime}+x a^{\prime}\right)
$$

If we define the multiplication on X by $x x^{\prime}=0$, then $A \oplus X=A \bowtie X$.

[^0](c) Let $A \times{ }_{\theta} B$ be the θ-Lau product of two Banach algebras A and B with $\theta \in \Delta(A)$ and the following multiplication
$$
(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, \theta(a) b^{\prime}+\theta\left(a^{\prime}\right) b+b b^{\prime}\right) .
$$

These kinds of products have been investigated in two prior studies [7, 13]. If we define the A-bimodule actions on B by $a b=b a=: \theta(a) b$, for $a \in A$ and $b \in B$, then $A \times{ }_{\theta} B=A \bowtie B$.
(d) Let $A \times_{T} B$ be the T-Lau product of two Banach algebras A and B with algebra homomorphism $T: A \rightarrow B$ with $\|T\| \leq 1$, and with multiplication

$$
(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, T(a) b^{\prime}+b T\left(a^{\prime}\right)+b b^{\prime}\right) .
$$

These kinds of products were introduced by Lau [7], and studied by many authors such as $[2,5,13]$. If we define the A-bimodule actions on B by $a b=: T(a) b, b a=: b T(a)$, for $a \in A$ and $b \in B$, then $A \times_{T} B=A \bowtie B$.
(e) Let $A \bowtie^{\theta} I$ be the amalgamation of A with B along I with respect to θ, in which A and B are Banach algebras, I is a closed ideal in $B, \theta: A \rightarrow B$ is a continuous Banach algebra homomorphism, and with the following multiplication

$$
(a, i)\left(a^{\prime}, i^{\prime}\right)=\left(a a^{\prime}, \theta(a) i^{\prime}+i \theta\left(a^{\prime}\right)+i i^{\prime}\right)
$$

for $a, a^{\prime} \in A$ and $i, i^{\prime} \in I$. These kinds of Banach algebras have been studied in some other studies [9, 10]. Now if we define the A-bimodule actions on I by $a i=: \theta(a) i$ and $i a=i \theta(a)$, for $a \in A$ and $i \in I$, then $A \bowtie^{\theta} I=A \bowtie I$.

Homological properties of Banach algebras have been studied by several authors. We refer to [4] as a standard reference in this field. The properties biprojectivity and biflatness have been studied: for θ-Lau product $A \times_{\theta} B$ in [6], and for T-Lau product $A \times_{T} B$ in [1]. In this paper we will study biprojectivity and biflatness of $L=A \bowtie B$, in two separate sections 3 and 4 . We will show that if $L=A \bowtie B$ is biprojective [biflat], then A is biprojective [biflat], but for biprojectivity [biflatness] of B, we need some conditions. Also it will be shown that if A and B are biprojective [biflat], then under a mild condition on B, we conclude the biprojectivity [biflatness] of $L=A \bowtie B$. In section 5 our results will be applied in some examples.

2. Preliminaries

Throughout this paper, A and B are Banach algebras, B is an algebraic Banach A-bimodule, and $L=A \bowtie B$ denotes the generalized module extension Banach algebra. Consider the A-bimodule and also B-bimodule actions on $L=A \bowtie B$ by

$$
\left\{\begin{array} { l }
{ a ^ { \prime } \cdot (a , b) : = (a ^ { \prime } , 0) \cdot (a , b) , } \\
{ (a , b) \cdot a ^ { \prime } : = (a , b) \cdot (0 , a ^ { \prime }) , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
b^{\prime} \cdot(a, b)=\left(0, b^{\prime}\right) \cdot(a, b), \\
(a, b) \cdot b^{\prime}=(a, b) \cdot\left(0, b^{\prime}\right),
\end{array}\right.\right.
$$

for all $(a, b) \in L, a^{\prime} \in A$ and $b^{\prime} \in B$. Following [4], we say that A is biprojective if there exists a bounded A-bimodule map $\rho_{A}: A \rightarrow A \widehat{\otimes} A$ such that $\pi_{A} O \rho_{A}=i d_{A}$, in which $\pi_{A}: A \widehat{\otimes} A \rightarrow A$ denotes the product map with $\pi_{A}\left(a \otimes a^{\prime}\right)=a a^{\prime}$. Also A is called biflat if there is a bounded A-bimodule map $\lambda_{A}:(\widehat{\otimes} A)^{*} \rightarrow A^{*}$, such that $\lambda_{A} o \pi_{A}^{*}=i d_{A^{*}}$. For the basic properties of biprojectivity and biflatness, see [3, 12].
Finally, the following maps will be introduced and then used in our results. Let $p_{A}: L=A \bowtie B \rightarrow A$ and $p_{B}: L=A \bowtie B \rightarrow B$ be the projections defined by $p_{A}((a, b))=a$ and $p_{B}((a, b))=b$ for all $(a, b) \in L$. Also let $q_{A}: A \rightarrow L=A \bowtie B$ and $q_{B}: B \rightarrow L=A \bowtie B$ be the injections, defined by $q_{A}(a)=(a, 0)$ and $q_{B}(b)=(0, b)$, for all $a \in A$ and $b \in B$. Besides, suppose that B is unital with unit e_{B}, and define the following bounded linear maps

$$
\begin{aligned}
& r_{B}: L=A \bowtie B \rightarrow B \text { by } r_{B}(a, b)=a e_{B}+b, \\
& s_{A}: A \rightarrow L=A \bowtie B \text { by } s_{A}(a)=\left(a,-a e_{B}\right) .
\end{aligned}
$$

Note that, the mappings p_{A}, q_{A} are bounded A-bimodule maps, and q_{B} is a bounded B-bimodule map. We have the following lemma about relations between bimodule structures for r_{B} and s_{A}.

Lemma 2.1. Let A and B be Banach algebras, and let B be an algebraic Banach A-bimodule with unit e_{B}, such that $a e_{B}=e_{B}$ a for all $a \in A$. Then the mappings r_{B} and s_{A} are B-bimodule map and A-bimodule map, respectively.

Proof. Let $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. By using the assumptions, we have

$$
\begin{aligned}
r_{B}\left(b^{\prime} \cdot(a, b)\right) & =r_{B}\left(\left(0, b^{\prime}\right) \cdot(a, b)\right) \\
& =r_{B}\left(0, b^{\prime} a+b^{\prime} b\right) \\
& =b^{\prime} a+b^{\prime} b \\
& =b^{\prime} e_{B} a+b^{\prime} b \\
& =b^{\prime} a e_{B}+b^{\prime} b \\
& =b^{\prime} \cdot\left(a e_{B}+b\right) \\
& =b^{\prime} \cdot r_{B}(a, b) .
\end{aligned}
$$

Similarly, we have $r_{B}\left((a, b) \cdot b^{\prime}\right)=r_{B}((a, b)) \cdot b^{\prime}$, and we conclude that r_{B} is a B-bimodule map. Also we have

$$
\begin{aligned}
s_{A}\left(a a^{\prime}\right) & =\left(a a^{\prime},-a a^{\prime} e_{B}\right) \\
& =(a, 0) \cdot\left(a^{\prime},-a^{\prime} e_{B}\right) \\
& =a \cdot\left(a^{\prime},-a^{\prime} e_{B}\right) \\
& =a \cdot s_{A}\left(a^{\prime}\right),
\end{aligned}
$$

and similarly, by the assumptions

$$
\begin{aligned}
s_{A}\left(a a^{\prime}\right) & =\left(a a^{\prime},-a a^{\prime} e_{B}\right) \\
& =\left(a a^{\prime},-a e_{B} a^{\prime}\right) \\
& =\left(a,-a e_{B}\right) \cdot\left(a^{\prime}, 0\right) \\
& =\left(a,-a e_{B}\right) \cdot a^{\prime} \\
& =s_{A}(a) \cdot a^{\prime},
\end{aligned}
$$

and so s_{A} is an A-bimodule map.

3. Results on Biprojectivity

This section deals with relations between biprojectivity of $L=A \bowtie B$ and biprojectivity of A and B.
Theorem 3.1. Let A and B be Banach algebras, and let B be an algebraic Banach A-bimodule.
(i) If $L=A \bowtie B$ is biprojective, then A is biprojective.
(ii) Suppose that B has unit e_{B}, such that for all $a \in A, a e_{B}=e_{B} a$. If $L=A \bowtie B$ is biprojective, then B is biprojective.

Proof. By the hypothesis, there exist a bounded L-bimodule map $\rho_{L}: L \rightarrow L \widehat{\otimes} L$, such that $\pi_{L} o \rho_{L}=i d_{L}$.
(i) Define $\rho_{A}: A \rightarrow A \widehat{\otimes} A$ by $\rho_{A}=:\left(p_{A} \otimes p_{A}\right) o \rho_{L} o q_{A}$. Clearly ρ_{A} is bounded. Since ρ_{L} is L-bimodule map, for $a, a^{\prime} \in A$ and $b \in B$ we have

$$
\begin{aligned}
\rho_{L}\left(a^{\prime} \cdot(a, b)\right) & =\rho\left(\left(a^{\prime}, 0\right) \cdot(a, b)\right) \\
& =\left(a^{\prime}, 0\right) \rho_{L}((a, b)) \\
& =a^{\prime} \cdot \rho_{L}((a, b)) .
\end{aligned}
$$

Similarly, we have $\rho_{L}\left((a, b) \cdot a^{\prime}\right)=\rho_{L}((a, b)) \cdot a^{\prime}$. We conclude that ρ_{L} is A-bimodule map. Then ρ_{A} is a bounded A-bimodule map. Also for $(a, b) \otimes\left(a^{\prime}, b^{\prime}\right) \in L \widehat{\otimes} L$

$$
\begin{aligned}
\left(\pi_{A} o\left(p_{A} \otimes p_{A}\right)\right)\left((a, b) \otimes\left(a^{\prime}, b^{\prime}\right)\right) & =\pi_{A}\left(a \otimes a^{\prime}\right)=a a^{\prime}, \\
\left(p_{A} o \pi_{L}\right)\left((a, b) \otimes\left(a^{\prime}, b^{\prime}\right)\right) & =p_{A}\left((a, b) \cdot\left(a^{\prime}, b^{\prime}\right)\right)=a a^{\prime},
\end{aligned}
$$

this shows the identity $\pi_{A} o\left(p_{A} \otimes p_{A}\right)=p_{A} o \pi_{L}$. Now one can have the following

$$
\begin{aligned}
\pi_{A} o \rho_{A} & =\pi_{A} o\left(p_{A} \otimes p_{A}\right) o \rho_{L} o q_{A} \\
& =p_{A} o \pi_{L} o \rho_{L} o q_{A} \\
& =p_{A} o i d_{L} o q_{A}=i d_{A}
\end{aligned}
$$

This shows that A is biprojective.
(ii) Define $\rho_{B}=:\left(r_{B} \otimes r_{B}\right) o \rho_{L} o q_{B}$. Since ρ_{L}, q_{B} and r_{B} are bounded B-bimodule maps, then ρ_{B} is bounded B-bimodule map. Also for (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ in L we have

$$
\begin{aligned}
\left(\pi_{B} o\left(r_{B} \otimes r_{B}\right)\right)\left((a, b) \otimes\left(a^{\prime}, b^{\prime}\right)\right) & =\pi_{B}\left(\left(a e_{B}+b\right) \otimes\left(a^{\prime} e_{B}+b^{\prime}\right)\right) \\
& =\left(a e_{B}+b\right) \cdot\left(a^{\prime} e_{B}+b^{\prime}\right) \\
& =a e_{B} a^{\prime} e_{B}+a e_{B} b^{\prime}+b a^{\prime} e_{B}+b b^{\prime} \\
& =a a^{\prime} e_{B}+a b^{\prime}+b a^{\prime}+b b^{\prime} \\
& =r_{B}\left(a a^{\prime}, a b^{\prime}+b a^{\prime}+b b^{\prime}\right) \\
& =r_{B}\left((a, b) \cdot\left(a^{\prime}, b^{\prime}\right)\right) \\
& =\left(r_{B} 0 \pi_{L}\right)\left((a, b) \otimes\left(a^{\prime}, b^{\prime}\right)\right) .
\end{aligned}
$$

We conclude that $\pi_{B} o\left(r_{B} \otimes r_{B}\right)=r_{B} o \pi_{L}$. Moreover it is easy to check that $r_{B} o q_{B}=i d_{B}$. Then

$$
\begin{aligned}
\pi_{B} o \rho_{B} & =\pi_{B} o\left(r_{B} \otimes r_{B}\right) o \rho_{L} o q_{B} \\
& =r_{B} o \pi_{L} o \rho_{L} o q_{B} \\
& =r_{B} o i d_{L} o q_{B} \\
& =r_{B} o q_{B} \\
& =i d_{B},
\end{aligned}
$$

and this shows the biprojectivity of B.

Theorem 3.2. Let A and B be Banach algebras, and let B be an algebraic Banach A-bimodule with unit e_{B} such that for all $a \in A, a e_{B}=e_{B} a$. If A and B are biprojective, then $L=A \bowtie B$ is biprojective.

Proof. By the hypothesis, there exist bounded A-bimodule map $\rho_{A}: A \rightarrow A \widehat{\otimes} A$, and bounded B-bimodule $\operatorname{map} \rho_{B}: B \rightarrow B \widehat{\otimes} B$, such that $\pi_{A} o \rho_{A}=i d_{A}$ and $\pi_{B} o \rho_{B}=i d_{B}$. For $\left(a \otimes a^{\prime}\right) \in A \widehat{\otimes} A$ we have

$$
\begin{aligned}
\left(\pi_{L} o\left(s_{A} \otimes s_{A}\right)\right)\left(a \otimes a^{\prime}\right) & =\pi_{L}\left(\left(a,-a e_{B}\right) \otimes\left(a^{\prime},-a^{\prime} e_{B}\right)\right) \\
& =\left(a,-a e_{B}\right) \cdot\left(a^{\prime},-a^{\prime} e_{B}\right) \\
& =\left(a a^{\prime},-a a^{\prime} e_{B}-a e_{B} a^{\prime}+a e_{B} a^{\prime} e_{B}\right) \\
& =\left(a a^{\prime},-a a^{\prime} e_{B}-a a^{\prime} e_{B}+a a^{\prime} e_{B}\right) \\
& =\left(a a^{\prime},-a a^{\prime} e_{B}\right) \\
& =s_{A}\left(a a^{\prime}\right) \\
& =\left(s_{A} 0 \pi_{A}\right)\left(a \otimes a^{\prime}\right),
\end{aligned}
$$

and we conclude that $\pi_{L} o\left(s_{A} \otimes s_{A}\right)=s_{A} o \pi_{A}$. Also, it is easy to check that $\pi_{L} o\left(q_{B} \otimes q_{B}\right)=q_{B} o \pi_{B}$. Now define $\rho_{L}: L \rightarrow L \widehat{\otimes} L$ by

$$
\rho_{L}((a, b))=:\left(\left(s_{A} \otimes s_{A}\right) o \rho_{A} O p_{A}\right)(a, b)+(a, b) \cdot\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) .
$$

Clearly ρ_{L} is bounded, we first show that ρ_{L} is a left- L-module map. For all $(a, b),(c, d) \in L$, we have

$$
\begin{aligned}
\rho_{L}((a, b) \cdot(c, d)) & =\left(\left(s_{A} \otimes s_{A}\right) o \rho_{A} o p_{A}\right)(a c, a d+b c+b d)+((a, b) \cdot(c, d)) \cdot\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) \\
& =\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(a c)\right)+((a, b) \cdot(c, d)) \cdot\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) \\
& =(a, 0) \cdot\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)+((a, b) \cdot(c, d)) \cdot\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) \\
& =(a, b) \cdot\left[\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)+(c, d) \cdot\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right] \\
& -(0, b) \cdot\left(\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)\right) \\
& =(a, b) \cdot \rho_{L}(c, d)-(0, b) \cdot\left(\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)\right)
\end{aligned}
$$

but $(0, b) \cdot\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)=0$, because for all $\left(a^{\prime} \otimes a^{\prime \prime}\right) \in A \widehat{\otimes} A$, we can write

$$
\begin{aligned}
(0, b) \cdot\left(\left(s_{A} \otimes s_{A}\right)\left(a^{\prime} \otimes a^{\prime \prime}\right)\right) & =(0, b) \cdot\left(s_{A}\left(a^{\prime}\right) \otimes s_{A}\left(a^{\prime \prime}\right)\right) \\
& =(0, b) \cdot\left(\left(a^{\prime},-a^{\prime} e_{B}\right) \otimes\left(a^{\prime \prime},-a^{\prime \prime} e_{B}\right)\right) \\
& =\left((0, b) \cdot\left(a^{\prime},-a^{\prime} e_{B}\right)\right) \otimes\left(a^{\prime \prime},-a^{\prime \prime} e_{B}\right) \\
& =\left(0, b a^{\prime}-b a^{\prime} e_{B}\right) \otimes\left(a^{\prime \prime},-a^{\prime \prime} e_{B}\right) \\
& \left.=\left(0, b a^{\prime}-b e_{B} a^{\prime}\right) \otimes\left(a^{\prime \prime},-a^{\prime \prime} e_{B}\right)\right) \\
& =(0,0) \otimes\left(a^{\prime \prime},-a^{\prime} e_{B}\right) \\
& =0,
\end{aligned}
$$

and we conclude that $(0, b) \cdot\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)=0$ for $\rho_{A}(c)=\sum_{i=1}^{\infty} a_{i}^{\prime} \otimes a_{i}^{\prime \prime}$, in which $\left(a_{i}^{\prime}\right),\left(a_{i}^{\prime \prime}\right)$ are some sequences in A with $\sum_{i=1}^{\infty}\left\|a_{i}^{\prime}\right\|\left\|\mid a_{i}^{\prime \prime}\right\|<\infty$.
Thus $\rho_{L}((a, b) \cdot(c, d))=(a, b) \cdot \rho_{L}((c, d))$, and so ρ_{L} is left- $L-$ module map. To show that ρ_{L} is right $-L-$ module map, we note that for all $\left(b^{\prime} \otimes b^{\prime \prime}\right) \in B \widehat{\otimes} B$

$$
\begin{aligned}
& (a, b) \cdot\left(\left(q_{B} \otimes q_{B}\right)\left(b^{\prime} \otimes b^{\prime \prime}\right)\right)=\left(q_{B} \otimes q_{B}\right)\left(\left(b+a e_{B}\right) \cdot\left(b^{\prime} \otimes b^{\prime \prime}\right)\right) \\
& \left(\left(q_{B} \otimes q_{B}\right)\left(b^{\prime} \otimes b^{\prime \prime}\right)\right) \cdot(a, b)=\left(q_{B} \otimes q_{B}\right)\left(\left(b^{\prime} \otimes b^{\prime \prime}\right) \cdot\left(b+a e_{B}\right)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
(a, b) \cdot\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) & =\left(q_{B} \otimes q_{B}\right)\left(\left(b+a e_{B}\right) \cdot \rho_{B}\left(e_{B}\right)\right) \\
& =\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right) \cdot\left(b+a e_{B}\right)\right) \\
& =\left(\left(q_{B} \otimes q_{B}\right)\left(\rho\left(e_{B}\right)\right)\right) \cdot(a, b) .
\end{aligned}
$$

It follows that $\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)$ commutes with the members of L. Consequently,

$$
\begin{aligned}
\rho_{L}((c, d) \cdot(a, b)) & =\left(\left(s_{A} \otimes s_{A}\right) 0 \rho_{A} o p_{A}\right)((c, d) \cdot(a, b))+((c, d) \cdot(a, b))\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) \\
& =\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c a)\right)+((c, d) \cdot(a, b))\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) \\
& =\left(\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)\right) \cdot(a, 0)+(c, d) \cdot\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) \cdot(a, b) \\
& =\left[\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)+(c, d) \cdot\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right)\right] \cdot(a, b) \\
& -\left(\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)\right) \cdot(0, b) \\
& =\rho_{L}((c, d)) \cdot(a, b)-\left(\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)\right) \cdot(0, b)
\end{aligned}
$$

but with similar reasoning for $(0, b) \cdot\left(\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)\right)=0$ we have the identity $\left(\left(s_{A} \otimes s_{A}\right)\left(\rho_{A}(c)\right)\right) \cdot(a, b)=0$. Thus $\rho_{L}((c, d) \cdot(a, b))=\rho_{L}((c, d)) \cdot(a, b)$, and so ρ_{L} is a right-L-module map. Finally, we have

$$
\begin{aligned}
\left(\pi_{L} o \rho_{L}\right)(a, b) & =\left(\pi_{L} o\left(s_{A} \otimes s_{A}\right) o \rho_{A} o p_{A}\right)(a, b)+(a, b) \cdot \pi_{L}\left(\left(q_{B} \otimes q_{B}\right)\left(\rho_{B}\left(e_{B}\right)\right)\right) \\
& =\left(s_{A} o \pi_{A} o \rho_{A} o p_{A}\right)(a, b)+(a, b) \cdot\left(\left(q_{B} o \pi_{B} o \rho_{B}\right)\left(e_{B}\right)\right) \\
& =\left(s_{A} o p_{A}\right)(a, b)+(a, b) \cdot\left(q_{B}\left(e_{B}\right)\right) \\
& =s_{A}(a)+(a, b) \cdot\left(0, e_{B}\right) \\
& =\left(a,-a e_{B}\right)+\left(0, a e_{B}+b\right) \\
& =(a, b),
\end{aligned}
$$

therefore $\pi_{L} o \rho_{L}=i d_{L}$, and hence $L=A \bowtie B$ is biprojective.

4. Results on Biflatness

This section is devoted to the relations between biflatness of $L=A \bowtie B$ and biflatness of A and B.
Theorem 4.1. Let A and B be Banach algebras, and let B be an algebraic Banach A-bimodule.
(i) If $L=A \bowtie B$ is biflat, then A is biflat.
(ii) Suppose that B has unit e_{B}, such that for all $a \in A, a e_{B}=e_{B} a$. If $L=A \bowtie B$ is biflat, then B is biflat.

Proof. By the hypothesis, there exist a bounded L-bimodule map $\lambda_{L}:(L \widehat{\otimes} L)^{*} \rightarrow L^{*}$, such that $\lambda_{L} o \pi_{L}^{*}=i d_{L^{*}}$. The following identities have been shown in the proof of theorem (3.1)

$$
\begin{aligned}
\pi_{A} o\left(p_{A} \otimes p_{A}\right) & =p_{A} o \pi_{L} \\
\pi_{B} o\left(r_{B} \otimes r_{B}\right) & =r_{B} o \pi_{L} .
\end{aligned}
$$

(i) Define $\lambda_{A}:(\widehat{\otimes} A)^{*} \rightarrow A^{*}$ by $\lambda_{A}=: q_{A}^{*} o \lambda_{L} o\left(p_{A} \otimes p_{A}\right)^{*}$, which is a bounded A-bimodule map and

$$
\begin{aligned}
\lambda_{A} o \pi_{A}^{*} & =q_{A}^{*} o \lambda_{L} o\left(p_{A} \otimes p_{A}\right)^{*} o \pi_{A}^{*} \\
& =q_{A}^{*} o \lambda_{L} o\left(\pi_{A} o\left(p_{A} \otimes p_{A}\right)\right)^{*} \\
& =q_{A}^{*} o \lambda_{L} o\left(p_{A} o \pi_{L}\right)^{*} \\
& =q_{A}^{*} o \lambda_{L} o \pi_{L}^{*} o p_{A}^{*} \\
& =q_{A}^{*} o i d_{L^{*}} o p_{A}^{*} \\
& =\left(p_{A} o q_{A}\right)^{*} \\
& =\left(i d_{A}\right)^{*} \\
& =i d_{A^{*}} .
\end{aligned}
$$

Hence A is biflat.
(ii) Define $\lambda_{B}:(\widehat{B} \widehat{\otimes})^{*} \rightarrow B^{*}$ by $\lambda_{B}=: q_{B}^{*} o \lambda_{L} o\left(r_{B} \otimes r_{B}\right)^{*}$. Since B is unital and $a e_{B}=e_{B} a(a \in A)$, then r_{B} and hence λ_{B} are bounded B-bimodule maps, and we have

$$
\begin{aligned}
\lambda_{B} o \pi_{B}^{*} & =q_{B}^{*} o \lambda_{L} o\left(r_{B} \otimes r_{B}\right)^{*} o \pi_{B}^{*} \\
& =q_{B}^{*} o \lambda_{L} o\left(\pi_{B} o\left(r_{B} \otimes r_{B}\right)\right)^{*} \\
& =q_{B}^{*} o \lambda_{L} o\left(r_{B} o \pi_{L}\right)^{*} \\
& =q_{B}^{*} o \lambda_{L} o \pi_{L}^{*} o r_{B}^{*} \\
& =q_{B}^{*} o i d_{L^{*}} o r_{B}^{*} \\
& =\left(r_{B} o q_{B}\right)^{*} \\
& =\left(i d_{B}\right)^{*} \\
& =i d_{B^{*}} .
\end{aligned}
$$

This proves the biflatness of B.

For the converse of theorem (4.1) we should determine the L-bimodule structures on $L^{*}=(A \bowtie B)^{*}$. We recall that the dual space A^{*} of A is a Banach A-bimodule by module operations

$$
\langle f \cdot a, b\rangle=\langle f, a b\rangle \text { and }\langle a \cdot f, b\rangle=\langle f, b a\rangle,
$$

for $a, b \in A$ and $f \in A^{*}$. We remark that the dual space $L^{*}=(A \bowtie B)^{*}$ can be identified with $A^{*} \times B^{*}$ by the following bounded linear map

$$
\theta: A^{*} \times B^{*} \rightarrow(A \bowtie B)^{*}=L^{*} \quad, \quad(\langle\theta(f, g),(a, b)\rangle=f(a)+g(b)) .
$$

Now suppose that B has unit e_{B} such that for all $a \in A, a e_{B}=e_{B} a$. Define $\varphi: A \rightarrow B$ by $\varphi(a)=e_{B} a$. For $(a, b),\left(a^{\prime}, b^{\prime}\right) \in L=A \bowtie B$ and $(f, g) \in L^{*}$ we have

$$
\begin{aligned}
((f, g) \cdot(a, b))\left(a^{\prime}, b^{\prime}\right) & =(f, g)\left((a, b) \cdot\left(a^{\prime}, b^{\prime}\right)\right) \\
& =(f, g)\left(a a^{\prime}, a b^{\prime}+b a^{\prime}+b b^{\prime}\right) \\
& =f\left(a a^{\prime}\right)+g\left(a b^{\prime}\right)+g\left(b a^{\prime}\right)+g\left(b b^{\prime}\right) \\
& =(f \cdot a)\left(a^{\prime}\right)+g\left(a e_{B} b^{\prime}\right)+g\left(b e_{B} a^{\prime}\right)+(g \cdot b)\left(b^{\prime}\right) \\
& =(f \cdot a)\left(a^{\prime}\right)+\left(g \cdot\left(a e_{B}\right)\right) b^{\prime}+((g \cdot b) o \varphi)\left(a^{\prime}\right)+(g \cdot b)\left(b^{\prime}\right) \\
& =(f \cdot a+(g \cdot b) o \varphi)\left(a^{\prime}\right)+\left(g \cdot\left(a e_{B}\right)+g \cdot b\right)\left(b^{\prime}\right) \\
& =\left(f \cdot a+(g \cdot b) o \varphi, g \cdot\left(a e_{B}\right)+g \cdot b\right)\left(a^{\prime}, b^{\prime}\right),
\end{aligned}
$$

therefore

$$
(f, g) \cdot(a, b)=\left(f \cdot a+(g \cdot b) o \varphi, g \cdot\left(a e_{B}\right)+g \cdot b\right)
$$

and similarly

$$
(a, b) \cdot(f, g)=\left(a \cdot f+(b \cdot g) \circ \varphi,\left(e_{B} a\right) \cdot g+b \cdot g\right)
$$

Theorem 4.2. Let A and B be Banach algebras, and let B be an algebraic Banach A-bimodule with unit e_{B} such that for all $a \in A, a e_{B}=e_{B} a$. If A and B are biflat, then $L=A \bowtie B$ is biflat.

Proof. By the hypothesis, there exist a bounded A-bimodule map $\lambda_{A}:(A \widehat{\otimes} A)^{*} \rightarrow A^{*}$ and a bounded B-bimodule map $\lambda_{B}:(B \widehat{\otimes} B)^{*} \rightarrow B^{*}$, such that $\lambda_{A} o \pi_{A}^{*}=i d_{A^{*}}$ and $\lambda_{B} o \pi_{B}^{*}=i d_{B^{*}}$. Define $\lambda_{L}:(\widehat{\otimes} L)^{*} \rightarrow L^{*} \cong$ $A^{*} \times B^{*}$ by

$$
\lambda_{L}(h)=:\left(\left(\lambda_{A} o\left(s_{A} \otimes s_{A}\right)^{*}\right)(h)+\left(\varphi^{*} o \lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}\right)(h),\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}\right)(h)\right)
$$

for $h \in(L \widehat{\otimes} L)^{*}$ and $\varphi: A \rightarrow B\left(\varphi(a)=a e_{B}\right)$. Clearly λ_{L} is a bounded map. To see that λ_{L} is a L-bimodule map we need the following identities for $h \in(L \widehat{\otimes} L)^{*}$ and $(a, b) \in L$
(1) $\left(q_{B} \otimes q_{B}\right)^{*}(h \cdot(a, b))=\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot\left(a e_{B}+b\right)$,
(2) $\left(q_{B} \otimes q_{B}\right)^{*}((a, b) \cdot h)=\left(a e_{B}+b\right) \cdot\left(q_{B} \otimes q_{B}\right)^{*}(h)$,
(3) $\left(s_{A} \otimes s_{A}\right)^{*}(h \cdot(a, b))=\left(s_{A} \otimes s_{A}\right)^{*}(h) \cdot a$,
(4) $\left(s_{A} \otimes s_{A}\right)^{*}((a, b) \cdot h)=a \cdot\left(s_{A} \otimes s_{A}\right)^{*}(h)$.

To prove the equality (1), for $\left(b^{\prime} \otimes b^{\prime \prime}\right) \in B \widehat{\otimes} B$ we can write

$$
\begin{aligned}
\left(\left(q_{B} \otimes q_{B}\right)^{*}(h \cdot(a, b))\right)\left(b^{\prime} \otimes b^{\prime \prime}\right) & =(h \cdot(a, b))\left(\left(q_{B} \otimes q_{B}\right)\left(b^{\prime} \otimes b^{\prime \prime}\right)\right) \\
& =(h \cdot(a, b))\left(\left(0, b^{\prime}\right) \otimes\left(0, b^{\prime \prime}\right)\right) \\
& =h\left((a, b) \cdot\left(0, b^{\prime}\right) \otimes\left(0, b^{\prime \prime}\right)\right) \\
& =h\left(\left(0, a b^{\prime}+b b^{\prime}\right) \otimes\left(0, b^{\prime \prime}\right)\right) \\
& =h\left(\left(0, a e_{B} b^{\prime}+b b^{\prime}\right) \otimes\left(0, b^{\prime \prime}\right)\right) \\
& =h\left(\left(0,\left(a e_{B}+b\right) \cdot b^{\prime}\right) \otimes\left(0, b^{\prime \prime}\right)\right) \\
& =h\left(\left(q_{B} \otimes q_{B}\right)\left(\left(a e_{B}+b\right) b^{\prime} \otimes b^{\prime \prime}\right)\right) \\
& =\left(\left(q_{B} \otimes q_{B}\right)^{*}(h)\right)\left(\left(a e_{B}+b\right)\left(b^{\prime} \otimes b^{\prime \prime}\right)\right) \\
& =\left(\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot\left(a e_{B}+b\right)\right)\left(b^{\prime} \otimes b^{\prime \prime}\right)
\end{aligned}
$$

This proves the identity (1). Similarly, we can prove the identity in (2). To investigate the equality (3), for $\left(a^{\prime} \otimes a^{\prime \prime}\right) \in A \widehat{\otimes} A$ we can write

$$
\begin{aligned}
\left(\left(s_{A} \otimes s_{A}\right)^{*}(h \cdot(a, b))\right)\left(a^{\prime} \otimes a^{\prime \prime}\right) & =(h \cdot(a, b))\left(\left(s_{A} \otimes s_{A}\right)\left(a^{\prime} \otimes a^{\prime \prime}\right)\right) \\
& =(h \cdot(a, b))\left(\left(a^{\prime},-a^{\prime} e_{B}\right) \otimes\left(a^{\prime \prime},-a^{\prime \prime} e_{B}\right)\right) \\
& =h\left((a, b) \cdot\left(a^{\prime},-a^{\prime} e_{B}\right) \otimes\left(a^{\prime \prime},-a^{\prime \prime} e_{B}\right)\right) \\
& =h\left(\left(a a^{\prime},-a a^{\prime} e_{B}+b a^{\prime}-b a^{\prime} e_{B}\right) \otimes\left(a^{\prime \prime},-a^{\prime \prime} e_{B}\right)\right) \\
& =h\left(\left(a a^{\prime},-a a^{\prime} e_{B}\right) \otimes\left(a^{\prime \prime},-a^{\prime \prime} e_{B}\right)\right) \\
& =h\left(\left(s_{A} \otimes s_{A}\right)\left(a a^{\prime} \otimes a^{\prime \prime}\right)\right) \\
& =\left(\left(s_{A} \otimes s_{A}\right)^{*}(h)\right)\left(a \cdot\left(a^{\prime} \otimes a^{\prime \prime}\right)\right) \\
& =\left(\left(\left(s_{A} \otimes s_{A}\right)^{*}(h)\right) \cdot a\right)\left(a^{\prime} \otimes a^{\prime \prime}\right),
\end{aligned}
$$

this proves the identity in (3), and similarly one can proves the identity in (4). Now, using the identities
(1-4) we have

$$
\begin{aligned}
\lambda_{L}(h \cdot(a, b))= & \left(\left(\lambda_{A} o\left(s_{A} \otimes s_{A}\right)^{*}\right)(h \cdot(a, b))+\left(\varphi^{*} o \lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}\right)(h \cdot(a, b))\right. \\
, & \left.\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}\right)(h \cdot(a, b))\right) \\
= & \left(\lambda_{A}\left(\left(s_{A} \otimes s_{A}\right)^{*}(h) \cdot a\right)+\left(\varphi^{*} o \lambda_{B}\right)\left(\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot\left(a e_{B}+b\right)\right)\right. \\
, & \left.\lambda_{B}\left(\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot\left(a e_{B}+b\right)\right)\right) \\
= & \left(\lambda_{A}\left(\left(s_{A} \otimes s_{A}\right)^{*}(h)\right) \cdot a+\left(\varphi^{*} o \lambda_{B}\right)\left(\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot a e_{B}\right)\right. \\
+ & \left(\varphi^{*} o \lambda_{B}\right)\left(\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot b\right) \\
, & \left.\lambda_{B}\left(\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot a e_{B}\right)+\lambda_{B}\left(\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot b\right)\right) \\
= & \left(\left(\lambda_{A} o\left(s_{A} \otimes s_{A}\right)^{*}(h) \cdot a+\left(\lambda_{B}\left(\left(q_{B} \otimes q_{B}\right)^{*}(h) \cdot a e_{B}\right)\right)\right) o \varphi\right. \\
+ & \left.\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}(h)\right) \cdot b\right) o \varphi \\
, & \left.\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}(h)\right) \cdot a e_{B}+\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}(h)\right) \cdot b\right) \\
= & \left(\left(\lambda_{A} o\left(s_{A} \otimes s_{A}\right)^{*}(h) \cdot a+\left(\varphi^{*}\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}(h)\right)\right) \cdot a\right.\right. \\
+ & \left(\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}(h)\right) \cdot b\right) o \varphi \\
, & \left.\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}(h)\right) \cdot a e_{B}+\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}(h)\right) \cdot b\right) \\
= & \left(\left(\left(\lambda_{A} o\left(s_{A} \otimes s_{A}\right)^{*}\right)(h)+\left(\varphi^{*} o \lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}\right)(h)\right.\right. \\
, & \left.\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*}\right)(h)\right) \cdot(a, b) \\
= & \lambda_{L}(h) \cdot(a, b),
\end{aligned}
$$

this shows that λ_{L} is right- L-module map, where we have used the fact that $\left(g \cdot a e_{B}\right) \circ \varphi=\left(\varphi^{*}(g)\right) \cdot a$, for $g \in B^{*}$ and $a \in A$. With similar arguments, we can obtain that λ_{L} is left $-L-$ module map, and consequently λ_{L} is bounded L-bimodule map. Finally, by using the following identities, in proof of the theorem (3.2)

$$
\begin{aligned}
& \pi_{L} o\left(s_{A} \otimes s_{A}\right)=s_{A} o \pi_{A}, \\
& \pi_{L} o\left(q_{B} \otimes q_{B}\right)=q_{B} o \pi_{B},
\end{aligned}
$$

and for $(f, g) \in L^{*}$ we have

$$
\begin{aligned}
\left(\lambda_{L} o \pi_{L}^{*}\right)(f, g) & =\lambda_{L}\left(\pi_{L}^{*}(f, g)\right) \\
& =\left(\left(\lambda_{A} o\left(s_{A} \otimes s_{A}\right)^{*} o \pi_{L}^{*}\right)(f, g)+\left(\varphi^{*} o \lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*} o \pi_{L}^{*}\right)(f, g)\right. \\
& \left.,\left(\lambda_{B} o\left(q_{B} \otimes q_{B}\right)^{*} o \pi_{L}^{*}\right)(f, g)\right) \\
= & \left(\left(\lambda_{A} o \pi_{A}^{*} o s_{A}^{*}\right)(f, g)+\left(\varphi^{*} o \lambda_{B} o \pi_{B}^{*} o q_{B}^{*}\right)(f, g),\left(\lambda_{B} o \pi_{B}^{*} o q_{B}^{*}\right)(f, g)\right) \\
= & \left(s_{A}^{*}(f, g)+\left(\varphi^{*} o q_{B}^{*}\right)(f, g), q_{B}^{*}(f, g)\right) \\
= & (f, g),
\end{aligned}
$$

this proves that $\lambda_{L} o \pi_{L}^{*}=i d_{L^{*}}$, and the proof is completed.

5. Examples

This section includes some illustrative examples.

Example 5.1. Let $L=A \times_{\theta} B$ be the θ-Lau product of Banach algebras A and B with $\theta \in \Delta(A)$. If B is unital with unit e_{B} such that $e_{B} a=a e_{B}$ for all $a \in A$, then $A \times_{\theta} B$ is biprojective [biflat] if and only if A and B are biprojective [biflat].

Example 5.2. Let $L=A \times_{T} B$ be the T-Lau product of Banach algebras A and B with algebra homomorphism $T: A \rightarrow B(\|T\| \leq 1)$. If B is unital with unit e_{B}, then for all $a \in A$ we have $e_{B} T(a)=T(a) e_{B}=T(a)$. Hence $A \times_{T} B$ is biprojective [biflat] if and only if A and B are biprojective [biflat].

Example 5.3. Let $L=A \bowtie^{\theta} I$ be the amalgamation of Banach algebras A and B along the closed ideal I in B, with respect to continuous Banach algebra homomorphism $\theta: A \rightarrow B$. If I has unit e_{I} such that $\theta(a) e_{I}=e_{I} \theta(a)$, for all $a \in A$, then $A \bowtie^{\theta} I$ is biprojective [biflat] if and only if A and I are biprojective [biflat].

Example 5.4. Let G be a locally compact group and let $L^{1}(G)$ and $M(G)$ be its group algebra and measure algebra, respectively. It is known that $L^{1}(G)$ is unital if and only if G is descrete, and $L^{1}(G)$ is biprojective if and only if G is compact [4, 12]. Also, $L^{1}(G)$ is biflat if and only if G is amenable [4]. Therefore we have the following results
i) If $L^{1}(G) \bowtie L^{1}(G)$ is biprojective, then G is compact.
ii) If $L^{1}(G) \bowtie L^{1}(G)$ is biflat, then G is amenable.
iii) If G is descrete group, then $l^{1}(G) \bowtie l^{1}(G)$ is biprojective if and only if G is finite, and $l^{1}(G) \bowtie l^{1}(G)$ is biflat if and only if G is amenable.
iv) $M(G) \bowtie M(G)$ is biprojective [biflat] if and only if $M(G)$ is biprojrctive [biflat].
v) If $M(G) \bowtie L^{1}(G)$ is biprojective [biflat], then $M(G)$ is biprojective [biflat].
vi) Suppose that G be descrete, and A be a Banach algebra, such that $l^{1}(G)$ be an algebraic Banach A-bimodule.
If $A \bowtie l^{1}(G)$ is biprojective, then $l^{1}(G)$ and A are biprojective, and G is finite.
If $A \bowtie l^{1}(G)$ is biflat, then $l^{1}(G)$ and A are biflat, and G is amenable.
If G is finite and A is biprojective, then $A \bowtie l^{1}(G)$ is biprojective.
If G is amenable and A is biflat, then $A \bowtie l^{1}(G)$ is biflat.
vii) If $C_{0}(G) \bowtie M(G)$ is biprojective [biflat], then $C_{0}(G)$ and $M(G)$ are biprojective [biflat].
viii) If G is finite, then $C_{0}(G)$ and $C_{0}(G) \bowtie M(G)$ are biprojective.

Example 5.5. Let $A^{\prime \prime}$ be the second dual of a Banach algebra A with first Arens product \square. Then $A^{\prime \prime}$ can be an A-bimodule by $a F=: \widehat{a} \square F$ and $F a=: F \square \widehat{a}$, for all $a \in A$ and $F \in A^{\prime \prime}$, and with natural embeding of A into $A^{\prime \prime}(a \mapsto \hat{a})$. Also it is known that if A is Arens regular, then $A^{\prime \prime}$ is unital if and only if A has bounded approximate identity, [3]. By theorems (3.1) and (4.1), if $L=A \bowtie A^{\prime \prime}$ is biprojective [biflat], then A is biprojective [biflat]. Also we can apply part (ii) of theorems (3.1) and (4.1) and theorems (3.2) and (4.2) for Arens regular Banach algebras A with bounded approximate identity and for $L=A \bowtie A^{\prime \prime}$.

On the other hand, by using the results in [8], if A is Arens regular with bounded opproximate identity, then $L=A \bowtie A^{\prime \prime}$ is biflat if and only if $A^{\prime \prime}$ is biflat. Besides if $A \triangleleft A^{\prime \prime}$, then $L=A \bowtie A^{\prime \prime}$ is biprojective if and only if $A^{\prime \prime}$ is biprojective.
One can use this example for a c^{*}-algebra, which is Arens regular and has bounded approximate identity. Also, for $A=L^{1}(G)$, in which G is compact, we will have $L^{1}(G) \triangleleft L^{1}(G)^{\prime \prime}$.

References

[1] F. Abtahi, A. Ghafarpanah, A. Rejali, Biprojectivity and biflatness of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 91 (2015), 134-144.
[2] S. J. Bhatt and P. A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87 (2013), 195-206.
[3] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, (2000).
[4] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Mathematics and its Applications (Soviet Series), 41, Kluwer, Dordrecht, (1989), xx+334. Translated from the Russian by Alan West.
[5] H. Javanshiri and M. Nemati, On a certain product of Banach algebras and some of its properties, Proc. Rom. Acad. Ser. A, 15 (2014), no. 3, 219-227.
[6] A. R. Khoddami and H. R. Ebrahimi Vishki, Biflatness and biprojectivity of Lau product of Banach algebras, Bull. Iranian Math. Soc. 39 (2013), 559-568.
[7] A. T. M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161-175.
[8] M. S. Moslehian and A. Niknam, Biflatness and Biprojectivity of Second Dual of Banach Algebras, South. Asia. Bull. Math (SEAMS) 27 (2003), 129-133.
[9] H. Pourmahmood Aghababa, N. Shirmohammadi, On amalgamated Banach algebras, Periodica Math. Hung, 75:1 (2017), 1-13.
[10] H. Pourmahmood Aghababa, Derivations on generalized semidirect products of Banach algebras, Banach J. Math. Anal. 10 (2016), no. 3, 509-522.
[11] M. Ramezanpour and S. Barootkoob, Generalized module extension Banach algebras: Derivations and weak amenability, Quaestiones Mathematicae, 40 (2017), 451-465.
[12] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, 1774 Springer, Berlin, (2002).
[13] M. Sangani Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math. 178 (2007), 277-294.

[^0]: 2010 Mathematics Subject Classification. 46H25; 46M18
 Keywords. Biprojectivity, Biflatness, Module extension Banach algebra, Lau product.
 Received: 14 March 2018; Accepted: 13 August 2018
 Communicated by Dragan Djordjević
 Email address: etefagh@iaut.ac.ir (Mina Ettefagh)

