Biprojectivity and Biflatness of Generalized Module Extension Banach Algebras

Mina Ettefagh*

*Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract. We investigate biprojectivity and biflatness of generalized module extension Banach algebra \(A \bowtie B \), in which \(A \) and \(B \) are Banach algebras and \(B \) is an algebraic Banach \(A \)-bimodule, with multiplication:
\[
(a, b) \cdot (a', b') = (aa', ab' + ba' + bb').
\]

1. Introduction

Let \(A \) and \(B \) be Banach algebras and let \(B \) be a Banach \(A \)-bimodule. Then, we will say that \(B \) is an algebraic Banach \(A \)-bimodule if for all \(a \in A \) and \(b, b' \in B \)
\[
a(bb') = (ab)b', \quad (bb')a = b(b'a), \quad (ba)b' = b(ab').
\]
The Cartesian product \(A \times B \) with the multiplication
\[
(a, b) \cdot (a', b') = (aa', ab' + ba' + bb'),
\]
and with the norm \(||(a, b)|| = ||a|| + ||b|| \), becomes a Banach algebra, which is called the “generalized module extension Banach algebra”, and it is denoted by \(A \bowtie B \). Also \(A \equiv A \times \{0\} \) is a closed subalgebra, while \(B \equiv \{0\} \times B \) is a closed ideal of \(A \bowtie B \), and \(A \bowtie B/B \equiv A \). The authors in [11] have studied some properties of this kind of algebra, such as bounded approximate identity, spectrum, topological centers and \(n \)-weak amenability. This algebra can be a generalization of the following known algebras:

(a) Let \(A \times B \) be the direct product of two Banach algebras \(A \) and \(B \), with multiplication
\[
(a, b) \cdot (a', b') = (aa', bb').
\]
If we define the \(A \)-bimodule actions on \(B \) by \(ab = ba = 0 \), for \(a \in A \) and \(b \in B \), then \(A \times B \equiv A \bowtie B \).

(b) Let \(A \oplus X \) be the module extension Banach algebra, in which \(X \) is a Banach \(A \)-bimodule, with multiplication
\[
(a, x) \cdot (a', x') = (aa', ax' + xa').
\]
If we define the multiplication on \(X \) by \(xx' = 0 \), then \(A \oplus X \equiv A \bowtie X \).

2010 Mathematics Subject Classification. 46H25; 46M18

Keywords. Biprojectivity, Biflatness, Module extension Banach algebra, Lau product.

Received: 14 March 2018; Accepted: 13 August 2018

Communicated by Dragan Djordjević

Email address: etefagh@iaut.ac.ir (Mina Ettefagh)
Let $A \times \theta B$ be the θ–Lau product of two Banach algebras A and B with $\theta \in \Delta(A)$ and the following multiplication
\[(a, b) \cdot (a', b') = (aa', \theta(a)b') + \theta(a')b + bb'.\]

These kinds of products have been investigated in two prior studies [7, 13]. If we define the A–bimodule actions on B by $ab = ba =: \theta(a)b$, for $a \in A$ and $b \in B$, then $A \times \theta B = A \boxtimes B$.

Let $A \times_T B$ be the T–Lau product of two Banach algebras A and B with algebra homomorphism $T : A \to B$ with $\|T\| \leq 1$, and with multiplication
\[(a, b) \cdot (a', b') = (aa', T(a)b') + bT(a') + bb'.\]

These kinds of products were introduced by Lau [7], and studied by many authors such as [2, 5, 13]. If we define the A–bimodule actions on B by $ab =: T(a)b$, for $a \in A$ and $b \in B$, then $A \times_T B = A \boxtimes B$.

Let $A \bowtie I$ be the amalgamation of A with B along I with respect to θ, in which A and B are Banach algebras, I is a closed ideal in B, $\theta : A \to B$ is a continuous Banach algebra homomorphism, and with the following multiplication
\[(a, i)(a', i') = (aa', \theta(a)i' + i\theta(a') + ii'),\]

for $a, a' \in A$ and $i, i' \in I$. These kinds of Banach algebras have been studied in some other studies [9, 10]. Now if we define the A–bimodule actions on I by $ai =: \theta(a)i$ and $ia = i\theta(a)$, for $a \in A$ and $i \in I$, then $A \bowtie I$ is biprojective [biflat], but for biprojectivity [biflatness] of B, we need some conditions. Also it will be shown that if A and B are biprojective [biflat], then under a mild condition on B, we conclude the biprojectivity [biflatness] of $L = A \bowtie B$. In section 5 our results will be applied in some examples.

2. Preliminaries

Throughout this paper, A and B are Banach algebras, B is an algebraic Banach A–bimodule, and $L = A \bowtie B$ denotes the generalized module extension Banach algebra. Consider the A–bimodule and also B–bimodule actions on $L = A \bowtie B$ by

\[
\begin{align*}
(a', a) \cdot (a, b) := (a', 0) \cdot (a, b), \\
(a, b) \cdot (a', 0) := (a, b) \cdot (0, a'), \\
\{ b \cdot (a, b) = (0, b') \cdot (a, b), \\
\{ b \cdot (a, b) = (a, b) \cdot (0, b'),
\end{align*}
\]

for all $(a, b) \in L$, $a' \in A$ and $b' \in B$. Following [4], we say that A is biprojective if there exists a bounded A–bimodule map $\rho_A : A \to A \hat{\otimes} A$ such that $\pi_A \rho_A = \text{id}_A$, in which $\pi_A : A \hat{\otimes} A \to A$ denotes the product map with $\pi_A(a \otimes a') = aa'$. Also A is called biflat if there is a bounded A–bimodule map $\lambda_A : (A \hat{\otimes} A)' \to A'$, such that $\lambda_A \pi_A' = \text{id}_A$. For the basic properties of biprojectivity and biflatness, see [3, 12]. Finally, the following maps will be introduced and then used in our results. Let $p_A : L = A \bowtie B \to A$ and $p_B : L = A \bowtie B \to B$ be the projections defined by $p_A(a, b) = a$ and $p_B((a, b)) = b$ for all $(a, b) \in L$. Also let $q_A : A \to L = A \bowtie B$ and $q_B : B \to L = A \bowtie B$ be the injections, defined by $q_A(a) = (a, 0)$ and $q_B(b) = (0, b)$, for all $a \in A$ and $b \in B$. Besides, suppose that B is unital with unit e_B, and define the following bounded linear maps
\[
\begin{align*}
rb : L = A \bowtie B \to B & \text{ by } rb(a, b) = ace_B + b, \\
s_A : A \to L = A \bowtie B & \text{ by } s_A(a) = (a, -ae_B).
\end{align*}
\]
Note that, the mappings \(p_A, q_A \) are bounded \(A \)–bimodule maps, and \(q_B \) is a bounded \(B \)–bimodule map. We have the following lemma about relations between bimodule structures for \(r_B \) and \(s_A \).

Lemma 2.1. Let \(A \) and \(B \) be Banach algebras, and let \(B \) be an algebraic Banach \(A \)–bimodule with unit \(e_B \), such that \(ae_B = e_Ba \) for all \(a \in A \). Then the mappings \(r_B \) and \(s_A \) are \(B \)–bimodule map and \(A \)–bimodule map, respectively.

Proof. Let \(a, a' \in A \) and \(b, b' \in B \). By using the assumptions, we have

\[
\begin{align*}
 r_B(b' \cdot (a, b)) &= r_B((0, b') \cdot (a, b)) \\
 &= r_B(0, b'a + b'b) \\
 &= b'a + b'b \\
 &= b'e_Ba + b'b \\
 &= b'ae_B + b'b \\
 &= b' \cdot (ae_B + b) \\
 &= b' \cdot r_B(a, b).
\end{align*}
\]

Similarly, we have \(r_B((a, b) \cdot b') = r_B(a, b) \cdot b' \), and we conclude that \(r_B \) is a \(B \)–bimodule map. Also we have

\[
\begin{align*}
 s_A(aa') &= (aa', -aa'e_B) \\
 &= (a, 0) \cdot (a', -a'e_B) \\
 &= a \cdot (a', -a'e_B) \\
 &= a \cdot s_A(a') ,
\end{align*}
\]

and similarly, by the assumptions

\[
\begin{align*}
 s_A(aa) &= (aa', -aa'e_B) \\
 &= (a, -ae_Ba) \cdot (a', 0) \\
 &= (a, -ae_Ba \cdot a') \\
 &= s_A(a) \cdot a' ,
\end{align*}
\]

and so \(s_A \) is an \(A \)–bimodule map. \(\square \)

3. Results on Biprojectivity

This section deals with relations between biprojectivity of \(L = A \otimes B \) and biprojectivity of \(A \) and \(B \).

Theorem 3.1. Let \(A \) and \(B \) be Banach algebras, and let \(B \) be an algebraic Banach \(A \)–bimodule.

(i) If \(L = A \otimes B \) is biprojective, then \(A \) is biprojective.

(ii) Suppose that \(B \) has unit \(e_B \), such that for all \(a \in A \), \(ae_B = e_Ba \). If \(L = A \otimes B \) is biprojective, then \(B \) is biprojective.

Proof. By the hypothesis, there exist a bounded \(L \)–bimodule map \(\rho_L : L \to L \otimes L \), such that \(\pi_L \rho_L = id_L \).

(i) Define \(\rho_A : A \to A \otimes A \) by \(\rho_A = (\rho_A \otimes \rho_A) \rho_L \circ \rho_A \). Clearly \(\rho_A \) is bounded. Since \(\rho_L \) is \(L \)–bimodule map, for \(a, a' \in A \), and \(b, b' \in B \) we have

\[
\begin{align*}
 \rho_L(a' \cdot (a, b)) &= \rho_L((a', 0) \cdot (a, b)) \\
 &= (a', 0)\rho_L((a, b)) \\
 &= a' \cdot \rho_L((a, b)).
\end{align*}
\]
Similarly, we have $\rho_L((a, b) \cdot a') = \rho_L((a, b)) \cdot a'$. We conclude that ρ_L is an A-bimodule map. Then ρ_A is a bounded A-bimodule map. Also for $(a, b) \otimes (a', b') \in L \otimes L$

\[
\begin{align*}
(\pi_A \circ (p_A \otimes p_A))(a, b) &\otimes (a', b') = \pi_A(a \otimes a') = aa', \\
(p_A \circ \pi_A)(a, b) &\otimes (a', b') = p_A((a, b) \cdot (a', b')) = aa',
\end{align*}
\]

this shows the identity $\pi_A \circ (p_A \otimes p_A) = p_A \circ \pi_A$. Now one can have the following

\[
\begin{align*}
\pi_A \circ p_A &= \pi_A \circ (p_A \otimes p_A) \circ \rho_L \circ \pi_A \\
&= p_A \circ \pi_A \circ \rho_L \circ \pi_A \\
&= p_A \circ \rho_L \circ \pi_A = \text{id}_A.
\end{align*}
\]

This shows that A is biprojective.

(ii) Define $\rho_B := (r_B \otimes r_B) \circ \rho_L \circ \pi_B$. Since ρ_L, π_B and r_B are bounded B-bimodule maps, then ρ_B is bounded B-bimodule map. Also for (a, b) and (a', b') in L we have

\[
\begin{align*}
(\pi_B \circ (r_B \otimes r_B))(a, b) \otimes (a', b') &= \pi_B((ae_B + b) \otimes (a'e_B + b')) \\
&= (ae_B + b) \cdot (a'e_B + b') \\
&= ae_B \cdot e_B + ae_B \cdot b' + ba' \cdot e_B + b'b' \\
&= aa' \cdot e_B + ab' + ba' + b'b' \\
&= r_B(aa', ab') + ba' + b'b' \\
&= r_B((a, b) \cdot (a', b')) \\
&= (\pi_B \circ \rho_L)(a, b) \otimes (a', b').
\end{align*}
\]

We conclude that $\pi_B \circ (r_B \otimes r_B) = r_B \circ \pi_B$. Moreover it is easy to check that $r_B \circ \pi_B = \text{id}_B$. Then

\[
\begin{align*}
\pi_B \circ p_B &= \pi_B \circ (r_B \otimes r_B) \circ \rho_L \circ \pi_B \\
&= r_B \circ \pi_B \circ \rho_L \circ \pi_B \\
&= r_B \circ \rho_L \circ \pi_B = \text{id}_B,
\end{align*}
\]

and this shows the biprojectivity of B. \qed

Theorem 3.2. Let A and B be Banach algebras, and let B be an algebraic Banach A-bimodule with unit e_B such that for all $a \in A, ae_B = e_Ba$. If A and B are biprojective, then $L = A \otimes B$ is biprojective.

Proof. By the hypothesis, there exist bounded A-bimodule map $\rho_A : A \to A \otimes A$, and bounded B-bimodule map $\rho_B : B \to B \otimes B$, such that $\pi_A \circ \rho_A = \text{id}_A$ and $\pi_B \circ \rho_B = \text{id}_B$. For $(a \otimes a') \in A \otimes A$ we have

\[
\begin{align*}
(\pi_L \circ (S_A \otimes S_A))(a \otimes a') &= \pi_L((a, -ae_B) \otimes (a', -ae_B)) \\
&= (a, -ae_B) \cdot (a', -ae_B) \\
&= (aa', -aa' \cdot e_B + ae_Ba'e_B) \\
&= (aa', -aa' \cdot e_B + aa' \cdot e_B) \\
&= s_A(aa') \\
&= (S_A \circ \pi_A)(a \otimes a'),
\end{align*}
\]
and we conclude that $\pi_{L\circ}(a_i \otimes s_i) = s_i \circ \pi_A$. Also, it is easy to check that $\pi_{L\circ}(q_B \otimes q_B) = q_B \circ \pi_B$. Now define $\rho_L : L \to L \otimes L$ by

$$
\rho_L((a, b)) = L \big((s_A \otimes s_A) \circ \rho_A \circ \rho_A(a, b) + (a, b) \cdot \big((q_B \otimes q_B)(\rho_B(e_B))\big)\big).
$$

Clearly ρ_L is bounded, we first show that ρ_L is a left–L–module map. For all $(a, b), (c, d) \in L$, we have

$$
\rho_L((a, b) \cdot (c, d)) = L\big((s_A \otimes s_A)(\rho_A(a \cdot c, ad + bc + bd)) + (a, b) \cdot \big((q_B \otimes q_B)(\rho_B(e_B))\big)\big)
$$

$$
= L\big((s_A \otimes s_A)(\rho_A(a \cdot c)) + (a, b) \cdot \big((q_B \otimes q_B)(\rho_B(e_B))\big)\big)
$$

$$
= (a, 0) \cdot L\big((s_A \otimes s_A)(\rho_A(c)) + (a, b) \cdot \big((q_B \otimes q_B)(\rho_B(e_B))\big)\big)
$$

$$
= (a, 0) \cdot L\big((s_A \otimes s_A)(\rho_A(c) + (a, b) \cdot \big((q_B \otimes q_B)(\rho_B(e_B))\big)\big)
$$

$$
= (a, b) \cdot \left[L\big((s_A \otimes s_A)(\rho_A(c) + (a, b) \cdot \big((q_B \otimes q_B)(\rho_B(e_B))\big)\big)\right] - (0, b) \cdot \left(L\big((s_A \otimes s_A)(\rho_A(c))\big)\right).
$$

but $(0, b) \cdot (s_A \otimes s_A)(\rho_A(c)) = 0$, because for all $(a \cdot a, a, a) \in A \otimes A$, we can write

$$
(0, b) \cdot \left((s_A \otimes s_A)(a, a)\right) = (0, b) \cdot \left(s_A(a) \otimes s_A(a)\right)
$$

$$
= (0, b) \cdot \left\{(a, a, a) \otimes (a, a, a)\right\}
$$

$$
= (0, b) \cdot \left((0, 0) \otimes (a, a, a)\right)
$$

and we conclude that $(0, b) \cdot (s_A \otimes s_A)(\rho_A(c)) = 0$ for $\rho_A(c) = \sum_{i=1}^{\infty} a_i \otimes a_i$, in which (a_i, a_i) are some sequences in A with $\sum_{i=1}^{\infty} \|a_i\| \|a_i\| < \infty$.

Thus $\rho_L((a, b) \cdot (c, d)) = (a, b) \cdot \rho_L((c, d))$, and so ρ_L is left–L–module map. To show that ρ_L is right–L–module map, we note that for all $(b \cdot b, b) \in L \otimes B$

$$
(a, b) \cdot \left((q_B \otimes q_B)(b \cdot b)\right) = (q_B \otimes q_B)((b + ae_B) \cdot (b \cdot b)),
$$

$$
(q_B \otimes q_B)(b \cdot b) \cdot (a, b) = (q_B \otimes q_B)((b \cdot b) \cdot (b + ae_B)).
$$

Hence

$$
(a, b) \cdot \left((q_B \otimes q_B)(\rho_B(e_B))\right) = (q_B \otimes q_B)((b + ae_B) \cdot \rho_B(e_B))
$$

$$
= (q_B \otimes q_B)(\rho_B(e_B) \cdot (b + ae_B))
$$

$$
= \left((q_B \otimes q_B)(\rho_B(e_B))\right) \cdot (a, b).
$$
It follows that \((q_b \otimes q_b)(\rho_b(e_b))\) commutes with the members of \(L\). Consequently,
\[
\rho_L((c, d) \cdot (a, b)) = (s_A \otimes s_A)(\rho_A(\lambda))((c, d) \cdot (a, b)) + ((c, d) \cdot (a, b))((q_b \otimes q_b)(\rho_b(e_b)))
\]
\[
= (s_A \otimes s_A)(\rho_A(\lambda)) + ((c, d) \cdot (a, b))((q_b \otimes q_b)(\rho_b(e_b)))
\]
\[
= (s_A \otimes s_A)(\rho_A(\lambda)) \cdot (a, 0) + (c, d) \cdot (q_b \otimes q_b)(\rho_b(e_b)) \cdot (a, b)
\]
\[
= [(s_A \otimes s_A)(\rho_A(\lambda)) + (c, d) \cdot (q_b \otimes q_b)(\rho_b(e_b))](a, b)
\]
\[
= (s_A \otimes s_A)(\rho_A(\lambda)) \cdot (0, b)
\]
\[
= \rho_L((c, d) \cdot (a, b) - (s_A \otimes s_A)(\rho_A(\lambda)) \cdot (0, b),
\]
but with similar reasoning for \((0, b) \cdot (s_A \otimes s_A)(\rho_A(\lambda)) = 0\) we have the identity \((s_A \otimes s_A)(\rho_A(\lambda)) \cdot (a, b) = 0\). Thus \(\rho_L((c, d) \cdot (a, b)) = \rho_L((c, d) \cdot (a, b))\), and so \(\rho_L\) is a right--\(L\)--module map. Finally, we have
\[
(\pi_L \circ \rho_L)(a, b) = (\pi_L \circ (s_A \otimes s_A)(\rho_A \circ s_A))(a, b) + (a, b) \cdot (\pi_L \circ (q_b \otimes q_b)(\rho_b(e_b)))
\]
\[
= (s_A \otimes s_A)(\rho_A \circ s_A)(a, b) + (a, b) \cdot (q_b \otimes q_b)(\rho_b(e_b))
\]
\[
= s_A(a) + (a, b) \cdot (0, e_b)
\]
\[
= (a, -ae_b) + (0, ae_b + b)
\]
\[
= (a, b),
\]
therefore \(\pi_L \circ \rho_L = id_L\), and hence \(L = A \otimes B\) is biprojective. \(\square\)

4. Results on Biflatness

This section is devoted to the relations between biflatness of \(L = A \otimes B\) and biflatness of \(A\) and \(B\).

Theorem 4.1. Let \(A\) and \(B\) be Banach algebras, and let \(B\) be an algebraic Banach \(A\)–bimodule.

(i) If \(L = A \otimes B\) is biflat, then \(A\) is biflat.

(ii) Suppose that \(B\) has unit \(e_B\), such that for all \(a \in A\), \(ae_B = e_Ba\). If \(L = A \otimes B\) is biflat, then \(B\) is biflat.

Proof. By the hypothesis, there exist a bounded \(L\)–bimodule map \(\lambda_L : (L \overline{\otimes} L)^* \to L^*\), such that \(\lambda_L \circ \pi_L^* = id_L^*\). The following identities have been shown in the proof of theorem (3.1)
\[
\pi_A \circ (p_A \otimes p_A) = p_A \circ \pi_L,
\]
\[
\pi_B \circ (e_B \otimes r_B) = r_B \circ \pi_L.
\]
(i) Define \(\Lambda_A : (A \overline{\otimes} A)^* \to A^*\) by \(\Lambda_A = q_A^* \circ \lambda_L \circ (p_A \otimes p_A)^*\), which is a bounded \(A\)–bimodule map and
\[
\lambda_A \circ \pi_A^* = q_A^* \circ \lambda_L \circ (p_A \otimes p_A)^* \circ \pi_A^* = (p_A \otimes p_A)^* \circ \pi_A^* = \Lambda_A.
\]
Hence A is biflat.

(ii) Define $\lambda_B : (B \hat{\otimes} B)^* \rightarrow B^*$ by $\lambda_B =: q_B^o \circ \lambda_L (r_B \otimes r_B)^*$. Since B is unital and $ae_B = e_B a$ ($a \in A$), then r_B and hence λ_B are bounded B–bimodule maps, and we have

$$\lambda_B o \pi'_B = q_B^o \circ \lambda_L (r_B \otimes r_B)^* o \pi'_B$$

$$= q_B^o \circ \lambda_L (r_B o \pi_B (r_B \otimes r_B))^*$$

$$= q_B^o \circ \lambda_L (r_B o \pi_B)$$

$$= q_B^o \circ \lambda_L o r_B$$

$$= (r_B o \pi_B)^*$$

$$= (id_B)^*$$

$$= id_B^*$$.

This proves the biflatness of B. \square

For the converse of theorem (4.1) we should determine the L–bimodule structures on $L' = (A \bowtie B)^*$. We recall that the dual space A^* of A is a Banach A–bimodule by module operations

$$\langle f \cdot a, b \rangle = \langle f, ab \rangle \quad \text{and} \quad \langle a \cdot f, b \rangle = \langle fa, b \rangle,$$

for $a, b \in A$ and $f \in A^*$. We remark that the dual space $L' = (A \bowtie B)^*$ can be identified with $A^* \times B^*$ by the following bounded linear map

$$\theta : A^* \times B^* \rightarrow (A \bowtie B)^* = L', \quad \{(\theta(f, g), (a, b)) = (fa + g(b))\}.$$

Now suppose that B has unit e_B such that for all $a \in A$, $ae_B = e_B a$. Define $\varphi : A \rightarrow B$ by $\varphi(a) = e_B a$. For $(a, b), (a', b') \in L = A \bowtie B$ and $(f, g) \in L'$ we have

$$\left((f, g) \cdot (a, b) \right) (a', b') = \left((f, g) \left((a, b) \cdot (a', b') \right) \right)$$

$$= \left((f, g) \left(a a', a' b' + b a' + b b' \right) \right)$$

$$= f(a a') + g(ab') + g(b a') + g(b b')$$

$$= f(a) (a') + g(ae_B b') + g(be_B a') + (g \cdot b)(b')$$

$$= (f \cdot a)(a') + (a \cdot (ae_B)) b' + \left((g \cdot b) \varphi \right)(a') + (g \cdot b)(b')$$

$$= \left(f \cdot a + (g \cdot b) \varphi \right)(a') + \left(g \cdot (ae_B) + g \cdot b \right)(b')$$

$$= \left(f \cdot a + (g \cdot b) \varphi , g \cdot (ae_B) + g \cdot b \right)(a', b'),$$

therefore

$$(f, g) \cdot (a, b) = \left(f \cdot a + (g \cdot b) \varphi , g \cdot (ae_B) + g \cdot b \right),$$

and similarly

$$(a, b) \cdot (f, g) = \left(a \cdot f + (b \cdot g) \varphi , e_B a \cdot g + b \cdot g \right).$$

Theorem 4.2. Let A and B be Banach algebras, and let B be an algebraic Banach A–bimodule with unit e_B such that for all $a \in A$, $ae_B = e_B a$. If A and B are biflat, then $L = A \bowtie B$ is biflat.
Proof. By the hypothesis, there exist a bounded A–bimodule map $\lambda_A : (A \otimes A)' \to A'$ and a bounded B–bimodule map $\lambda_B : (B \otimes B)' \to B'$, such that $\lambda_A \circ \pi_A^* = id_A$ and $\lambda_B \circ \pi_B^* = id_B$. Define $\lambda_L : (L \otimes L)' \to L' \subseteq A' \times B'$ by

$$\lambda_L(h) := \left((\lambda_A \circ (s_A \otimes s_A)')(h) + \left((q^* \circ \lambda_B \circ (q_B \otimes q_B))' \right)(h), \left((\lambda_B \circ (q_B \otimes q_B))' \right)(h) \right),$$

for $h \in (L \otimes L)'$ and $\varphi : A \to B$ ($\varphi(a) = ae_B$). Clearly λ_L is a bounded map. To see that λ_L is an L–bimodule map we need the following identities for $h \in (L \otimes L)'$ and $(a, b) \in L$

\begin{enumerate}

 \item $(q_B \otimes q_B)'(h \cdot (a, b)) = (q_B \otimes q_B)'(h) \cdot (ae_B + b)$,

 \item $(q_B \otimes q_B)'((a, b) \cdot h) = (ae_B + b) \cdot (q_B \otimes q_B)'(h)$,

 \item $(s_A \otimes s_A)'(h \cdot (a, b)) = (s_A \otimes s_A)'(h) \cdot a$,

 \item $(s_A \otimes s_A)'((a, b) \cdot h) = a \cdot (s_A \otimes s_A)'(h)$.
\end{enumerate}

To prove the equality (1), for $(b' \otimes b'') \in B \otimes B$ we can write

$$
\left((q_B \otimes q_B)'(h \cdot (a, b)) \right) (b' \otimes b'') = \left(h \cdot (a, b) \right) (q_B \otimes q_B)(b' \otimes b'') = \left(h (a, b) \right) ((0, b') \otimes (0, b'')) = h(0, ab' + bb') \otimes (0, b'').$$

This proves the identity (1). Similarly, we can prove the identity in (2). To investigate the equality (3), for $(a' \otimes a'') \in A \otimes A$ we can write

\begin{align*}
\left((s_A \otimes s_A)'(h \cdot (a, b)) \right) (a' \otimes a'') &= \left(h \cdot (a, b) \right) (s_A \otimes s_A)(a' \otimes a'') \\
&= \left(h (a, b) \right) (a' \otimes (-a' e_B)) \otimes (a'' \otimes (-a'' e_B)) \\
&= h((aa', -aa' e_B + ba' e_B) \otimes (a'', -a'' e_B)) \\
&= h((aa', -aa' e_B + ba' e_B) \otimes (a'', -a'' e_B)) \\
&= h((s_A \otimes s_A)(aa' \otimes a'')) \\
&= \left((s_A \otimes s_A)'(h) \right) (a' \otimes a'') \\
&= \left((s_A \otimes s_A)'(h) \right) (a' \otimes a''),
\end{align*}

this proves the identity in (3), and similarly one can proves the identity in (4). Now, using the identities
(1-4) we have
\[
\lambda_L(h \cdot (a, b)) = \left((\lambda_A \circ (s_A \otimes s_A))(h \cdot (a, b)) + (\varphi^o \circ \lambda_B \circ (q_B \otimes q_B))(h \cdot (a, b))\right)
\]
\[
\text{and for } (f, g) \in L' \text{ we have}
\]
\[
(\lambda_L \circ \pi_L^*)(f, g) = \lambda_L(\pi_L^*(f, g))
\]
\[
= \left((\lambda_A \circ (s_A \otimes s_A)) \circ \pi_L^*(f, g) + (\varphi^o \circ \lambda_B \circ (q_B \otimes q_B)) \circ \pi_L^*(f, g)\right)
\]
\[
\text{this proves that } \lambda_L \circ \pi_L^* = \text{id}_{L'}, \text{ and the proof is completed.} \]

5. Examples

This section includes some illustrative examples.
Example 5.1. Let \(L = A \times_0 B \) be the \(\theta \)-Lau product of Banach algebras \(A \) and \(B \) with \(\theta \in \Delta(A) \). If \(B \) is unital with unit \(e_B \) such that \(e_B a = ae_B \) for all \(a \in A \), then \(A \times_0 B \) is biprojective [biflat] if and only if \(A \) and \(B \) are biprojective [biflat].

Example 5.2. Let \(L = A \times_T B \) be the \(T \)-Lau product of Banach algebras \(A \) and \(B \) with algebra homomorphism \(T : A \rightarrow B \) (\(\| T \| \leq 1 \)). If \(B \) is unital with unit \(e_B \), then for all \(a \in A \) we have \(e_B T(a) = T(a) e_B = T(a) \). Hence \(A \times_T B \) is biprojective [biflat] if and only if \(A \) and \(B \) are biprojective [biflat].

Example 5.3. Let \(L = A \rtimes^\theta I \) be the amalgamation of Banach algebras \(A \) and \(I \) along the closed ideal \(I \) in \(B \), with respect to continuous Banach algebra homomorphism \(\theta : A \rightarrow B \). If \(I \) has unit \(e_I \) such that \(\theta(a) e_I = e_I \theta(a) \), for all \(a \in A \), then \(A \rtimes^\theta I \) is biprojective [biflat] if and only if \(A \) and \(I \) are biprojective [biflat].

Example 5.4. Let \(G \) be a locally compact group and let \(L^1(G) \) and \(M(G) \) be its group algebra and measure algebra, respectively. It is known that \(L^1(G) \) is unital if and only if \(G \) is discrete, and \(L^1(G) \) is biprojective if and only if \(G \) is compact [4, 12]. Also, \(L^1(G) \) is biflat if and only if \(G \) is amenable [4]. Therefore we have the following results

i) If \(L^1(G) \cong L^1(G) \) is biprojective, then \(G \) is compact.

ii) If \(L^1(G) \cong L^1(G) \) is biflat, then \(G \) is amenable.

iii) If \(G \) is discrete group, then \(L^1(G) \cong L^1(G) \) is biprojective if and only if \(G \) is finite, and \(L^1(G) \cong L^1(G) \) is biflat if and only if \(G \) is amenable.

iv) \(M(G) \cong M(G) \) is biprojective [biflat] if and only if \(M(G) \) is biprojective [biflat].

v) If \(M(G) \cong L^1(G) \) is biprojective [biflat], then \(M(G) \) is biprojective [biflat].

vi) Suppose that \(G \) be discrete, and \(A \) be a Banach algebra, such that \(L^1(G) \) be an algebraic Banach \(A \)-bimodule.

If \(A \cong L^1(G) \) is biprojective, then \(L^1(G) \) and \(A \) are biprojective, and \(G \) is finite.

If \(A \cong L^1(G) \) is biflat, then \(L^1(G) \) and \(A \) are biflat, and \(G \) is amenable.

If \(G \) is finite and \(A \) is biprojective, then \(A \cong L^1(G) \) is biprojective.

If \(G \) is amenable and \(A \) is biflat, then \(A \cong L^1(G) \) is biflat.

vii) If \(C_0(G) \cong M(G) \) is biprojective [biflat], then \(C_0(G) \) and \(M(G) \) are biprojective [biflat].

viii) If \(G \) is finite, then \(C_0(G) \) and \(C_0(G) \cong M(G) \) are biprojective.

Example 5.5. Let \(A'' \) be the second dual of a Banach algebra \(A \) with first Arens product \(\Delta \). Then \(A'' \) can be an \(A \)-bimodule by \(a F = \Delta \omega F \) and \(F a = F \Delta \omega \), for all \(a \in A \) and \(F \in A' \), and with natural embedding of \(A \) into \(A'' \) \((a \mapsto \delta) \). Also it is known that if \(A \) is Arens regular, then \(A'' \) is unital if and only if \(A \) has bounded approximate identity, [3]. By theorems (3.1) and (4.1), if \(L = A \cong A'' \) is biprojective [biflat], then \(A \) is biprojective [biflat]. Also we can apply part (ii) of theorems (3.1) and (4.1) and theorems (3.2) and (4.2) for Arens regular Banach algebras \(A \) with bounded approximate identity and for \(L = A \cong A'' \).

On the other hand, by using the results in [8], if \(A \) is Arens regular with bounded approximate identity, then \(L = A \cong A'' \) is biflat if and only if \(A'' \) is biflat. Besides if \(A \cong A'' \), then \(L = A \cong A'' \) is biprojective if and only if \(A'' \) is biprojective.

One can use this example for a \(C^* \)-algebra, which is Arens regular and has bounded approximate identity. Also, for \(A = L^1(G) \), in which \(G \) is compact, we will have \(L^1(G) \cong L^1(G)'' \).
References

