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Abstract. In this paper, we give expressions for the generalized Drazin inverse of a (2,2,0) block matrix over
a Banach algebra under certain circumstances, utilizing which we derive the generalized Drazin inverse of
a 2× 2 block matrix in a Banach algebra under weaker restrictions. Our results generalize and unify several
results in the literature.

1. Introduction

The original motivation of expressions for the Drazin inverse of a (2,2,0) block matrix is from the
perspective of the matrix to give the solution of the second-order differential equations (see [5–7]). It is still
an open problem to find an explicit formula for the Drazin inverse of a block matrix without any restrictions
upon the blocks. But there have been many formulae for the Drazin inverse of a block matrix under some
restrictive assumptions (see [13, 17, 19, 26]). Especially, they can be applied to analyze the solutions of
the state equations of the descriptor fractional discrete-time and the continuous-time linear systems with
regular pencils [22, 23].

Let A be a complex unital Banach algebra. For a ∈ A, let σ(a) be the spectrum of a. We denote
respectively the sets of all nilpotent and quasinilpotent elements (σ(a) = 0) ofA by N(A) and QN(A). An
element a ∈ QN(A) if limn→∞ ‖an

‖
1
n = 0. Note that N(A) ⊂ QN(A). The equivalent definition of the Drazin

inverse involving the condition of N(A) and the concept of the generalized Drazin inverse in a Banach
algebra were both introduced in [24].

An element a ofA is generalized Drazin invertible in the case that there is an element b ∈ A satisfying

ab = ba, bab = b, and a − a2b ∈ QN(A).

Such b, if it exists, is unique; it is called a generalized Drazin inverse of a and will be denoted by ad. Then
the spectral idempotent aπ of a corresponding to 0 is given by aπ = 1 − aad. From the definition of the
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The first author is supported by the NSFC (No. 61672149; No. 51507029; No. 61503072), and the Scientific and Technological

Development Program Foundation of Jilin Province, China (No. 20170520052JH; No. JJKH20190690KJ; No. 20160520071JH). The
second author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (No. 174007).

Email addresses: daochangzhang@126.com (Daochang Zhang), dijana@pmf.ni.ac.rs (Dijana Mosić)
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generalized Drazin inverse and from the well-known properties of the functional calculus, if ad exists, then
(an)d = (ad)n, for an arbitrary integer n ≥ 1.

The generalized Drazin inverse is a generalization of the Drazin inverse and the group inverse. Until
now, some results of the generalized Drazin inverse have been developed (see [4, 18, 28]). In the rest of this
section, we state some well-known and auxiliary results. We begin from classic results for the generalized
Drazin inverse of triangular matrices in [9, 15], which generalize the results for the Drazin inverse of
triangular matrices in [20, 30].

If a ∈ A and p = p2
∈ A is an idempotent, then a has the following block matrix representation relative

to the idempotent p:

a =

[
a11 a12
a21 a22

]
,

where a11 = pap, a12 = pa(1 − p), a21 = (1 − p)ap, a22 = (1 − p)a(1 − p).

Lemma 1.1. [9, 15] Let x =

[
a b
0 d

]
relative to an idempotent p ∈ A, and let y =

[
d 0
b a

]
relative to 1 − p. If a is

generalized Drazin invertible in pAp and d is generalized Drazin invertible in (1 − p)A(1 − p), then x and y are
generalized Drazin invertible and

xd =

[
ad X
0 dd

]
, yd =

[
dd 0
X ad

]
,

where

X = aπ
∞∑

i=0

aib(dd)i+2 +

∞∑
i=0

(ad)i+2bdidπ − adbdd.

The following formula, proved for the case of the Drazin invertibility in [11], is called as Cline’s formula.
Cline’s formula is generalized to the case of the generalized Drazin invertibility in [25].

Lemma 1.2. [25, Corollary 2.6](Cline’s Formula) For a, b ∈ A, ab is generalized Drazin invertible if and only if so
is ba. Furthermore, if ab is generalized Drazin invertible, then

(ba)d = b[(ab)d]2a.

We state the following useful result which is proved for matrices in [21], for bounded linear operators
in [16], and for elements of Banach algebra [9].

Lemma 1.3. [9, Example 4.5] Let a, b ∈ A be generalized Drazin invertible, and let ab = 0. Then a + b is generalized
Drazin invertible, and

(a + b)d =

∞∑
n=0

(bd)n+1anaπ +

∞∑
n=0

bπbn(ad)n+1.

Recently, in [31–33], new formulae for the generalized Drazin inverse of block matrices and the sum in
a Banach algebra were given.

Lemma 1.4. [33, Theorem 2.6] Let a, b ∈ A be generalized Drazin invertible. If aπakb = aπab and baπ = b, for some
k ∈ N such that k > 1, then a + b is generalized Drazin invertible and

(a + b)d = ad + aπ
∞∑

n=0

(bd)n+1an +

∞∑
n=0

(ad)n+2b(a + b)nbπ

−

∞∑
n=0

∞∑
k=0

(ad)n+2b(a + b)n(bd)k+1ak+1
− adb

∞∑
n=0

(bd)n+1an.
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The generalized Drazin inverse of block matrices have various applications in singular differential
equations and singular difference equations, Markov chains and iterative methods, and so on. We refer the
reader to see [10, 27, 29, 34, 35].

In this paper, we derive new formulae for the generalized Drazin inverse of a (2, 2, 0) block matrix
over a Banach algebra under certain circumstances. Note that the two research routes of the generalized
Drazin inverse of (2, 2, 0) matrices and 2 × 2 matrices are both independent before. Furthermore, we
apply the generalized Drazin inverse of (2,2,0) matrices to deduce the generalized Drazin inverse of 2 × 2
matrices over a Banach algebra under weaker restrictions, which generalizes and unifies several results of
[8, 12, 14, 15, 31–33].

Throughout this paper, if the lower limit of a sum is greater than its upper limit, we always define the

sum to be 0. For example, the sum
−1∑
k=0
∗ = 0. We adopt the convention that a0 = 1.

2. Generalized Drazin Inverse of a (2,2,0) Operator Matrix

Let A be a complex unital Banach algebra. LetM2(A) be the 2 × 2 matrix algebra over A. Given an

idempotent e inA, we consider the setM2(A, e) =

[
eAe eA(1 − e)

(1 − e)Ae (1 − e)A(1 − e)

]
⊂ M2(A). ThenM2(A, e) is

a unital Banach algebra with respect to the norm∥∥∥∥∥∥
[
a11 a12
a21 a22

]∥∥∥∥∥∥ = ‖a11 + a12 + a21 + a22‖.

We deduce the relation betweenA andM2(A) as follows.

Lemma 2.1. Let e be an idempotent ofA. For any a ∈ A, let a be generalized Drazin invertible, and

σ(a) =

[
eae ea(1 − e)

(1 − e)ae (1 − e)a(1 − e)

]
∈ M2(A, e).

Then the mapping σ is an isometric Banach algebra isomorphism fromA toM2(A, e) such that:

1. (σ(a))d = σ(ad);

2. if (σ(a))d =

[
α β
γ δ

]
, then ad = α + β + γ + δ.

Proof. Utilizing [9, Lemma 2.1] we obtain that the mapping σ is an isometric Banach algebra isomorphism
fromA toM2(A, e). The rest of the proof is obvious.

We combine the above result and Lemma 1.1 to analyze the property of the generalized Drazin invert-
ibility under some special cases.

Lemma 2.2. Let e be an idempotent of A and let a, ea (or a(1 − e))∈ A be generalized Drazin invertible such that
ea(1 − e) = 0. Then a(1 − e) (or ea) is generalized Drazin invertible, and

(ea)d = ead, (a(1 − e))d = ad(1 − e), (ea)n = ean,

for any positive integer n.

Proof. Since ea(1 − e) = 0, combining Lemma 2.1 and Lemma 1.1, we have that a(1 − e) (or ea) is generalized
Drazin invertible and ead(1 − e) = 0. Then eaead = eaad = eadea and eadeaead = ead. Furthermore,

lim
n→∞
‖(ea − (ea)2ead)n

‖
1
n = lim

n→∞
‖(eaaπ)n

‖
1
n = lim

n→∞
‖eanaπ‖

1
n

≤ lim
n→∞
‖e‖

1
n ‖anaπ‖

1
n = 0.
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Hence, (ea)d = ead. Similarly, we can prove that (a(1 − e))d = ad(1 − e). Using ea(1 − e) = 0, we easily get
(ea)n = ean for any positive integer n.

Now our first major result is demonstrated as follows.

Theorem 2.3. Let x =

[
a 1
b 0

]
, where a, b and abπ are generalized Drazin invertible elements ofA. If babπ = 0, then

x is generalized Drazin invertible, and
xd = P + Q + R + S,

where

P =


∞∑

i=0
(ad)2i+1bibπ bd

− adbπabd
−

∞∑
i=1

(ad)2i+1bibπabd +
∞∑

i=0
(ad)2ibibπ

bbd
−bbdabd

 ,
Q =

(aπ −
∞∑
j=1

(ad)2 jb j)bπabd
−(aπ −

∞∑
j=1

(ad)2 jb j)bπabdabd

0 0

 ,
R =

∞∑
i=1

(aπ −
∞∑
j=1

(ad)2 jb j)bibπa + aπa2ibπabbd +
i−2∑
k=0

aπa2k+2bi−k−1bπa 0

0 0


[

0 bd

bbd
−bbdabd

]2i+2

,

S =

∞∑
i=1

aπa2i−1bπabbd
−

∞∑
j=0

(ad)2 j+1bi+ jbπa +
i−2∑
k=0

aπa2k+1bi−k−1bπa 0

bibπa 0


[

0 bd

bbd
−bbdabd

]2i+1

.

Proof. We adopt the convention that be = bbd. Let e =

[
be 0
0 1

]
, σ as in Lemma 2.1, and σ(x) =

[
α β
γ δ

]
. Since

babπ = 0, we have

α =

[
bea be

bbe 0

]
, β =

[
0 0

bbπ 0

]
, γ =

[
bπabe bπ

0 0

]
, δ =

[
abπ 0
0 0

]
,

where α, β, γ, δ ∈ A. Note that (β + γ)2 =

[
bbπ 0
bbπa bbπ

]
is quasinilpotent, and then β + γ is quasinilpotent too.

Thus,
(β + γ)d = 0.

Utilizing Lemma 2.2, we obtain (abπ)d = adbπ. Further,

(δd)n =

[
(ad)nbπ 0

0 0

]
for any positive integer n. Combining βδ = 0, γδ = 0 and Lemma 1.3 gives

(β + γ + δ)d =

∞∑
n=0

(δd)n+1(β + γ)n = δd + (δd)2(β + γ) +

∞∑
i=1

(δd)2i+1(β + γ)2i +

∞∑
i=1

(δd)2i+2(β + γ)2i+1

=

adbπ + (ad)2bπabe +
∞∑

i=1
[(ad)2i+1bπbi + (ad)2i+2bπbia]

∞∑
i=0

(ad)2i+2bπbi

0 0

 .
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Then simple computations show that

(β + γ + δ)π =

1 − (aebπ + adbπabe +
∞∑

i=1
[(ad)2ibπbi + (ad)2i+1bπbia]) −

∞∑
i=0

(ad)2i+1bπbi

0 1

 .
Note that α has the group inverse

α] =

[
0 bd

be
−beabd

]
,

and so ααπ = 0, where απ =

[
bπ 0
0 bπ

]
. Now

(β + γ + δ)dαπ =


∞∑

i=0
(ad)2i+1bibπ

∞∑
i=0

(ad)2ibibπ

0 0

 . (1)

We consider the nth power of α]. Utilizing Lemma 2.2 gets

(α])n =

([
be 0
0 be

] [
0 bd

1 −abd

])n

=

[
be 0
0 be

] [
0 bd

1 −abd

]n

for any positive integer n. Using α(β + γ + δ) = 0 and Lemma 1.3, we get

(α + β + γ + δ)d = (β + γ + δ)dαπ + (β + γ + δ)π
∞∑

n=0

(β + γ + δ)n(α])n+1. (2)

Thus, simple computations show that

∞∑
n=0

(β + γ + δ)n(α])n+1 = α] +

∞∑
i=0

(β + γ + δ)2i+1(α])2i+2 +

∞∑
i=1

(β + γ + δ)2i(α])2i+1.

Substituting (1), the following expression for (β + γ + δ)πα]:

(β + γ + δ)πα] =

 0 bd
− adbπabd

−

∞∑
i=1

(ad)2i+1bibπabd

bbd
−bbdabd

 ,
the following equality involving (β + γ + δ)π

∑
∞

i=0(β + γ + δ)2i+1(α])2i+2:

(β + γ + δ)π
∞∑

i=0

(β + γ + δ)2i+1(α])2i+2

= (β + γ + δ)π
∞∑

i=0

γ(βγ)i +

i−1∑
k=0

δ2k+2γ(βγ)i−k−1

 (α])2i+2

= (β + γ + δ)π
γ(α])2 +

∞∑
i=1

γ(βγ)i +

i−2∑
k=0

δ2k+2γ(βγ)i−k−1 + δ2iγ

 (α])2i+2
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=

(aπ −
∞∑
j=1

(ad)2 jb j)bπabd
−(aπ −

∞∑
j=1

(ad)2 jb j)bπabdabd

0 0


+

∞∑
i=1


(aπ −

∞∑
j=1

(ad)2 jb j)bibπa (aπ −
∞∑
j=1

(ad)2 jb j)bibπ

0 0


+

i−2∑
k=0

[
aπa2k+2bi−k−1bπa aπa2k+2bi−k−1bπ

0 0

]
+

[
aπa2ibπabbd aπa2ibπ

0 0

]) [
0 bd

be
−beabd

]2i+2

=

(aπ −
∞∑
j=1

(ad)2 jb j)bπabd
−(aπ −

∞∑
j=1

(ad)2 jb j)bπabdabd

0 0


+

∞∑
i=1


(aπ −

∞∑
j=1

(ad)2 jb j)bibπa + aπa2ibπabbd 0

0 0

 +

i−2∑
k=0

[
aπa2k+2bi−k−1bπa 0

0 0

] [0 bd

be
−beabd

]2i+2

,

and the next equality containing (β + γ + δ)π
∑
∞

i=1(β + γ + δ)2i(α])2i+1:

(β + γ + δ)π
∞∑

i=1

(β + γ + δ)2i(α])2i+1

= (β + γ + δ)π
∞∑

i=1

(βγ)i +

i−1∑
k=0

δ2k+1γ(βγ)i−k−1

 (α])2i+1

= (β + γ + δ)π
∞∑

i=1

(βγ)i +

i−2∑
k=0

δ2k+1γ(βγ)i−k−1 + δ2i−1γ

 (α])2i+1

=

∞∑
i=1


aπa2i−1bπabbd

−

∞∑
j=0

(ad)2 j+1bi+ jbπa aπa2i−1bπ −
∞∑
j=0

(ad)2 j+1bi+ jbπ

bibπa bibπ


+

i−2∑
k=0

[
aπa2k+1bi−k−1bπa aπa2k+1bi−k−1bπ

0 0

] [0 bd

be
−beabd

]2i+1

=

∞∑
i=1


aπa2i−1bπabbd

−

∞∑
j=0

(ad)2 j+1bi+ jbπa 0

bibπa 0

 +

i−2∑
k=0

[
aπa2k+1bi−k−1bπa 0

0 0

] [0 bd

be
−beabd

]2i+1

into (2) will give the expression of xd that we wanted.

We next consider the interesting representation of (xd)n for any positive integer n, which needs to be
applied to prove the next main results in Section 3.

Corollary 2.4. Let x =

[
a 1
b 0

]
, where a, b and abπ are generalized Drazin invertible elements ofA. If babπ = 0, then

x is generalized Drazin invertible, and, for any positive integer n,

(xd)n = (P + Q + R)Pn−1 +

n−1∑
i=0

Pn−(i+1)SPi,

where P, Q, R and S are defined as in Theorem 2.3.
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Proof. By Theorem 2.3, xd = P + Q + R + S. Since bai+1bπ = b(abπ)i+1 = 0, for any nonnegative integer i, and
baadbπ = 0, we have Q2 = R2 = S2 = 0, PQ = PR = QR = RQ = QS = SQ = RS = SR = 0 and SPS = 0. Then,
by a routine computation, we get the expression of (xd)n as shown in Corollary 2.4.

Remark that we assume a, b and bπa are generalized Drazin invertible elements ofA. As a dual version
of Theorem 2.3, xd can be also proved to be generalized Drazin invertible and expressed when bπab = 0.

3. Applications to a 2 × 2 Block Matrix

In this section, we apply the generalized Drazin inverse of (2,2,0) matrices in a Banach algebra to deduce
the generalized Drazin inverse of 2 × 2 matrices under some restrictions, which generalizes and unifies
several results of [8, 12, 14, 15, 31–33].

Theorem 3.1. Let x =

[
a b
c d

]
, where a, b, c, d ∈ A such that a, d, bc and a(bc)π are generalized Drazin invertible. If

bca(bc)π = 0 and bd = 0, then x is generalized Drazin invertible, and

xd =

∞∑
n=0

[
0 0
0 (dd)n+1

] [
a b
c 0

]n (
1 −

[
a2 + bc a

ca c

]
u2

[
1 0
0 b

])
+

[
a 1

dπc 0

]
u2

[
1 0
0 b

]
+

∞∑
n=1

[
0 0

dπdn+1c 0

]
un+2

[
1 0
0 b

]
,

where, for positive integer n,

un = (P1 + Q1 + R1)Pn−1
1 +

n−1∑
i=0

Pn−(i+1)
1 S1Pi

1,

P1 =


∞∑

i=0
(ad)2i+1(bc)i(bc)π (bc)d

− ad(bc)πa(bc)d
−

∞∑
i=1

(ad)2i+1(bc)i(bc)πa(bc)d +
∞∑

i=0
(ad)2i(bc)i(bc)π

bc(bc)d
−bc(bc)da(bc)d

 ,
Q1 =

(aπ −
∞∑
j=1

(ad)2 j(bc) j)(bc)πa(bc)d
−(aπ −

∞∑
j=1

(ad)2 j(bc) j)(bc)πa(bc)da(bc)d

0 0

 ,

R1 =

∞∑
i=1

(aπ −
∞∑
j=1

(ad)2 j(bc) j)(bc)i(bc)πa + aπa2i(bc)πabc(bc)d +
i−2∑
k=0

aπa2k+2(bc)i−k−1(bc)πa 0

0 0


×

[
0 (bc)d

bc(bc)d
−bc(bc)da(bc)d

]2i+2

,

S1 =

∞∑
i=1

aπa2i−1(bc)πabc(bc)d
−

∞∑
j=0

(ad)2 j+1(bc)i+ j(bc)πa +
i−2∑
k=0

aπa2k+1(bc)i−k−1(bc)πa 0

(bc)i(bc)πa 0


×

[
0 (bc)d

bc(bc)d
−bc(bc)da(bc)d

]2i+1

.

Proof. Suppose that x = y + z, where

y =

[
0 0
0 d

]
and z =

[
a b
c 0

]
.
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Obviously, y is generalized Drazin invertible,

yd =

[
0 0
0 dd

]
and yπ =

[
1 0
0 dπ

]
.

To prove that z is generalized Drazin invertible, we write z = pq, where

p =

[
a 1
c 0

]
and q =

[
1 0
0 b

]
.

Applying Theorem 2.3, we deduce that qp =

[
a 1
bc 0

]
is generalized Drazin invertible and

(qp)d = P1 + Q1 + R1 + S1.

By Lemma 1.2, z = pq is generalized Drazin invertible and zd = p[(qp)d]2q. For positive integer n, by
Corollary 2.4, we get [(qp)d]n = un and (zd)n+1 = p[(qp)d]n+2q.

Because zy = 0, by Lemma 1.3, we have that x is generalized Drazin invertible and

xd =

∞∑
n=0

(yd)n+1znzπ +

∞∑
n=0

yπyn(zd)n+1

which implies the final formula.

The following corollary relaxes and removes some restrictions of Theorem 2.3 in [32], where Mosić
consider the conditions bd = 0, a(bc)π = 0, c(bc)π = 0, and (bc)πb = 0.

Corollary 3.2. Let x =

[
a b
c d

]
, where a, b, c, d ∈ A such that a and d are generalized Drazin invertible. If a(bc)π = 0,

bd = 0, then x is generalized Drazin invertible, and

xd =

∞∑
n=0

[
0 0
0 (dd)n+1

] [
a b
c 0

]n (
1 −

[
a2 + bc a

ca c

]
u2

[
1 0
0 b

])
+

[
a 1

dπc 0

]
u2

[
1 0
0 b

]
+

∞∑
n=1

[
0 0

dπdn+1c 0

]
un+2

[
1 0
0 b

]
,

where, for positive integer n,

un = (P2 + Q2 + R2)Pn−1
2 +

n−1∑
i=0

Pn−(i+1)
2 S2Pi

2,

P2 =

[
0 (bc)d + (bc)π

bc(bc)d
−bc(bc)da(bc)d

]
, R2 =

∞∑
i=1

[
(bc)i(bc)πa 0

0 0

] [
0 (bc)d

bc(bc)d
−bc(bc)da(bc)d

]2i+2

,

Q2 =

[
(bc)πa(bc)d

−(bc)πa(bc)da(bc)d

0 0

]
, S2 =

∞∑
i=1

[
0 0

(bc)i(bc)πa 0

] [
0 (bc)d

bc(bc)d
−bc(bc)da(bc)d

]2i+1

.

Proof. The result can be deduced by routine computations.

We now analyze some other special cases of the preceding theorem. As the corollaries of Theorem 3.1,
the expressions for the generalized Drazin inverse of the block matrix in a Banach algebra and the operator
matrix over a Banach space under some conditions all can be shown as follows,

(1) a = 0 and d = 0 (see [31, Lemma 1.5]);
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(2) ab = 0, ca = 0, and d = 0 (see [31, Corollary 2.1(ii)]);
(3) ca = 0 and d = 0 (see [31, Corollary 2.1(i)]);
(4) bc = 0, bd = 0, and dc = 0 (see [15, Theorem 5.3], [33, Theorem 3.3(ii)]);
(5) bc = 0, bd = 0 (see [14, Theorem 2], [33, Theorem 3.3(i)]);
(6) bca = 0, bd = 0, dc = 0 (see [8, Theorem 4.4]);
(7) bca = 0, bd = 0, and bc is nilpotent (see [8, Theorem 4.2]).

Above all, Theorem 3.1 relaxes some conditions in each item of (1)–(7) and gives a unified generalization.
We conclude a dual version of Theorem 3.1 with some remarks. Using a dual version of Theorem 2.3,

we can give an expression of the generalized Drazin inverse xd under the following condition:

(bc)πabc = 0, bd = 0,

which gives a unified generalization of [31, Lemma 1.5], [33, Theorem 3.3(ii)], [33, Theorem 3.3(i)], [15,
Theorem 5.3], [14, Theorem 2], [12, Theorem 1], and [32, Theorem 2.5].

Utilizing the similar methods as Theorem 3.1, we can give the following corollary.

Corollary 3.3. Let x =

[
a b
c d

]
, where a, b, c, d ∈ A such that a, d, bc and a(bc)π are generalized Drazin invertible. If

bca(bc)π = 0 and dc = 0, then x is generalized Drazin invertible, and

xd =

[
a 1
c 0

]
u2

[
1 0
0 bdπ

]
+

∞∑
n=1

[
a 1
c 0

]
un+2

[
1 0
0 bdndπ

]
+

∞∑
n=0

(
1 −

[
a2 + bc a

ca c

]
u2

[
1 0
0 b

]) [
a b
c 0

]n [
0 0
0 (dd)n+1

]
,

where u is defined as in Theorem 3.1.

Proof. We use the same notation as in the proof of Theorem 3.1. Since yz = 0, using Lemma 1.3, we prove
this result.

The following corollary relaxes and removes some restrictions of Theorem 2.4 in [32], where Mosić
consider the conditions dc = 0, a(bc)π = 0, c(bc)π = 0, and (bc)πb = 0.

Corollary 3.4. Let x =

[
a b
c d

]
, where a, b, c, d ∈ A such that a, d, bc and a(bc)π are generalized Drazin invertible. If

a(bc)π = 0 and dc = 0, then x is generalized Drazin invertible, and

xd =

[
a 1
c 0

]
u2

[
1 0
0 bdπ

]
+

∞∑
n=1

[
a 1
c 0

]
un+2

[
1 0
0 bdndπ

]
+

∞∑
n=0

(
1 −

[
a2 + bc a

ca c

]
u2

[
1 0
0 b

]) [
a b
c 0

]n [
0 0
0 (dd)n+1

]
,

where u is defined as in Corollary 3.2.

We consider Lemma 1.4 to obtain a new representation of xd as follows.

Corollary 3.5. Let x =

[
a b
c d

]
, where a, b, c, d ∈ A such that a, d, bc and a(bc)π are generalized Drazin invertible. If
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bca(bc)π = 0, dπdkc = dπdc, k ∈ N, k > 1, and bdd = 0, then x is generalized Drazin invertible, and

xd =

[
0 0
0 dd

]
+

[
a 1

dπc − ddca −ddc

]
u2

[
1 0
0 b

]
+

∞∑
n=1

[
a 1

dπc − ddca −ddc

]
un+2

[
0 0
0 bdn

]
+

∞∑
n=0

[
0 0

(dd)n+2c 0

] [
a b
c d

]n (
1 −

[
a2 + bc a

ca c

]
u2

[
1 0
0 b

])
−

∞∑
n=0

∞∑
k=0

[
0 0

(dd)n+2c 0

] [
a b
c d

]n [
a 1
c 0

]
uk+2

[
0 0
0 bdk+1

]
.

Proof. If we use the same notation as in the proof of Theorem 3.1, notice that

yπykz =

[
0 0

dπdkc 0

]
=

[
0 0

dπdc 0

]
= yπyz

and

zyπ =

[
a bdπ

c 0

]
=

[
a b
c 0

]
= z.

Using Lemma 1.4, we get that x is generalized Drazin invertible and

xd = yd + yπ
∞∑

n=0

(zd)n+1yn +

∞∑
n=0

(yd)n+2zxnzπ

−

∞∑
n=0

∞∑
k=0

(yd)n+2zxn(zd)k+1yk+1
− ydz

∞∑
n=0

(zd)n+1yn.

By elementary computations, we finish the proof.
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D. Zhang, D. Mosić / Filomat 32:17 (2018), 5907–5917 5917

[17] E. Dopazo, M.F. Martinez-Serrano, Further results on the representation of the Drazin inverse of a 2 × 2 block matrix, Linear
Algebra Appl. 432 (2010) 1896–1904.

[18] H. Du, C. Deng, The representation and characterization of Drazin inverses of operators on a Hilbert space, Linear Algebra Appl.
407 (2005) 117–124.

[19] R.E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of a 2 × 2 block matrix, SIAM J. Matrix Anal. Appl. 27 (2006)
757–771.

[20] R.E. Hartwig, J.M. Shoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Aust. Math. Soc.
24 (1977) 10–34.

[21] R.E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207–217.
[22] T. Kaczorek, Application of the Drazin inverse to the analysis of descriptor fractional discreteCtime linear systems with regular

pencils, Int. J. Appl. Math. Comput. Sci. 23 (2013) 29–33.
[23] T. Kaczorek, Analysis of the descriptor roesser model with the use of the Drazin inverse, Int. J. Appl. Math. Comput. Sci. 25

(2015) 539–546.
[24] J.J. Koliha, A generalized Drazin inverse, Glasg. Math. J. 38 (1996) 367–381.
[25] Y. Liao, J. Chen, J. Cui, Cline’s formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc. 37 (2014) 37–42.
[26] X. Liu, H. Yang, Further results on the group inverses and Drazin inverses of anti-triangular block matrices, Appl. Math. Comput.

218 (2012) 8978–8986.
[27] C.D. Meyer, Limits and the index of a square matrix, SIAM J. Appl. Math. 26 (1974) 469–478.
[28] C.D. Meyer, The role of the group generalized inverse in the theory of finite Markov chains, SIAM Review. 17 (1975) 443–464.
[29] C.D. Meyer, The condition number of a finite Markov chains and perturbation bounds for the limitimg probabilities, SIAM J.

Alg. Dis. Methods 1 (1980) 273–283.
[30] C.D. Meyer, N.J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math. 33 (1977) 1–7.
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[33] D. Mosić, H. Zou, J. Chen, The generalized Drazin inverse of the sum in a Banach algebra, Ann. Funct. Anal. 8 (2017) 90–105.
[34] Y. Wei, H. Diao, M.K. Ng, On Drazin inverse of singular Toeplitz matrix, Appl. Math. Comput. 172 (2006) 809–817.
[35] Y. Wei, X. Li, F. Bu, F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices –

application of perturbation theory for simple invariant subspaces, Linear Algebra Appl. 419 (2006) 765–771.


