A New Class of f-Structures Satisfying $f^{3}-f=0$

Yavuz Selim Balkan ${ }^{\text {a }}$, Siraj Uddin ${ }^{\text {b }}$, Mića S. Stankovićc ${ }^{\text {, Ali H. Alkhaldi }}{ }^{\text {d }}$
${ }^{a}$ Department of Mathematics, Faculty of Art and Sciences, Duzce University, Duzce Turkey
${ }^{b}$ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
${ }^{c}$ Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, Serbia
${ }^{d}$ Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia

Abstract

In this study, we introduce a new class of pseudo f-structure, called hyperbolic f-structure. We give some classifications of this new structure. Further, we extend the notion of (κ, μ, v)-nullity distribution to hyperbolic almost Kenmotsu f-manifolds. Finally, we construct some non-trivial examples of such manifolds.

1. Introduction

The notion of f-structure was introduced which satisfies

$$
\begin{equation*}
f^{3}+f=0 \tag{1}
\end{equation*}
$$

by Yano in 1961 [14]. This is a generalization of some structure defined on different type differentiable manifolds. Almost complex structure J and almost contact structure (φ, ξ, η) are well-known f-structure. By virtue of the definitions of these structures, it is clear that they satisfies (1). While almost complex structure was defined by Weil in 1947 [13] as almost contact structure was introduced by Sasaki in 1960 [11]. Later, many author continued to study on f-structure. Goldberg and Yano defined and studied globally framed metric f-structure on $(2 n+s)$-dimensional differentiable manifolds [6]. A globally framed metric f-structure is a generalization of an almost complex structure and an almost contact structure if $s=0$ and $s=1$, respectively, where s denotes the dimension of orthogonal distribution on globally framed metric f-manifolds. Then, Blair gave some classes of globally framed metric f-manifolds in 1970 [3]. Recently, Falcitelli and Pastore defined almost Kenmotsu f-manifold in [5] and Öztürk et al. introduced almost α-cosymplectic f-manifold in [8], which are new classes of globally framed metric f-manifolds.

In a similar way, Matsumoto introduced a pseudo f-structure satisfying

$$
\begin{equation*}
f^{3}-f=0 \tag{2}
\end{equation*}
$$

which generalizes some different types of structures [7]. Many authors focused on this structure and made some different classifications (for instance, see [9], [10], [12]).

[^0]By motivated these studies, in this paper first, we give some fundamental notations and we compute the normality condition of hyperbolic metric f-structure. Then we prove the existence of hyperbolic metric f-structure on a special hrpersurface of a pseudo almost complex manifold. Next, we focus on a special class of this new structure of Kenmotsu type. Then we compute some Riemannian curvature properties of hyperbolic almost Kenmotsu f-manifolds. Also, we obtain some conditions for hyperbolic almost Kenmotsu f-manifolds to be flat. Moreover, we extend the notion of (κ, μ, v)-nullity distribution to hyperbolic almost Kenmotsu f-manifolds and we get its sectional curvature as 1 contrary to Kenmotsu case. Finally, we construct some non-trivial examples satisfying characteristic equations of this new structure.

2. Globally Framed Hyperbolic Metric f-Structure

Let M be a $(2 n+s)$-dimensional manifold and φ is a non-null $(1,1)$ tensor field on M. If φ satisfies

$$
\begin{equation*}
\varphi^{3}-\varphi=0 \tag{3}
\end{equation*}
$$

then φ is called a pseudo f-structure and M is called f-manifold. If $\operatorname{rank} \varphi=2 n$, namely $s=0, \varphi$ is called almost pseudo complex structure and if $\operatorname{rank} \varphi=2 n+1$, namely $s=1$, then φ reduces an almost pseudo contact structure. rank φ is always constant [7].

On an pseudo f-manifold M, P_{1} and P_{2} operators are defined by

$$
\begin{equation*}
P_{1}=\varphi^{2}, \quad P_{2}=-\varphi^{2}+I \tag{4}
\end{equation*}
$$

which satisfy

$$
\begin{equation*}
P_{1}+P_{2}=I, P_{1}^{2}=P_{1}, P_{2}^{2}=P_{2}, \varphi P_{1}=P_{1} \varphi=\varphi, P_{2} \varphi=\varphi P_{2}=0 \tag{5}
\end{equation*}
$$

These properties show that P_{1} and P_{2} are complementary projection operators. There are D and D^{\perp} distributions with respect to P_{1} and P_{2} operators, respectively. Also, $\operatorname{dim}(D)=2 n$ and $\operatorname{dim}\left(D^{\perp}\right)=s[1]$.

Now, we give the definition of hyperbolic metric f-structure.
Definition 2.1. Let M be a $(2 n+s)$-dimensional f-manifold and φ is a $(1,1)$ tensor field, ξ_{i} is vector field and η^{i} is 1 -form for each $1 \leq i \leq$ s on M, respectively. If $\left(\varphi, \xi_{i}, \eta^{i}\right)$ satisfy

$$
\begin{align*}
& \eta^{j}\left(\xi_{i}\right)=-\delta_{i}^{j} \tag{6}\\
& \varphi^{2}=I+\sum_{i=1}^{s} \eta^{i} \otimes \xi_{i} \tag{7}
\end{align*}
$$

then $\left(\varphi, \xi_{i}, \eta^{i}\right)$ is called globally framed hyperbolic f-structure or simply framed hyperbolic f-structure and M is called globally framed hyperbolic f-manifold or simply framed hyperbolic f-manifold.

For a framed hyperbolic f-manifold M, the following properties are satisfied :

$$
\begin{align*}
& \varphi \xi_{i}=0, \tag{8}\\
& \eta^{i} \circ \varphi=0 . \tag{9}
\end{align*}
$$

Definition 2.2. If on a framed hyperbolic f-manifold M, there exists a Riemannian metric which satisfies

$$
\begin{equation*}
\eta^{i}(X)=g\left(X, \xi_{i}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\varphi X, \varphi Y)=-g(X, Y)-\sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y) \tag{11}
\end{equation*}
$$

for all vector fields X, Y on M, then M is called framed hyperbolic metric f-manifold. On a framed hyperbolic metric f-manifold, fundamental 2-form Φ defined by

$$
\begin{equation*}
\Phi(X, Y)=g(X, \varphi Y) \tag{12}
\end{equation*}
$$

for all vector fields $X, Y \in \chi(M)$.
On a globally framed hyperbolic metric f-manifold the (11) tensor field φ is anti-symmetric, that is

$$
\begin{equation*}
g(X, \varphi Y)=-g(\varphi X, Y) \tag{13}
\end{equation*}
$$

Now, we compute the normality condition for globally framed hyperbolic metric f-manifolds. In a similar way of previous studies for globally framed metric f-manifold, after easy calculations then we have four tensors $N^{(1)} N^{(2)}, N^{(3)}$ and $N^{(4)}$ defined by

$$
\begin{aligned}
& N^{(1)}(X, Y)=[\varphi, \varphi](X, Y)+2 \sum_{k=1}^{s} d \eta^{k}(X, Y) \xi_{k}, \quad N^{(2)}(X, Y)=\sum_{k=1}^{s}\left\{\left(\mathcal{L}_{\varphi X} \eta^{k}\right)(Y)-\left(\mathcal{L}_{\varphi Y} \eta^{k}\right)(X)\right\}, \\
& N^{(3)}(X)=\sum_{k=1}^{s}\left(\mathcal{L}_{\xi_{k}} \varphi\right) X, \quad N^{(4)}(X)=\sum_{k=1}^{s}\left(\mathcal{L}_{\xi_{k}} \eta^{k}\right) X,
\end{aligned}
$$

where $\left(\mathcal{L}_{\varphi X} \eta^{k}\right)(Y)=\varphi X \eta^{k}(Y)-\eta^{k}([\varphi X, Y])$ for each $1 \leq k \leq s$. A globally framed hyperbolic metric f manifold is normal if and only if these four tensors vanish. But we see that the vanishing of $N^{(1)}$ implies the vanishing of the other tensors. Thus the normality condition for globally framed hyperbolic metric f-manifold is

$$
\begin{equation*}
[\varphi, \varphi](X, Y)+2 \sum_{k=1}^{s} d \eta^{k}(X, Y) \xi_{k}=0 \tag{14}
\end{equation*}
$$

For a globally framed hyperbolic metric f-structure $\left(\varphi, \xi_{i}, \eta^{i}, g\right)$ the covariant derivative of φ is given by

$$
\begin{align*}
2 g\left(\left(\nabla_{X} \varphi\right) Y, Z\right) & =3 d \Phi(X, \varphi Y, \varphi Z)-3 d \Phi(X, Y, Z)-g\left(N^{(1)}(Y, Z), \varphi X\right)-N^{(2)}(Y, Z) \sum_{k=1}^{s} \eta^{k}(X) \\
& -2 \sum_{k=1}^{s} d \eta^{k}(\varphi Y, X) \eta^{k}(Z)+2 \sum_{k=1}^{s} d \eta^{k}(\varphi Z, X) \eta^{k}(X) \tag{15}
\end{align*}
$$

Now, we define a $(1,1)$ tensor field h_{i} for each $1 \leq i \leq s$ which plays an important role on the normality of a globally framed hyperbolic f-manifold as follows

$$
\begin{equation*}
h_{i}=\frac{1}{2} \mathcal{L}_{\xi_{i}} \varphi=\frac{1}{2} N^{(3)}, \tag{16}
\end{equation*}
$$

where \mathcal{L} denotes the Lie differentiation. If for each $1 \leq i \leq s, h_{i}^{\prime} s$ vanish identically zero, then the globally framed hyperbolic f-manifold is normal.
Proposition 2.3. The tensor field h_{i} for each $1 \leq i \leq s$ is a symmetric operator and satisfies
(i) $h_{i} \xi_{j}=0$,
(ii) $h_{i} \circ \varphi=-\varphi \circ h_{i}$,
(iii) $t r h_{i}=0$,
(iv) $\operatorname{tr\varphi } h_{i}=0$.

Proof. The proof can be easily derived in a similar way of [3], thus we omit it.

3. Existence of Globally Framed Hyperbolic Metric \boldsymbol{f}-Structure

Let (\bar{N}, J, g) be a pseudo Kähler manifold and let M be a hypersurface of \bar{N} with dimension $2 n+s$. It is well-known that the almost complex structure J on \bar{N} satisfies

$$
\begin{equation*}
J^{2}=I \tag{17}
\end{equation*}
$$

where I denotes the identity map. Furthermore, since M is a hypersurface of \bar{N}, we have

$$
\begin{equation*}
J X=\varphi X+\sum_{k=1}^{s} \eta^{k}(X) N, \quad N=-\sum_{k=1}^{s} J\left(\xi_{k}\right), \tag{18}
\end{equation*}
$$

for any vector field X on M. Now, by applying φ on both sides of (18) and using (17), we obtain

$$
\begin{equation*}
\varphi^{2} X=X+\sum_{k=1}^{s} \eta^{k}(X) \xi_{k} \tag{19}
\end{equation*}
$$

which means that $\left(\varphi, \xi_{k}, \eta^{k}\right)$ is a globally framed hyperbolic f-structure. Now for any vector fields X, Y on M, we have

$$
\begin{equation*}
g(J X, J Y)=g\left(\varphi X+\sum_{k=1}^{s} \eta^{k}(X) N, \varphi Y+\sum_{k=1}^{s} \eta^{k}(Y) N\right) \tag{20}
\end{equation*}
$$

By using (17) in (20) and since N is an orthonormal vector field, then we derive

$$
\begin{equation*}
-g(X, Y)=g(\varphi X, \varphi Y)+\sum_{k=1}^{s} \eta^{k}(X) \eta^{k}(Y) \tag{21}
\end{equation*}
$$

and for any ξ_{i}, we obtain

$$
\begin{equation*}
g\left(X, \xi_{i}\right)=\eta^{i}(X) \tag{22}
\end{equation*}
$$

From (21) and (22), it is clear that $\left(\varphi, \xi_{k}, \eta^{k}, g\right)$ is an f-structure.

4. Hyperbolic Almost Kenmotsu f-Manifolds

Definition 4.1. Let M be a globally framed hyperbolic metric f-manifold with hyperbolic f-structure $\left(\varphi, \xi_{k}, \eta^{k}, g\right)$. If for each $k=1, \ldots$, s the 1 -forms are closed, that is $d \eta^{k}=0$ and $d \Phi=2 \bar{\eta} \wedge \Phi$ where $\bar{\eta}=\sum_{k=1}^{s} \eta^{k}$, then M is called hyperbolic almost Kenmotsu f-manifold. Furthermore, if M is normal then it is a hyperbolic Kenmotsu f-manifold.

Theorem 4.2. On a hyperbolic almost Kenmotsu f-manifold M the following characteristic equations hold

$$
\begin{align*}
& \left(\nabla_{X} \varphi\right)(Y)=\sum_{k=1}^{s}\left\{g\left(\varphi X+h_{k} X, Y\right) \xi_{k}-\eta^{k}(Y)\left(\varphi X+h_{k} X\right)\right\} \\
& \nabla_{X} \xi_{i}=\varphi^{2} X+\varphi h_{i} X \\
& \left(\nabla_{\xi_{i}} \varphi\right) X=0 \tag{25}\\
& \nabla_{\xi_{i}} \xi_{j}=0 \tag{26}
\end{align*}
$$

and
for any X, Y on M.

Proof. By using (16) in (15) and since M is a hyperbolic almost Kenmotsu f-manifold, then we get (23). For the second part, by taking $Y=\xi_{i}$ and using (7), it yields the desired result. (25) and (26) can be easily seen from (23) and (25), respectively.

Lemma 4.3. Let M be a hyperbolic almost Kenmotsu f-manifold. Then for each $i, j, k \in\{1, \ldots, s\}$, we have

$$
\begin{align*}
& \left(\nabla_{\xi_{i}} h_{j}\right) X=\varphi R\left(\xi_{i}, X\right) \xi_{j}-\varphi X-\left(h_{i}+h_{j}\right) X+\left(\varphi \circ h_{i} \circ h_{j}\right) X, \tag{27}\\
& \left(\nabla_{\xi_{i}} h_{i}\right) X=\varphi R\left(\xi_{i}, X\right) \xi_{i}-\varphi X-2 h_{i} X+\left(\varphi \circ h_{i}^{2}\right) X, \tag{28}\\
& \varphi R\left(\xi_{i}, \varphi X\right) \xi_{j}+R\left(\xi_{i}, X\right) \xi_{j}=2\left(\varphi^{2}-h_{i} \circ h_{j}\right) X, \tag{29}\\
& \varphi R\left(\xi_{i}, \varphi X\right) \xi_{i}+R\left(\xi_{i}, X\right) \xi_{i}=2\left(\varphi^{2}-h_{i}^{2}\right) X, \tag{30}\\
& \eta^{k}\left(R\left(\xi_{i}, X\right) \xi_{j}\right)=0, \tag{31}\\
& R\left(\xi_{i}, \xi_{k}\right) \xi_{j}=0, \tag{32}
\end{align*}
$$

for any vector field X on M.
Proof. For any vector field X on M, we have

$$
\begin{equation*}
R\left(\xi_{i}, X\right) \xi_{j}=\nabla_{\xi_{i}} \nabla_{X} \xi_{j}-\nabla_{X} \nabla_{\xi_{i}} \xi_{j}-\nabla_{\left[\xi_{i}, X\right]} \xi_{j} . \tag{33}
\end{equation*}
$$

By using (24) and (26) in (33), we derive

$$
\begin{equation*}
R\left(\xi_{i}, X\right) \xi_{j}=\varphi\left(\left(\nabla_{\xi_{i}} h_{j}\right) X\right)+\varphi^{2} X+\left(\varphi \circ h_{i}\right) X+\left(\varphi \circ h_{j}\right) X-\left(h_{i} \circ h_{j}\right) X \tag{34}
\end{equation*}
$$

Applying φ on both sides of (34) and by virtue of (3), we find (27) and considering $i=j$ in (27) we get (28). Applying φ both sides of (34) and replacing X by φX in (34), we obtain

$$
\begin{equation*}
\varphi R\left(\xi_{i}, \varphi X\right) \xi_{j}=-\varphi\left(\left(\nabla_{\xi_{i}} h_{j}\right) X\right)+\varphi^{2} X-\left(\varphi \circ h_{i}\right) X-\left(\varphi \circ h_{j}\right) X-\left(h_{i} \circ h_{j}\right) X . \tag{35}
\end{equation*}
$$

By taking summation (34) and (35) side by side, we get (29). From (29) we have (30). The last two identities of the lemma are clear.

Corollary 4.4. If a hyperbolic almost Kenmotsu f-manifold is flat then we have

$$
h_{i} \circ h_{j}=\varphi^{2}
$$

for each $i, j \in\{1, \ldots, s\}$.
Corollary 4.5. For a hyperbolic almost Kenmotsu f-manifold, if $R\left(\xi_{i}, X\right) \xi_{i}=0$ for $i \in\{1, \ldots, s\}$ and $X \in \Gamma(D)$, then it follows that

$$
h_{i}^{2}=\varphi^{2} .
$$

Lemma 4.6. Let M be a hyperbolic almost Kenmotsu f-manifold. Then the Riemannian curvature satisfies

$$
\begin{align*}
g\left(R\left(\xi_{i}, X\right) Y, Z\right) & =\sum_{k=1}^{s} \eta^{k}(Y) g\left(\varphi^{2} Z+\left(\varphi \circ h_{k}\right) Z, X\right)-\sum_{k=1}^{s} \eta^{k}(Z) g\left(\varphi^{2} Y+\left(\varphi \circ h_{k}\right)^{2} Y, X\right) \\
& +g\left(\left(\nabla_{Y}\left(\varphi \circ h_{i}\right)\right) Z-\left(\nabla_{Z}\left(\varphi \circ h_{i}\right)\right) Y, X\right) \tag{36}
\end{align*}
$$

and

$$
\begin{align*}
& g\left(R\left(\xi_{i}, X\right) Y, Z\right)+g\left(R\left(\xi_{i}, X\right) \varphi Y, \varphi Z\right)-g\left(R\left(\xi_{i}, \varphi X\right) Y, \varphi Z\right)-g\left(R\left(\xi_{i}, \varphi X\right) \varphi Y, Z\right) \\
& =2 \sum_{j=1}^{s}\left\{\eta^{j}(Z) g\left(h_{i} X+\varphi X, \varphi Y\right)-\eta^{j}(Y) g\left(h_{i} X+\varphi X, \varphi Z\right)\right\} \tag{37}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T M)$
Proof. For any $X, Y, Z \in \Gamma(T M)$ we have

$$
\begin{equation*}
g\left(R\left(\xi_{i}, X\right) Y, Z\right)=g\left(R(Y, Z) \xi_{i}, X\right)=\nabla_{Y} \nabla_{Z} \xi_{i}-\nabla_{Z} \nabla_{Y} \xi_{i}-\nabla_{[Y, Z]} \xi_{i} \tag{38}
\end{equation*}
$$

By using (24) in (38), we find (36). For the second part of the lemma, let us introduce the operators A and $B_{i}, i \in\{1, \ldots, s\}$ defined by

$$
\begin{equation*}
A(X, Y, Z):=2 \sum_{j=1}^{s}\left\{\eta^{j}(Z) g(\varphi X, \varphi Y)-\eta^{j}(Y) g(\varphi X, \varphi Z)\right\} \tag{39}
\end{equation*}
$$

and

$$
\begin{align*}
B_{i}(X, Y, Z):= & -g\left(\varphi X,\left(\nabla_{Y}\left(\varphi \circ h_{i}\right)\right) \varphi Z\right)-g\left(\varphi X,\left(\nabla_{\varphi Y}\left(\varphi \circ h_{i}\right)\right) Z\right)+g\left(X,\left(\nabla_{Y}\left(\varphi \circ h_{i}\right)\right) Z\right) \\
& +g\left(X,\left(\nabla_{\varphi Y}\left(\varphi \circ h_{i}\right)\right) \varphi Z\right) \tag{40}
\end{align*}
$$

for each $X, Y, Z \in \Gamma(T M)$. By a direct computation and using (36) we obtain that the left hand side of (37) is equal to $A(X, Y, Z)+B_{i}(X, Y, Z)-B_{i}(X, Z, Y)$. Since

$$
\eta_{j}\left(\left(\nabla_{\varphi Y} h_{i}\right) Z\right)=\eta_{j}\left(\nabla_{\varphi Y}\left(h_{i} Z\right)\right)
$$

we can write

$$
\begin{align*}
& B_{i}(X, Y, Z)=g\left(X, \nabla_{Y}\left(\left(\varphi \circ h_{i}\right) Z\right)\right)-g\left(X,\left(\varphi \circ h_{i}\right) \nabla_{Y} Z\right)+g\left(X, \nabla_{\varphi Y}\left(\left(\varphi \circ h_{i} \circ \varphi\right) Z\right)\right) \\
& -g\left(X,\left(\varphi \circ h_{i}\right)\left(\nabla_{\varphi Y} \varphi Z\right)\right)-g\left(\varphi X, \nabla_{Y}\left(\left(\varphi \circ h_{i} \circ \varphi\right) Z\right)\right)+g\left(\varphi X,\left(\varphi \circ h_{i}\right)\left(\nabla_{Y} \varphi Z\right)\right) \\
& -g\left(\varphi X, \nabla_{\varphi Y}\left(\left(\varphi \circ h_{i}\right) Z\right)\right)+g\left(\varphi X,\left(\varphi \circ h_{i}\right)\left(\nabla_{\varphi Y} Z\right)\right) \\
& =g\left(X,\left(\nabla_{Y} \varphi\right) h_{i} Z\right)-g\left(X, h_{i}\left(\left(\nabla_{Y} \varphi\right) Z\right)\right)+g\left(X,\left(h_{i} \circ \varphi\right)\left(\left(\nabla_{\varphi Y} \varphi\right) Z\right)\right) \\
& +g\left(X, \varphi\left(\left(\nabla_{\varphi Y} \varphi\right) h_{i} Z\right)\right)+\sum_{k=1}^{s} \eta^{k}\left(\left(\nabla_{\varphi Y} h_{i}\right) Z\right) \eta^{k}(X) . \tag{41}
\end{align*}
$$

Moreover, from (23), (24) and Proposition 2.3 it follows that

$$
\left(\varphi \circ\left(\nabla_{\varphi X} \varphi\right)\right) Y=\left(\nabla_{\varphi X} \varphi^{2}\right) Y-\left(\nabla_{\varphi X} \varphi\right)(\varphi Y)=\sum_{j=1}^{s}\left(\left(\nabla_{\varphi X} \eta_{j}\right) Y \xi_{j}\right)+\sum_{j=1}^{s}\left(\eta_{j}(Y) \nabla_{\varphi X} \xi_{j}\right)
$$

or

$$
\begin{aligned}
-\left(\nabla_{\varphi X} \varphi\right)(\varphi Y) & \left.=\sum_{j=1}^{s} \nabla_{\varphi X}\left(g\left(\xi_{j}, Y\right)\right) \xi-g\left(\nabla_{\varphi X} Y, \xi_{j}\right) \xi_{j}\right)+\sum_{j=1}^{s} \eta_{j}(Y)\left(\varphi X-h_{j} X\right) \\
& -\sum_{j=1}^{s}\left\{\eta_{j}(Y)\left[h_{j} X+\varphi X\right]-2 g(X, \varphi Y) \xi_{j}\right\}-\left(\nabla_{X} \varphi\right) Y .
\end{aligned}
$$

Hence, we find

$$
\left(\varphi \circ\left(\nabla_{\varphi X} \varphi\right)\right) Y=-3 \sum_{j=1}^{s} g(X, \varphi Y) \xi_{j}+\sum_{j=1}^{s} g\left(Y, h_{j} X\right) \xi_{j}+2 \sum_{j=1}^{s} \eta_{j}(Y) \varphi X-\left(\nabla_{X} \varphi\right) Y
$$

Taking into account of (23), then for each $i, j \in\{1, \cdots, s\}$ we have

$$
\begin{equation*}
\eta_{i}\left(\left(\nabla_{\varphi Y} h_{j}\right) Z\right)=\eta_{i}\left(\nabla_{\varphi Y}\left(h_{j} Z\right)\right)=\left(\nabla_{\varphi Y} \eta_{i}\right)\left(h_{j} Z\right)=-g\left(h_{j} Z, \nabla_{\varphi Y} \xi_{i}\right)=g\left(h_{j} Z,-h_{i} Y+\varphi Y\right) . \tag{42}
\end{equation*}
$$

By virtue of (41) and (42), we deduce that

$$
\begin{aligned}
B_{i}(X, Y, Z) & =g\left(X,\left(\nabla_{Y} \varphi\right) h_{i} Z\right)-g\left(X, h_{i}\left(\left(\nabla_{Y} \varphi\right) Z\right)\right)+2 \sum_{j=1}^{s} \eta^{j}(Z) g\left(h_{i} X, \varphi Y\right)+g\left(h_{i} X,\left(\nabla_{Y} \varphi\right) Z\right) \\
& -3 \sum_{j=1}^{s} \eta^{j}(X) g\left(Y, \varphi h_{i} Z\right)-\sum_{j=1}^{s} \eta^{j}(X) g\left(h_{i} Z, h_{j} Y\right)+\sum_{j=1}^{s} \eta_{j}(X) g\left(h_{k} Z, h_{i} Y\right) \\
& +\sum_{j=1}^{s} \eta^{j}(X) g\left(\varphi Y, h_{j} Z\right)-g\left(X,\left(\nabla_{Y} \varphi\right) h_{i} Z\right) \\
& =2 \sum_{j=1}^{s}\left(\eta^{j}(Z) g\left(h_{i} X, \varphi Y\right)+2 \eta^{j}(X) g\left(\varphi Y, h_{i} Z\right)\right)
\end{aligned}
$$

Therefore, we obtain

$$
A(X, Y, Z)+B_{i}(X, Y, Z)-B_{i}(X, Z, Y)=2 \sum_{j=1}^{s}\left\{\eta^{j}(Z) g\left(h_{i} X+\varphi X, \varphi Y\right)-2 \eta^{j}(Y) g\left(h_{i} X+\varphi X, \varphi Z\right)\right\}
$$

which gives (37).

5. Hyperbolic Almost Kenmotsu f-Manifolds with (κ, μ, v)-Nullity Distribution

In this section we generalize the (κ, μ)-nullity distribution introduced by Blair et al. [4] for the hyperbolic almost Kenmotsu f-manifolds.

Definition 5.1. Let M be a hyperbolic almost Kenmotsu f-manifold and κ, μ and v are real constants. If for each $1 \leq i \leq s$ and for any $X, Y \in \Gamma(T M)$, the characteristic vector fields ξ_{i}^{\prime} s satisfy

$$
\begin{align*}
R(X, Y) \xi_{i} & =\kappa\left\{\bar{\eta}(X) \varphi^{2}(Y)-\bar{\eta}(Y) \varphi^{2}(X)\right\}+\mu\left\{\bar{\eta}(Y) h_{i}(X)-\bar{\eta}(X) h_{i}(Y)\right\} \\
& +v\left\{\bar{\eta}(Y)\left(\varphi \circ h_{i}\right)(X)-\bar{\eta}(X)\left(\varphi \circ h_{i}\right)(Y)\right\} \tag{43}
\end{align*}
$$

then M verifies the (κ, μ, v)-nullity condition.

Theorem 5.2. Let M be a hyperbolic almost Kenmotsu f-manifold satisfying the (κ, μ, v)-nullity condition. For each $1 \leq i, j \leq s$, we have
(i) $h_{i} \circ h_{j}=h_{j} \circ h_{i}$,
(ii) $\kappa \leq 1$,
(iii) if $\kappa \leq 1$, then h_{i} has eigenvalues 0 or $\pm \sqrt{1-\kappa}$.

Proof. From (43), it follows that

$$
\begin{equation*}
\varphi R\left(\xi_{i}, \varphi X\right) \xi_{j}+R\left(\xi_{i}, X\right) \xi_{j}=2 \kappa \varphi^{2} X \tag{44}
\end{equation*}
$$

By virtue of (29) and (44), we obtain

$$
\begin{equation*}
\left(h_{i} \circ h_{j}\right) X=(1-\kappa) \varphi^{2} X=\left(h_{j} \circ h_{i}\right) X \tag{45}
\end{equation*}
$$

which implies (i). Taking into account of (45), for any $X \in \Gamma(D)$, where D is (κ, μ, v)-nullity distribution. Then, we derive

$$
\begin{equation*}
h_{i}^{2} X=(1-\kappa) X \tag{46}
\end{equation*}
$$

In view of Proposition 2.3 and (46), it is clear that the eigenvalues of h_{i}^{2} are 0 or $(1-\kappa)$. Furthermore, h_{i} is symmetric and $\left\|h_{i}(X)\right\|^{2}=(1-\kappa)\|X\|^{2}$. Thus $\kappa \leq 1$. Additionally, let t be a real eigenvalue of h_{i} and let X be eigenvector corresponding to t. Then it follows that $t^{2}\|X\|^{2}=(1-\kappa)\|X\|^{2}$ and $t= \pm \sqrt{1-\kappa}$. From Proposition 2.3 and the above fact, we arrive at (iii).

Theorem 5.3. Let M be a hyperbolic almost Kenmotsu f-manifold satisfying the (κ, μ, v)-nullity condition. Then the following holds

$$
\begin{equation*}
h_{1}=\ldots=h_{s} \tag{47}
\end{equation*}
$$

Proof. If $\kappa=1$, then by virtue of (46), we have $h_{1}=\ldots=h_{s}=0$. Now we assume that $\kappa \leq 1$. For any $p \in M$ and $1 \leq i \leq s$, we can write

$$
D_{p}=\left(D_{+}\right)_{p} \oplus\left(D_{-}\right)_{p}
$$

where $\left(D_{+}\right)_{p}$ is the eigenspace of h_{i} corresponding p to the eigenvalue $\lambda=\sqrt{1-\kappa}$ and $\left(D_{-}\right)_{p}$ denotes the eigenspace of h_{i} corresponding p to the eigenvalue $-\lambda$. If $X \in D_{p}$, we have

$$
X=X_{+}+X_{-}
$$

where X_{+}and X_{-}denote the components of X in the eigenspaces $\left(D_{+}\right)_{p}$ and $\left(D_{-}\right)_{p}$, respectively. Hence we deduce

$$
h_{i}(X)=\lambda\left(X_{+}+X_{-}\right)
$$

On the other hand, for $i \neq j$

$$
h_{j}(X)=h_{j}\left(X_{+}+X_{-}\right)=h_{j}\left(\frac{1}{\lambda} h_{i}\left(X_{+}\right)-\frac{1}{\lambda} h_{i}\left(X_{-}\right)\right)=\frac{1}{\lambda}\left(h_{i} \circ h_{j}\right)\left(X_{+}+X_{-}\right)=\lambda\left(X_{+}+X_{-}\right)=h_{i}(X)
$$

which implies (47).
Corollary 5.4. Let M be a hyperbolic Kenmotsu f-manifold satisfying the (κ, μ, v)-nullity condition. Then its sectional curvature $\kappa=1$. In other words, Kenmotsu f-manifold is a manifold of positive curvature.

Remark 5.5. Throughout this paper whenever (43), we put $h=h_{1}=\ldots=h_{s}$ and therefore (43) takes the form

$$
\begin{align*}
R(X, Y) \xi_{i} & =\kappa\left\{\bar{\eta}(X) \varphi^{2}(Y)-\bar{\eta}(Y) \varphi^{2}(X)\right\}+\mu\{\bar{\eta}(Y) h(X)-\bar{\eta}(X) h(Y)\} \\
& +v\{\bar{\eta}(Y)(\varphi \circ h)(X)-\bar{\eta}(X)(\varphi \circ h)(Y)\} \tag{48}
\end{align*}
$$

By using (48) and the symmetric properties of the curvature tensor, φ^{2} and h, we conclude that

$$
\begin{align*}
R\left(\xi_{i}, X\right) Y & =\kappa\left\{\bar{\eta}(Y) \varphi^{2} X-g\left(X, \varphi^{2} Y\right) \bar{\xi}\right\}+\mu\{g(h X, Y) \bar{\xi}-\bar{\eta}(Y) h X\} \\
& +v\{g((\varphi \circ h) X, Y) \bar{\xi}-\bar{\eta}(Y)(\varphi \circ h) X\} \tag{49}
\end{align*}
$$

where $\bar{\xi}=\sum_{k=1}^{s} \xi_{k}$.
Remark 5.6. Let M be a hyperbolic almost Kenmotsu f-manifold satisfying the (κ, μ, v)-nullity condition. Let us denote by D_{+}and D_{-}the n-dimensional distributions of the eigenspaces of $\lambda=\sqrt{1-\kappa}$ and $-\lambda$, respectively. We can easily see that D_{+}and D_{-}are mutually orthogonal. Furthermore, since φ anticommuts with h, we derive $\varphi\left(D_{+}\right)=D_{-}$and $\varphi\left(D_{-}\right)=D_{+}$. In other words, D_{+}is a Legendrian distribution and D_{-}is the conjugate Legendrian distribution of D_{+}.

Proposition 5.7. Let M be a hyperbolic almost Kenmotsu f-manifold satisfying the (κ, μ, v)-nullity condition. Then M is a hyperbolic Kenmotsu f-manifold if and only if $\kappa=1$.

Proof. The result follows from (46) and by virtue of the definition of $(1,1)$ tension field h.
Remark 5.8. Under the above proposition, we can consider a hyperbolic Kenmotsu f-manifold as a class of $(1, \mu, v)$ space.

Remark 5.9. Let M be a hyperbolic almost Kenmotsu f-manifold satisfying the (κ, μ, v)-nullity condition. Then, we have

$$
\begin{equation*}
R\left(\xi_{i}, X\right) \xi_{j}=\kappa \varphi^{2} X-\mu h X-v(\varphi \circ h) X \tag{50}
\end{equation*}
$$

for any vector field X on M.
Proposition 5.10. Let M be a hyperbolic almost Kenmotsu f-manifold verifying the (κ, μ, v)-nullity distribution. Then we have

$$
\begin{align*}
& \nabla_{\xi_{i}} h X=-\mu(\varphi \circ h) X-(v+2) h X, \tag{51}\\
& R\left(\xi_{i}, \varphi X\right) \xi_{j}-\varphi R\left(\xi_{i}, X\right) \xi_{j}=2 \mu(\varphi \circ h) X+2 v h X, \tag{52}\\
& R\left(\xi_{i}, \varphi X\right) \xi_{j}+\varphi R\left(\xi_{i}, X\right) \xi_{j}=2 \kappa \varphi X, \tag{53}\\
& Q \xi_{i}=2 n \kappa \bar{\xi} . \tag{54}
\end{align*}
$$

Proof. From (28) and (50), we get (51). By using (50), we derive (52) and (53). The last part can be proved in a similar fashion of [2].

6. Examples

In this section, we construct non-trivial examples of hyperbolic Kenmotsu f-manifolds.
Example 6.1. Let N be a 6 -dimensional pseudo Kähler manifold and let \mathcal{V} be a 2 -dimensional nondegenerate vector space with the signature $(-,-)$. Denoting f the positive differentiable function, let us consider the warped product $M=N \times_{f} \mathcal{V}$ with the warping function f. Since N is a pseudo Kähler manifold, M satisfies (8)-(11), (23) and (24). Then we find a (6+2)-dimensional hyperbolic Kenmotsu f-manifold.
Example 6.2. Let us consider (4+2)-dimensional manifold $M=\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right) \quad\right.$: $\left.\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right) \neq(0,0,0,0,0,0)\right\}$, where $\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$ are the standart coordinates in R^{6}. The vector fields

$$
\begin{array}{ll}
e_{1}=z_{1} \frac{\partial}{\partial x_{1}}, & e_{2}=z_{2} \frac{\partial}{\partial x_{2}}, \quad e_{3}=-z_{1} \frac{\partial}{\partial y_{1}} \\
e_{4}=-z_{2} \frac{\partial}{\partial y_{2}}, & e_{5}=-z_{1} \frac{\partial}{\partial z_{1}} \quad e_{6}=-z_{2} \frac{\partial}{\partial z_{2}}
\end{array}
$$

are linearly independent at each point of M. Let g be the nondegenerate semi-Riemannian metric defined by

$$
\begin{aligned}
g\left(e_{i}, e_{j}\right) & =0, i, j=1,2,3,4,5,6 ; i \neq j \\
g\left(e_{k}, e_{k}\right) & =1, k=1,2,3,4 \\
g\left(e_{l}, e_{l}\right) & =-1, l=5,6
\end{aligned}
$$

Let η^{1} and η^{2} be 1 forms defined by $\eta^{1}(Z)=g\left(Z, e_{5}\right)$ and $\eta^{2}(Z)=g\left(Z, e_{6}\right)$ for each vector field $Z \in \chi(M)$. Let φ be the $(1,1)$ tensor field defined by

$$
\varphi e_{1}=-e_{3}, \quad \varphi e_{2}=-e_{4}, \quad \varphi e_{5}=0, \quad \varphi e_{6}=0
$$

By using the linearity of φ and g, we obtain

$$
\begin{aligned}
& \eta^{1}\left(e_{5}\right)=-1, \quad \eta^{2}\left(e_{6}\right)=-1, \quad \varphi^{2} Z=Z+\eta^{1}(Z) e_{5}+\eta^{2}(Z) e_{6} \\
& g(\varphi Z, \varphi W)=-g(Z, W)-\left\{\eta^{1}(Z) \eta^{1}(W)+\eta^{2}(Z) \eta^{2}(W)\right\}
\end{aligned}
$$

for any $Z, W \in \chi(M)$. Thus $\left(\varphi, \xi_{i}, \eta^{i}, g\right)$ defines a globally framed hyperbolic f-structure on M. Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$
\begin{aligned}
& {\left[e_{1}, e_{3}\right]=\left[e_{2}, e_{4}\right]=0,\left[e_{1}, e_{5}\right]=e_{1},\left[e_{1}, e_{4}\right]=0,} \\
& {\left[e_{2}, e_{6}\right]=e_{2},\left[e_{2}, e_{5}\right]=0,\left[e_{4}, e_{6}\right]=e_{4},\left[e_{5}, e_{6}\right]=0,} \\
& {\left[e_{3}, e_{5}\right]=e_{3},\left[e_{2}, e_{3}\right]=0,\left[e_{1}, e_{6}\right]=\left[e_{1}, e_{2}\right]=0,} \\
& {\left[e_{3}, e_{4}\right]=0,\left[e_{4}, e_{5}\right]=0,\left[e_{3}, e_{6}\right]=0 .}
\end{aligned}
$$

By using the Koszul's formula, we deduce

$$
\nabla_{X} \xi_{i}=\varphi^{2} X, i=1,2
$$

for any X on M, which implies that M is a hyperbolic Kenmotsu f-manifold.

Acknowledgement

The authors would like to express their gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support.

References

[1] Y.B. Baik, A certain polynomial structure, J. Korean Math. Soc. 16 (2) (1980), 167-175.
[2] Y.S. Balkan, N. Aktan, Almost Kenmotsu f-manifolds, Carpathian Math. Publ. 7 (1) (2015), 6-21.
[3] D.E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, Journal of Differential Geometry 4 (2) (1970), 155-167.
[4] D.E. Blair, T. Koufogiorgos, B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1) (1995), 189-214.
[5] M. Falcitelli, A.M. Pastore, Almost Kenmotsu f-manifolds, Balkan Journal of Geometry and Its Applications 12 (1) (2007), 32-43.
[6] S.I. Goldberg, K. Yano, Globally framed f-manifolds, Illinois J. Math. 15 (3) (1971), 456-474.
[7] K. Matsumoto, On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}-f=0$, Bull. Yamagata Univ. 1 (1976), 33-47.
[8] H. Öztürk, C. Murathan, N. Aktan, A.Turgut Vanlı Almost α-cosymplectic f-manifolds, Annals of Alexandru Ioan Cuza UniversityMathematics 60 (1) (2014), 211-226.
[9] E. Özüsağlam, E. Dikici, Pseudo f-manifolds with complemented frames, Adv. Appl. Clifford Algebras (2016) 26: 305. doi:10.1007/s00006-015-0585-2.
[10] S.S. Pujar, On a structure defined by a tensor field f of type (1, 1) satisfying $P^{3}-P=0$, Indian J. Pure Appl. Math. 31 (10) (2000), 1229-1234.
[11] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Mathematical Journal 12 (3) (1960), 459-476.
[12] M.D. Upadhyay, K.K. Dube, Almost contact hyperbolic (f, g, η, ξ)-structure, Acta Math. Acad. Sci. Hungar. 28 (1-2) (1976), 1-4.
[13] A. Weil, Sur la théorie des formes différentielles attachées á une variété analytique complexe, Commentarii Mathematici Helvetici, 20 (1) (1947), 110-116.
[14] K. Yano, On a structure f satisfying $f^{3}+f=0$, Technical Report No. 12, University of Washington, Washington-USA, 1961.

[^0]: 2010 Mathematics Subject Classification. 53D10; 53C15; 53C25; 53C35
 $K e y w o r d s$. f-structure; pseudo f-structure; pseudo almost complex structure; hyperbolic Kenmotsu f-manifold
 Received: 16 March 2018; Accepted: 18 July 2018
 Communicated by Dragan S. Djordjević
 The third author is supported by Serbian Ministry of Education, Science and Technological Development, Grant No. 174012.
 Email addresses: y. selimbalkan@gmail.com (Yavuz Selim Balkan), siraj.ch@gmail.com (Siraj Uddin), stmica@ptt.rs (Mića S. Stanković), ahalkhaldi@kku.edu.sa (Ali H. Alkhaldi)

