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On the ϕ-Normal Meromorphic Functions
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Abstract. In this paper we study a family of ϕ-normal meromorphic functions, and obtain some results
which improve and generalize previous results in this area, especially the works of Lappan [2], Aulaskari-
Rättyä [1], Xu-Qiu [7] and the recent work of Tan-Thin [6].

1. Introduction and Results

Classically, a family F of meromorphic functions on a domain D ⊂ C is said to be normal if every
sequence in F contains a subsequence which converges uniformly on every compact subset of D to a
meromorphic function which may be ∞ identically. See [4, 9]. In 1957, Lehto and Virtanen [3] introduced
the concept of normal meromorphic functions in connection with the study of boundary behaviour of
meromorphic functions. Let ∆ = {z; |z| < 1} be the unit disc in C, and let M(∆) denote the set of all
meromorphic functions on ∆. A function f ∈ M(∆) is called normal if

sup{ (1 − |z|2) f #(z); z ∈ ∆} < ∞

where f #(z) = | f ′(z)|/(1 + | f (z)|2) is the spherical derivatives of f . The close relation between normal families
and normal functions is as following. A meromorphic function f is normal if and only if the family
F f = { f ◦τ; τ ∈ Aut(∆)} is normal. Since then normal meromorphic functions have been studied intensively
(see [4] and [5] ). For example, the well-known Lappan [2] five-point theorem says that f ∈ M(∆) is a
normal function if sup{(1 − |z|2) f #(z); z ∈ f−1(E)} is bounded for some five-point subset E of the image set
f (∆).

In 2011, R. Aulaskari and J. Rättyä [1] introduce the concept of ϕ-normal functions. We can state the
definition as followings to cover normal functions.

Definition 1.1. ([1, 6]) An increasing function ϕ : [0, 1)→ (0,∞) is called smoothly increasing if

ϕ(r)(1 − r) ≥ 1, r ∈ [0, 1), (1.1)

and

Ra(z) :=
ϕ(|a + z/ϕ(|a|)|)

ϕ(|a|)
→ 1 as |a| → 1− (1.2)

uniformly on compact subsets of C.
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Definition 1.2. ([1, 6]) For a smoothly increasing function ϕ, a function f ∈ M(∆) is called ϕ-normal if

|| f ||Nϕ := sup
z∈∆

f #(z)
ϕ(|z|)

< ∞. (1.3)

The class of all ϕ-normal functions is denoted byNϕ.

Remark 1.3. In [1] condition (1.1) is replaced by a stricter one

ϕ(r)(1 − r)→∞ as r→ 1−. (1.4)

Note that if ϕ satisfies (1.4) then we will always further assume that ϕ(r)(1 − r) ≥ 1 for all r ∈ [0, 1). This because
ϕ∗(r) := ϕ(r) + (1 − r)−1 satisfiesNϕ∗ = Nϕ.

Also in [1], Aulaskari and Rättyä obtained a version of Lappan’s five-point theorem for ϕ-normal
functions.
Theorem A. ([1, Theorem 9]) Let ϕ be a smoothly increasing function and let f ∈ M(∆). If there exists a set E of
five distinct points in Ĉ such that

sup{ f #(z)/ϕ(|z|); z ∈ f−1(E)} < ∞,

then f is ϕ-normal.
Recently, motivated by the extension of the spherical derivative, Y. Xu and H. L. Qiu improved Theorem

A as following.
Theorem B. ( [7, Theorem 2]) Let ϕ be a smoothly increasing function, and let k be a positive integer. Let f ∈ M(∆)
such that

sup{ f (i)(z); z ∈ f−1({0}), i = 0, 1, . . . , k − 1} < ∞.

If there exists a set E of k + 4 distinct points in Ĉ such that

sup
{ 1
ϕ(|z|)k

| f (k)(z)|
1 + | f (z)|k+1

; z ∈ f−1(E)
}
< ∞,

then f is ϕ-normal.
In this paper, our first main result is as following.

Theorem 1.4. Let ϕ be a smoothly increasing function, and let k be a positive integer. Let F ⊂ M(∆) such that

sup{ f (i)(z); z ∈ f−1({0}), i = 0, 1, . . . , k − 1, f ∈ F } < ∞. (1.5)

If there exists a set E of k + 4 distinct points in Ĉ such that

sup
{ 1
ϕ(|z|)k

| f (k)(z)|
1 + | f (z)|k+1

; z ∈ f−1(E), f ∈ F
}
< ∞, (1.6)

then

sup{|| f ||Nϕ ; f ∈ F } < ∞. (1.7)

Clearly, Theorem B is just Theorem 1.4 in the case of F = { f }. Thus, Theorem 1.4 is an improvement of
Theorems A and B. In addition, noting that the condition (1.5) holds naturally if all zeros of f ∈ F are of
multiplicity at least k, we obtain the following corollary.

Corollary 1.5. Let ϕ be a smoothly increasing function, and let k be a positive integer. Let F ⊂ M(∆) such that all
zeros of f ∈ F are of multiplicity at least k. If there exists a set E of k + 4 distinct points in Ĉ such that

sup
{ 1
ϕ(|z|)k

| f (k)(z)|
1 + | f (z)|k+1

; z ∈ f−1(E), f ∈ F
}
< ∞, (1.8)

then
sup{|| f ||Nϕ ; f ∈ F } < ∞.
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The following example shows that the existence of family F with property sup{|| f ||Nϕ ; f ∈ F } < ∞.

Example 1.6. Let F = { fn(z)}∞n=1, where fn(z) := n(1 − z), z ∈ ∆, and let zn = 1 − 1
n . Obviously, we have

f #
n (zn) = n

2 →∞ as n→∞. Thus,
sup

z∈∆, f∈F
f #(z) = ∞.

However, taking E = {0, 1, 2, 3, 4}, by simple calculation, we have

fn(z) ∈ E⇒ (1 − |z|) f #
n (z) ≤

1
2
.

It follows Corollary 1.5 that
sup

z∈∆, f∈F
(1 − |z|) f #(z) < ∞.

More recently, T. Van Tan and N. Van Thin [6] reduced the number “five ”in Lappan’s five-points theorem
by bounding the spherical derivatives of meromrophic functions studied.
Theorem C. ([6, Theorem 4]) Let ϕ be a smoothly increasing function and let f ∈ M(∆). If there exists a set E of
four distinct points in Ĉ such that

sup{ f #(z)/ϕ(|z|); z ∈ f−1(E)} < ∞,

and
sup{ ( f ′)#(z); z ∈ f−1(E\{∞})} < ∞,

then f is ϕ-normal.
We also prove the following theorems generalize Theorem C.

Theorem 1.7. Let ϕ be a smoothly increasing function, and let k be a positive integer. Let F ⊂ M(∆) such that

sup{ f (i)(z); z ∈ f−1({0}), i = 0, 1, . . . , k − 1, f ∈ F } < ∞. (1.9)

If there exists a set E of [k/2] + 4 distinct points in Ĉ such that

sup
{ 1
ϕ(|z|)k

| f (k)(z)|
1 + | f (z)|k+1

; z ∈ f−1(E), f ∈ F
}
< ∞ (1.10)

and

sup{ ( f (k))#(z); z ∈ f−1(E\{∞}), f ∈ F } < ∞ < ∞, (1.11)

then
sup{|| f ||Nϕ ; f ∈ F } < ∞.

Here and in the following, [x] denotes the greatest integer less than or equal to x.

As a special case, if we take k = 1 in Theorems 1.7,then we have:

Corollary 1.8. Let ϕ be a smoothly increasing function, and let F ⊂ M(∆). If there exists a set E of four distinct
points in Ĉ such that

sup{ f #(z)/ϕ(|z|); z ∈ f−1(E), f ∈ F } < ∞,

and
sup{ ( f ′)#(z); z ∈ f−1(E\{∞}), f ∈ F } < ∞,

then
sup{|| f ||Nϕ ; f ∈ F } < ∞.
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2. Some Lemmas

To prove our results, we require some lemmas. We assume the standard notation of value distribution
theory. For details, see [4, 5, 8].

Lemma 2.1 (Zalcman’s Lemma, see [9]). Let F be a family of meromorphic functions in the disk ∆. Then if F is
not normal at a point z0 ∈ ∆, then there exist

1) a real number r, 0 < r < 1 and points zn, |zn| < r, zn → z0,
2) positive numbers %n, %n → 0+,
3) functions fn, fn ∈ F such that

Fn(ξ) := fn(zn + %nξ)→ F(ξ)

spherically uniformly on compact subsets of C, where F(ξ) is a nonconstant meromorphic function of C.

Lemma 2.2 (First Main Theorem). Suppose that f is meromorphic in C and a is any complex number. Then for
r > 0 we have

T
(
r,

1
f − a

)
= T(r, f ) + O(1).

Lemma 2.3 (Second Main Theorem). Suppose that f is a non-constant meromorphic in C and a j (1 ≤ j ≤ q) are
q(≥ 3) distinct values in Ĉ. Then

(q − 2)T(r, f ) ≤
q∑

j=1

N
(
r,

1
f − a j

)
+ S(r, f ).

Lemma 2.4. Suppose that f is a non-constant meromorphic in C and k is a positive integer. Then

T(r, f (k)) ≤ T(r, f ) + kN(r, f ) + S(r, f ) ≤ (k + 1)T(r, f ) + S(r, f ).

3. Proof of Theorem 1.4

Suppose, to the contrary, that assertion (1.7) fails to be valid. Then, we can find fn ∈ F , zn ∈ ∆ such that
such that

f #
n (zn)
ϕ(|zn|)

→∞, n→∞. (3.1)

By passing to a subsequence if necessary, we may assume that zn → z0. Then |z0| ≤ 1.We separate two cases:
Case 1. 0 ≤ |z0| < 1.
Since the function ϕ is increasing, the inequality

f #
n (zn)
ϕ(0)

≥
f #
n (zn)
ϕ(|zn|)

(3.2)

holds for all positive integer n. Therefore,from (3.1) and (3.2), we obtain

f #
n (zn)→∞, n→∞.

It follows from Marty’s Theorem that { fn}∞n=1 is not normal at the point z0. According to Lemma 2.1, there
exist a subsequence of functions fn (that will also be denoted by fn), points un → z0, and positive numbers
%n → 0, such that

Fn(ξ) := fn(un + %nξ)→ F(ξ) (3.3)
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spherically uniformly on compact subsets of C, where F(ξ) is a nonconstant meromorphic function of C.
Consequently,

F(i)
n (ξ) := %i

n fn(un + %nξ)→ F(i)(ξ) (3.4)

uniformly on compact subsets of C\{Poles of F}, i = 1, 2, . . . .
Claim 1. F(ξ) ∈ E =⇒

|F(k)(ξ)|
1+|F(ξ)|k+1 = 0.

Suppose that F(ξ0) = a ∈ E, by Hurwitz’s theorem and (3.3), there exists a sequence ξn → ξ0 such that
Fn(ξn) = fn(un + %nξn) = a. By the hypothesis (1.6), there exists a constant M > 0 such that

1
ϕ(|un + %nξn|)k

| f (k)
n (un + %nξn)|

1 + | fn(un + %nξn)|k+1
≤M. (3.5)

for sufficiently large n. Since un + %nξn → z0 and |z0| < 1, one can take r1, |z0| < r1 < 1. And hence,
|un + %nξn| < r1 for sufficiently large n. Then, for the increasing function ϕ,

ϕ(|un + %nξn|) ≤ ϕ(r1). (3.6)

From (3.5), (3.6) and an elementary calculation, we yield

|F(k)
n (ξn)|

1 + |Fn(ξn)|k+1
= %k

n
| f (k)

n (un + %nξn)|
1 + | fn(un + %nξn)|k+1

≤ %k
nM ϕ(|un + %nξn|)k

≤ %n
kM ϕ(r1)

for sufficiently large n. Then, letting n→∞ and noting (3.4) , we obtain |F(k)(ξ0)|
1+|F(ξ0)|k+1 = 0. This proves the claim.

Therefore, the Claim 1 implies that if F(ξ0) ∈ E, then ξ0 is either the zero of F(k)(ξ) or the multiple pole of
F(ξ). On the other hand, the assumption (1.5) and Hurwitz’s Theorem imply that F(k)(ξ) . 0. This together
with Lemma 2.2 yields∑

a j∈E

N
(
r,

1
F − a j

)
≤ N

(
r,

1
F(k)

)
+ N(2(r,F)

≤ T(r,F(k)) +
1
2

N(r,F) + O(1)

≤ T(r,F(k)) +
1
2

T(r,F) + O(1).

Therefore, by Lemma 2.3 and Lemma 2.4, we have

(k + 2)T(r,F) ≤

∑
a j∈E

N
(
r,

1
F − a j

)
+ S(r,F)

≤ T(r,F(k)) +
1
2

T(r,F) + S(r,F)

≤ (k + 1)T(r,F) +
1
2

T(r,F) + S(r,F)

≤ (k +
3
2

)T(r,F) + S(r,F)
.

So, T(r,F) ≤ S(r,F). This is a contradiction.

Case 2. |z0| = 1.
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Since the function ϕ satisfies (1.1) and |zn| → 1−, we see

ϕ(|zn|)(1 − |zn|) ≥ 1

for all sufficiently large n. It follows that∣∣∣∣zn +
z

ϕ(|zn|)

∣∣∣∣ ≤ |zn| +
|z|

ϕ(|zn|)
< |zn| +

1
ϕ(|zn|)

≤ 1

for all z ∈ ∆. Therefore, we have the following well-defined functions:

1n(z) := fn
(
zn +

z
ϕ(|zn|)

)
, z ∈ ∆. (3.7)

Hence,

1#
n(0) =

f #
n (zn)
ϕ(|zn|)

→∞ (n→∞)

by (3.1). Hence, as in Case.1, Marty’s Theorem implies that {1n}
∞

n=1 is not normal at the point z = 0. By
Lemma 2.1, there exist a subsequence of functions 1n (that will also be denoted by 1n), points vn → 0, and
positive numbers σn → 0, such that

Gn(ζ) := 1n(vn + σnζ) = fn
(
zn +

vn + σnζ
ϕ(|zn|)

)
→ G(ζ) (3.8)

spherically uniformly on compact subsets of C, where G(ζ) is a nonconstant meromorphic function of C.
Consequently,

G(i)
n (ζ) := σi

n 1n(vn + σnζ)→ G(i)(ζ) (3.9)

uniformly on compact subsets of C\{Poles of G}, i = 1, 2, . . . .
Claim 2. G(ζ) ∈ E =⇒

|G(k)(ζ)|
1+|G(ζ)|k+1 = 0.

Suppose that G(ζ0) = a ∈ E, by Hurwitz’s theorem and (3.8), there exists a sequence ζn → ζ0 such that
Gn(ζn) = 1n(vn + σnζn) = a for sufficiently large n. For brevity, we use the notation

ẑn := zn +
vn + σnζn

ϕ(|zn|)
.

Hence, fn(̂zn) = a for all n sufficiently large.
By the hypothesis (1.6), there exists a constant M > 0 such that

1
ϕ(|̂zn|)k

| f (k)
n (̂zn)|

1 + | fn(̂zn)|k+1
≤M.

for sufficiently large n.
Therefore, an elementary calculation gives

|G(k)
n (ζn)|

1 + |Gn(ζn)|k+1
= σk

n
1

ϕ(|zn|)k

| f (k)
n (̂zn)|

1 + | fn(̂zn)|k+1

≤ σk
n

(ϕ(|̂zn|)
ϕ(|zn|)

)k
M

for sufficiently large n.
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Noting that ϕ is increasing, we have

ϕ(|̂zn|)
ϕ(|zn|)

=
ϕ(|zn + vn+σnζn

ϕ(|zn |)
|)

ϕ(|zn|)
→ 1 (n→∞)

by (1.2). Then, we obtain |G(k)(ζ0)|
1+|G(ζ0)|k+1 = 0. Hence, Claim 2 is proved.

As the proof in Case 1, by Claim 2 and the Lemmas 2.2, 2.3 and 2.4 for the function G(ζ) and points
a j, a j ∈ E, we may obtain a contradiction. We omit the details in order to avoid unnecessary repetition. And
hence, the proof of Theorem 1.4 have been completed.

4. Proof of Theorem 1.7

With the notation used in the proof of Theorem 1.4, proceeding as in the proof of Case 1, we get that
F(ξ) ∈ E =⇒

|F(k)(ξ)|
1+|F(ξ)|k+1 = 0. Furthermore, we have

Claim 3. F(ξ) ∈ E\{∞} =⇒ F(k+1)(ξ) = 0. Suppose that F(ξ1) = b ∈ E\{∞}, by Hurwitz’s theorem
and (3.3), there exists a sequence ξ∗n → ξ1 such that Fn(ξ∗n) = fn(un + %nξ∗n) = b. By the hypotheses (1.10) and
(1.11), there exists a constant M1 > 0 such that

1
ϕ(|un + %nξ∗n|)k

| f (k)
n (un + %nξ∗n)|

1 + | fn(un + %nξ∗n)|k+1
≤M1 (4.1)

and

( f (k)
n )#(un + %nξ

∗

n) ≤M1. (4.2)

for sufficiently large n. By (4.1), we see

| f (k)
n (un + %nξ

∗

n)| ≤ M1 · ϕ(|un + %nξ
∗

n|)
k
· (1 + |b|k+1)

≤ M1 · ϕ(r1)k
· (1 + |b|k+1)

where r1 is a fixed constant number such that |z0| < r1 < 1.
This, together with (4.2) yields

(Fn
(k))

#
(ξ∗n) =

|F(k+1)
n (ξ∗n)|

1 + |F(k)
n (ξ∗n)|2

≤ |F(k+1)
n (ξ∗n)|

= %n
k+1
| fn(k+1)(un + %nξ

∗

n)|

= %n
k+1
· ( f (k)

n )#(un + %nξ
∗

n) · (1 + | f (k)
n (un + %nξ

∗

n)|2)

≤ %n
k+1
·M1 · (1 + | f (k)

n (un + %nξ
∗

n)|2)

≤ %n
k+1
·M1 · (1 + (M1 · ϕ(r1)k

· (1 + |b|k+1))2).

This leads to (F(k))#(ξ1) = 0. And hence, F(k+1)(ξ1) = 0. Claim 3 is obtained.
Then, by Claim 1, Claim 3 and Lemma 2.2 yields∑

a j∈E

N
(
r,

1
F − a j

)
≤ N(2

(
r,

1
F(k)

)
+ N(2(r,F)

≤
1
2

N
(
r,

1
F(k)

)
+

1
2

N(r,F) + O(1)

≤
1
2

T(r,F(k)) +
1
2

N(r,F) + O(1).
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Again, combing Lemma 2.3 and Lemma 2.4, we have

([k/2] + 2)T(r,F) ≤

∑
a j∈E

N
(
r,

1
F − a j

)
+ S(r,F)

≤
1
2

T(r,F(k)) +
1
2

N(r,F) + S(r,F)

≤
k + 1

2
T(r,F) +

1
2

T(r,F) + S(r,F)

≤ (k/2 + 1)T(r,F) + S(r,F)
.

So, T(r,F) ≤ S(r,F). This is also a contradiction.
Similarly, for the function G as in the proof of Case 2, we have
Claim 4. G(ζ) ∈ E\{∞} =⇒ G(k+1)(ζ) = 0.
Using Claim 2, Claim 4 and value distribution theory, we also obtain a contradiction. Once again we

omit the details. Therefore, sup{|| f ||Nϕ ; f ∈ F } < ∞ as desired.
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