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Abstract. A ring R is called NEC if for any a, b ∈ N(R), ab = ba. The class of NEC rings is a proper
generalization of the class of CN rings. First, with the aid of NEC rings, some characterizations of CN rings
and reduced rings are given. Next we extend many properties of CN rings to NEC rings such as we show
that NEC rings are directly finite and left min-abel; NEC regular ring are strongly regular ; a ring R is NEC if
and only if every Pierce stalk of R is NEC; Also we discuss some properties of NEC exchange rings; Finally,
we give some properities of MP-invertible elements.

1. Introduction

Throughout this article, all rings considered are associated with identity, the symbols N(R), J(R), U(R),
E(R), Z(R), Zl(R) and Zr(R) will stand respectively for the set of all nilpotent elements, the Jacobson radical,
the set of all invertible elements, the set of all idempotent elements, the center, the left and right singular
ideal of R. And Z represents the set of all integers.

In [1], it is shown that if a ring R satisfies: (1) N(R) is commutative, (2) for every x ∈ R there exists an
element x′ in the subring 〈x〉 generated by x such that x − x2x′ ∈ N(R), (3) for all a ∈ N(R) and b ∈ R, ba − ab
commutes with b, then R is commutative.

In [2], it is shown that if R satisfies: (1) N(R) is commutative, (2) for every x ∈ R there exists an element
x′ in the subring 〈x〉 generated by x such that x − x2x′ ∈ N(R), (3) for every x, y ∈ R, there exists a positive
integer n = n(x, y) ≥ 1 such that both (xy)n

− (yx)n and (xy)n+l
− (yx)n+l belong to Z(R), then R is a subdirect

sum of local commutative rings and nil commutative rings.
Motivated by the two theorems, we consider the class of rings satisfying the following condition:

ab = ba a, b ∈ N(R)
A ring R is called nilpotent elements commutative (for short, NEC) if it satisfies the above condition.

Clearly, a ring with N(R)2 = 0 is always NEC.
Following [12], a ring R is called CN if N(R) ⊆ Z(R). Clearly, CN rings are NEC, but the converse is not

true because of the following example 2.2. Hence NEC rings are proper generalization of CN rings.
Following [22], a ring R is called reduced if N(R) = 0. And R is called le f t (ri1ht) quasi − duo if every

maximal left (right) ideal of R is an ideal. Recall that a ring R is said to be directly f inite [19] if ab = 1 implies
ba = 1.
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In preparation for the paper, we first state the following definitions.
An element e ∈ E(R) is called le f t minimal idempotent if Re is a minimal left ideal of R. Write MEl(R) to

denote the set of all left minimal idempotents of R. A ring R is called left min-abel [23] if either MEl(R) = ∅
or each element e of MEl(R) is left semicentral (that is, ae = eae for all a ∈ R). An element a of a ring R is
called re1ular [14] if a ∈ aRa; a is said to be stron1ly re1ular [22] if a ∈ a2R ∩ Ra2; and a is unit − re1ular [13]
if a = aua for some u ∈ U(R). A ring R is called re1ular, stron1ly re1ular, unit − re1ular if every element of
R is re1ular, stron1ly re1ular and unit − re1ular, respectively. Following [18], a ring R is called exchan1e if
for every x ∈ R there exists e ∈ E(R) such that e ∈ xR and 1 − e ∈ (1 − x)R, and R is said to be clean if every
element of R is a sum of a unit and an idempotent.

In section 2, we give some examples of NEC rings and with the aid of NEC rings, some characterizations
of CN rings and reduced rings are given.

In section 3, we discuss the properties of NEC rings. We mainly show that NEC rings are directly finite
and left min-abel; also give some characterizations of strongly regular rings.

In section 4, we discuss some properties of NEC exchange rings such as NEC exechange rings are clean
rings and quasi-duo rings.

In section 5, we discuss some properties of Moore Penrose invertibility of NEC ring. Especially, we give
some characterizations of EP elements.

2. Examples of NEC Rings

Definition 2.1. A ring R is called nilpotent elements commutative (for short, NEC) if ab = ba for any a, b ∈ N(R).

The class of NEC rings is rather large, and contains all commutative rings, all CN rings and all rings R
with N(R)2 = 0. However, the following example illustrates that NEC rings need not be CN.

Example 2.2. Let F be a field and R = T2(F) =

(
F F
0 F

)
. Then R is NEC because N(R)2 = 0. Since

(
0 1
0 0

)
<

Z(R), R is not CN.

Example 2.3. Let R = Z8. Then R is NEC, while N(R)2 = {0, 4} , 0. Hence there exists a NEC ring R with
N(R)2 , 0.

Let R be a ring and V2(R) =

{(
a b
0 a

)
|a, b ∈ R

}
. Then with the usual matrix addition and multiplication,

V2(R) forms a ring.

Proposition 2.4. R is a CN ring if and only if V2(R) is a NEC ring.

Proof (⇒) Assume that A =

(
a1 a2
0 a1

)
, B =

(
b1 b2
0 b1

)
∈ N(V2(R)), then a1, b1 ∈ N(R) ⊆ Z(R), it follows

that AB =

(
a1b1 a1b2 + a2b1

0 a1b1

)
=(

b1a1 b1a2 + b2a1
0 b1a1

)
=BA. Therefore V2(R) is NEC.

(⇐) For each a ∈ N(R), b ∈ R, write A =

(
a 0
0 a

)
, B =

(
0 b
0 0

)
. Then A,B ∈ N(V2(R)). Since V2(R) is

NEC, AB = BA, that is,
(

0 ab
0 0

)
=

(
0 ba
0 0

)
, it follows that ab = ba. Hence R is CN. �

Let R be a ring and R ∝ R = {(a, b)|a, b ∈ R}. Then with componentwise addition and the following
multiplication:

(a, b)(x, y) = (ax, ay + bx)
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R forms a ring and η : R ∝ R −→ V2(R) defined by η((a, b)) =

(
a b
0 a

)
is a ring isomorphism. Also we

have V2(R) � R[x]/(x2). Hence Proposition 2.4 gives the following corollary.

Corollary 2.5. The following conditions are equivalent for a ring R:
(1) R is CN;
(2) R ∝ R is NEC;
(3) R[x]/(x2) is NEC.

Let R be a ring and set V3(R) = {

 a1 a2 a3
0 a1 a4
0 0 a1

 |a1, a2, a3, a4 ∈ R} and SV3(R) = {

 a1 a2 a3
0 a1 a2
0 0 a1

 |a1, a2, a3 ∈

R}. Then with the usual matrix addition and multiplication, V3(R) and SV3(R) form rings. Clearly, SV3(R)
is a subring of V3(R). The following example illustrates V3(R) need not be NEC even if R is a division ring.

Example 2.6. Let R = D only be a division ring. Then there exist a, b ∈ R and ab , ba. Choose A =

 0 a 0
0 0 a
0 0 0

,

B =

 0 b 0
0 0 b
0 0 0

. Then A,B ∈ N(SV3(R)). Since AB =

 0 0 ab
0 0 0
0 0 0

 ,BA =

 0 0 ba
0 0 0
0 0 0

, AB , BA. Hence

SV3(R) is not NEC. Since each subring of NEC rings is NEC, V3(R) is not NEC.

Observing Example 2.6, we can obtain the following proposition.

Proposition 2.7. The following conditions are equivalent for a ring R:
(1) R is a commutative ring;
(2) SV3(R) is a commutative ring;
(3) SV3(R) is a NEC ring.

Let R be a ring and R[x] the polynomial ring. Then σ : R[x]/(x3) −→ SV3(R) defined by σ(a0 +a1x+a2x2) = a0 a1 a2
0 a0 a1
0 0 a0

 is a ring isomorphism. Hence Proposition 2.7 implies the following corollary.

Corollary 2.8. The following conditions are equivalent for a ring R:
(1) R is a commutative ring;
(2) R[x]/(x3) is a commutative ring;
(3) R[x]/(x3) is a NEC ring.

The following example illustrates V3(R) need not be NEC even if R is a field.

Example 2.9. Let R = Z3 be a field. Choose A =

 0 1 0
0 0 2
0 0 0

, B =

 0 1 0
0 0 1
0 0 0

 ∈ N(V3(R)). Then AB = 0 0 1
0 0 0
0 0 0

 ,
 0 0 2

0 0 0
0 0 0

 = BA, hence V3(R) is not NEC.

Motivated by Example 2.2, we obtain the following theorem which gives a characterization of reduced
rings.

Theorem 2.10. R is a reduced ring if and only if the 2× 2 upper triangular matrix ring T2(R) over R is a NEC ring.
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Proof (=⇒) Assume that R is reduced, then N(T2(R)) =

(
0 R
0 0

)
, so T2(R) is NEC because N(T2(R))2 = 0.

(⇐=) Assume that a ∈ R with a2 = 0. Choose A =

(
a 1
0 0

)
,B =

(
a a
0 0

)
. Then A,B ∈ N(T2(R)). Since

T2(R) is NEC, AB = BA, one has
(

0 0
0 0

)
=

(
0 a
0 0

)
, it follows that a = 0. Therefore R is reduced. �

Let R be a ring and write GT2(R) = {

 a1 a1 a2
0 0 a3
0 0 a3

 |a1, a2, a3 ∈ R}, WGT2(R) = {

 a1 0 a2
0 0 a3
0 0 a3

 |a1, a2, a3 ∈ R}

and QGT2(R) = {

 a1 a1 a2
0 0 0
0 0 a3


|a1, a2, a3 ∈ R}. Then by the usual matrix addition and multiplication, GT2(R), WGT2(R) and QGT2(R)

form rings. Set ρ : T2(R) −→ GT2(R) defined by ρ(
(

a1 a2
0 a3

)
) =

 a1 a1 a2 − a1
0 0 a3
0 0 a3

, σ : T2(R) −→

WGT2(R) defined by ρ(
(

a1 a2
0 a3

)
) =

 a1 0 a2 − a1 + a3
0 0 a3
0 0 a3

 and τ : WGT2(R) −→ QGT2(R) defined by

τ(

 a1 0 a2
0 0 a3
0 0 a3

) =

 a1 a1 a2
0 0 0
0 0 a3

. Then ρ, σ and τ are ring isomorphisms. Hence Theorem 2.10 implies the

following corollary.

Corollary 2.11. The following conditions are equivalent for a ring R:
(1) R is reduced;
(2) GT2(R) is NEC;
(3) WGT2(R) is NEC;
(4) QGT2(R) is NEC.

Remark 2.12. Example 2.9 illustrates the 3 × 3 upper triangular matrix ring T3(R) over a field R need not be NEC.

Let R be a ring and write M(0)
2 (R) = {

(
a11 a12
a21 a22

)
|ai j ∈ R, i, j = 1, 2}. For any A =

(
a11 a12
a21 a22

)
,B =(

b11 b12
b21 b22

)
∈M(0)

2 (R), we define new multiplication as follows:

AB =

(
a11b11 a11b12 + a12b22

a21b11 + a22b21 a22b22

)
.

Then with the usual matrix addition and the new multiplication, M(0)
2 (R) is a ring.

Proposition 2.13. R is a reduced ring if and only if M(0)
2 (R) is a NEC ring.

Proof (⇒) Assume A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
∈ N(M(0)

2 (R)), then a11, a22, b11, b22 ∈ N(R) = 0, so

A =

(
0 a12

a21 0

)
, B =

(
0 b12

b21 0

)
, it follows that AB =

(
0 0
0 0

)
= BA. Hence M(0)

2 (R) is NEC.

(⇐) Choose a ∈ R with a2 = 0 and A =

(
a 1
1 0

)
, B =

(
0 1
a 0

)
. Then A,B ∈ N(M(0)

2 (R)). Since M(0)
2 (R) is

NEC, AB = BA, that is,
(

0 a
0 0

)
=

(
0 0
0 0

)
, this gives a = 0. Hence R is reduced ring. �
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Let R be a ring and write WT3(R) = {

 a1 a2 a3
0 a4 0
0 0 a5

 |ai ∈ R, i = 1, 2, · · · , 5}. Then with the usual matrix

addition and multiplication, WT3(R) forms a ring.

Theorem 2.14. R is a reduced ring if and only if WT3(R) is a NEC ring.

Proof Assume that R is reduced, then N(WT3(R)) =

 0 R R
0 0 0
0 0 0

, this gives WT2(R) is NEC because

N(WT3(R))2 = 0.

Conversely, assume that WT3(R) is NEC and a ∈ R with a2 = 0. Choose A =

 a 1 0
0 0 0
0 0 a

 ,B = a a 1
0 0 0
0 0 a

. Then, clearly, A,B ∈ N(WT3(R)). Since WT3(R) is NEC, AB = BA, this gives

 0 0 a
0 0 0
0 0 0

 = 0 a a
0 0 0
0 0 0

, one gets a = 0. Therefore R is reduced. �

Let R be a ring and write SV4(R) = {


a1 a2 a3 a4
0 a1 a2 0
0 0 a1 0
0 0 0 a5

 |a1, a2, a3, a4, a5 ∈ R}. Then with the usual matrix

addition and multiplication, SV4(R) forms a ring.

Theorem 2.15. R is a commutative reduced ring if and only if SV4(R) is a NEC ring.

Proof (=⇒) Assume that R is a commutative reduced ring, then N(SV4(R)) = {


0 a2 a3 a4
0 0 a2 0
0 0 0 0
0 0 0 0

 |a2, a3, a4 ∈

R}. Since R is commutative, we can easily to show that AB = BA for all A,B ∈ N(SV4(R)), one gets SV4(R) is
NEC.

(⇐=) Assume that x, y, a ∈ R with a2 = 0. Choose C =


0 x 0 0
0 0 x 0
0 0 0 0
0 0 0 0

 ,

D =


0 y 0 0
0 0 y 0
0 0 0 0
0 0 0 0

 ,E =


a 1 1 a
0 a 1 0
0 0 a 0
0 0 0 0

 and F =


a 0 0 1
0 a 0 0
0 0 a 0
0 0 0 0

. Then C,D,E,F ∈ N(SV4(R)). Since

SV4(R) is NEC, CD = DC and EF = FE, this gives


0 0 xy 0
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 yx 0
0 0 0 0
0 0 0 0
0 0 0 0

 and


0 a a a
0 0 a 0
0 0 0 0
0 0 0 0

 =


0 a a 0
0 0 0 0
0 0 0 0
0 0 0 0

, so xy = yx and a = 0. Hence R is commutative reduced. �

3. Properties of NEC Rings

Let R be a ring and write Maxl(R) to denote the set of all maximal left ideals of R.
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Theorem 3.1. Let R be a NEC ring, e ∈ E(R), a ∈ R and M ∈Maxl(R). Then we have
(1) e ∈M or (1 − e)R ⊆M;
(2) 1 − ae ∈M if and only if 1 − ea ∈M;
(3) Ra + R(ae − 1) = R;
(4) Me ⊆M.

Proof (1) If e < M, then Re + M = R, so (1 − e)R ⊆ (1 − e)Re + M. Since R is NEC and eR(1 − e) ⊆ N(R), we
have eR(1 − e)Re = (1 − e)ReR(1 − e) = 0, it follows that (1 − e)Re ⊆M. Hence (1 − e)R ⊆M.

(2) If 1 − ae ∈ M, then ae < M, so e < M. By (1), we have (1 − e)R ⊆ M, so (1 − e)a, a(1 − e) ∈ M, this gives
1 − a = 1 − ae + ae − a = (1 − ae) − a(1 − e) ∈M, so 1 − ea = 1 − a + a − ea = (1 − a) + (1 − e)a ∈M.

Conversely, assume that 1 − ea ∈ M. If e ∈ M, then 1 − e < M. By (1), we have eR ⊆ M, it follows that
1 = (1 − ea) + ea ∈ M, which is a contradiction, hence e < M. By (1), we have (1 − e)R ⊆ M, this implies that
R(1−e) ⊆M, one gets 1−a = 1−ae+ae−a = (1−ae)−a(1−e) ∈M and then 1−ae = 1−a+a−ae = (1−a)+a(1−e) ∈M.

(3) If Ra + R(ae − 1) , R, then there exists a maximal left ideal K of R such that Ra + R(ae − 1) ⊆ K.
Since ae − 1 ∈ K, by (2), 1 − ea ∈ K. Since a ∈ K, ea ∈ K, this gives 1 ∈ K, which is a contradiction. Hence
Ra + R(ae − 1) = R.

(4) If Me *M, then Me+M = R. Write 1 = me+n for some m,n ∈M. By (3), we have R = Rm+R(me−1) =
Rm + R(−n) ⊆M, so R = M, which is a contradiction. Hence Me ⊆M. �

Recall that a ring R is said to be directly finite if ab = 1 implies ba = 1.

Lemma 3.2. Let R be a ring satisfying either e ∈M or (1 − e)R ⊆M for each e ∈ E(R) and M ∈Maxl(R). Then R is
directly finite.

Proof Assume that ab = 1. Write e = ba. Then e ∈ E(R), ae = a and eb = b. If Re , R, then there exists
M ∈ Maxl(R) such that Re ⊆ M. Since 1 − e < M, by hypothesis, eR ⊆ M, one gets b = eb ∈ M, it follows that
1 = ab ∈M, which is a contradiction. Hence Re = R, this implies ba = e = 1. Therefore R is directly finite. �

The following corollary follows from Theorem 3.1 and Lemma 3.2.

Corollary 3.3. NEC rings are directly finite.

An element e ∈ E(R) is called left minimal idempotent if Re is a minimal left ideal of R. Write MEl(R) to
denote the set of all left minimal idempotents of R. A ring R is called left min-abel if either MEl(R) = ∅ or
each element e of MEl(R) is left semicentral (that is, ae = eae for all a ∈ R).

Lemma 3.4. A ring R is left min-abel if and only if Me ⊆M for each e ∈MEl(R) and M ∈Maxl(R).

Proof Suppose that R is left min-abel. Choose e ∈MEl(R) and M ∈Maxl(R). If Me *M, then Me + M = R.
Since e is left semicentral, 1−e is right semicentral, so (1−e)R ⊆ (1−e)Me+(1−e)M ⊆M, one gets R(1−e) = M,
so Me = 0, which is a contradiction. Hence Me ⊆M.

Conversely, let e ∈ MEl(R). If (1 − e)Re , 0, then there exists a ∈ R such that (1 − e)ae , 0. Write
1 = e + (1 − e)ae, then 1 ∈ MEl(R), e1 = e and 1e = 1. Since R(1 − 1) ∈ Maxl(R), R(1 − 1)e ⊆ R(1 − 1) by
hypothesis, it follows that (1 − 1)e1 = 0, one gets e = 1, so (1 − e)ae = 0 which is a contradiction. Therefore
(1 − e)Re = 0, this shows that R is left min-abel. �

Theorem 3.1 and Lemma 3.4 implies the following corollary.

Corollary 3.5. NEC rings are left min-abel.

The following example illustrates the converses of Corollary 3.3 and Corollary 3.5 are not true.

Example 3.6. Let R = {

(
a b
c d

)
|a, b, c, d ∈ Z, a ≡ d (mod 2), b ≡ c ≡ 0 (mod 2)} . Then by the usual addition

and multiplication of matrix, R forms a ring. It is easy to show that E(R) = {

(
0 0
0 0

)
,

(
1 0
0 1

)
} ⊆ Z(R), so R is
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left min-abel and directly finite. We claim that R is not NEC. In fact, let A =

(
0 2
0 0

)
,B =

(
0 0
2 0

)
, we have

A2 = B2 = 0, so A,B ∈ N(R). Since AB =

(
4 0
0 0

)
, BA =

(
0 0
0 4

)
, we have AB , BA. Therefore R is not NEC.

A ring R is said to be n-regular [24] if every element of N(R) is regular. It is well known that a ring R is
strongly regular if and only if x ∈ Rx2 for each x ∈ R.

Lemma 3.7. Let R be a NEC ring. If x ∈ R is regular, then x is strongly regular.

Proof Since x is regular, x = xyx for some y ∈ R. Set e = xy, then e ∈ E(R) and x = ex, one gets x(1−e) ∈ N(R).
Since R is NEC, x(1 − e)ye = (1 − e)yex(1 − e) = 0, it follows that e = xeye, so x = ex = xeyex = xeyx ∈ x2R.
Similarly, we can show that x ∈ Rx2. Hence x is strongly regular. �

The following two theorems follow from Lemma 3.7.

Theorem 3.8. The following conditions are equivalent for a ring R:
(1) R is a strongly regular ring;
(2) R is a unit−regular ring and NEC ring;
(3) R is a regular ring and NEC ring.

Theorem 3.9. The following conditions are equivalent for a ring R:
(1) R is a reduced ring;
(2) R is a NEC ring and n−regular ring.

Recall that a ring R is left NPP [24] if for each a ∈ N(R), Ra is projective as left R−module. And R is said
to be left idempotent reflexive if aRe = 0 implies eRa = 0 for each a ∈ R and e ∈ E(R). Clearly, R is a left NPP
ring if and only if for each a ∈ N(R), l(a) = Re for some e ∈ E(R), where l(a) = {x ∈ R|xa = 0}.

Proposition 3.10. Let R be a NEC left NPP ring. If R is left idempotent reflexive, then R is reduced.

Proof Assume that a ∈ R satisfying a2 = 0. Then l(a) = Re for some e ∈ E(R) because R is left NPP. Hence
a = ae and ea = 0. Since R is NEC, ax(1−e) = a(ex(1−e)) = ex(1−e)a = exa for each x ∈ R, one gets ax(1−e) = 0,
so aR(1 − e) = 0. Since R is left idempotent reflexive, (1 − e)Ra = 0, it follows that a = ea = 0. Therefore R is
reduced. �

Since semiprime rings are left idempotent reflexive, Proposition 3.10 implies the following corollary.

Corollary 3.11. R is a reduced ring if and only if R is a semiprime NEC left NPP ring.

Lemma 3.12. Let R be a NEC ring and I an ideal of R. If I ⊆ N(R), then R/I is NEC.

Proof It is clear. �
Clearly, for a NEC ring R, N(R) is only an addition subgroup of R. If R/P(R) is a left NPP ring, then we

can say more, where P(R) denotes the prime radical of R.

Theorem 3.13. Let R be a NEC ring. If R/P(R) is left NPP, then N(R) = P(R).

Proof Since R is NEC, by Lemma 3.12, R/P(R) is NEC, Since R/P(R) is a semiprime left NPP ring, R/P(R)
is reduced by Corollary 3.11, so N(R) ⊆ P(R). Therefore N(R) = P(R). �

An ideal I of R is called reduced if I ∩N(R) = 0. Clearly, every ideal of reduced ring is reduced.

Proposition 3.14. Let R be a ring and I a reduced ideal of R. If R/I is NEC, then so is R.

Proof Suppose that a, b ∈ N(R), then in R̄ = R/I, ā, b̄ ∈ N(R̄). Since R/I is NEC, ab − ba ∈ I. Since a ∈ N(R),
there exists n ≥ 1 such that an = 0. If n = 1, then a = 0, so ab = ba, we are done. Hence we assume that
n ≥ 2. Since (an−1(ab − ba)a)2 = 0 and I is reduced, an−1(ab − ba)a = 0, this gives (an−1(ab − ba))2 = 0, so
an−1(ab − ba) = 0, again (an−2(ab − ba)a)2 = 0 implies an−2(ab − ba)a = 0, further, we have an−2(ab − ba) = 0.
Repeating this process, we can obtain that ab − ba = 0, this shows that R is NEC. �
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Lemma 3.15. Let R be a ring and I, J two ideals of R. If R/I,R/J are NEC and I ∩ J = 0, then R is NEC.

Proof It is routine. �

Theorem 3.16. Let R be a ring and I, J two ideals of R. If R/I,R/J are NEC, then R/(I ∩ J) is NEC.

Proof It is an immediate result of Lemma 3.15. �
Let R be a ring, B(R) be the set of all central idempotents of R, and S(R) be the nonempty set of all proper

ideals of R generated by central idempotents. An ideal P ∈ S(R) is a Pierce ideal of R if P is a maximal (with
respect to inclusion) element of the set S(R). The set of all Pierce ideals of R is denoted by P(R). If P is a
Pierce ideal of R, then the factor ring R/P is called a Pierce stalk of R.

Theorem 3.17. The following conditions are equivalent for a ring R:
(1) R is a NEC ring;
(2) R/S is a NEC ring for every ideal S generated by central idempotents of R;
(3) All Pierce stalks of R are NEC rings.

Proof (1) =⇒ (2) Assume that x, y ∈ R such that x̄, ȳ ∈ N(R/S), then there exist m,n ≥ 1 such that
xm, yn

∈ S. Since S is generated by central idempotents of R, there exists a central idempotent 1 ∈ S such
that xm, yn

∈ R1. Clearly (x(1− 1))m = 0 = (y(1− 1))n, one gets x(1− 1)y(1− 1) = y(1− 1)x(1− 1) because R is
NEC. Hence x̄ȳ = ȳx̄, this shows that R/S is NEC.

(2) =⇒ (3) It is trivial.
(3) =⇒ (1) Suppose that R is not a NEC ring, then there exist a, b ∈ N(R) such that ab , ba. Put Σ = {I|I

is an ideal of R generated by central idempotents and in R̄ = R/I, āb̄ , b̄ā}. Then Σ is not an empty set
because 0 ∈ Σ. One can easily show that there exists a maximal element P in Σ by Zorn,s Lemma. If P
is not a Pierce ideal of R, then there is a central idempotent e of R such that P + eR and P + (1 − e)R are
proper ideals of R which properly contain the ideal P. Hence P + eR < Σ and P + (1− e)R < Σ, it follows that
ab − ba ∈ (P + eR) ∩ (P + (1 − e)R) = P, which is a contradiction. Thus P is a Pierce ideal of R, by (3), R/P is
NEC, which is also a contradiction because ab − ba < P. Therefore R is NEC. �

4. NEC Exchange Ring

Recall a ring is Abelian [4] if E(R) ⊆ Z(R). It is well known that clean rings are always exchange [3]. And
the converse is true when R is an Abelian ring by [26]. Example 3.6 illustrates that NEC ring need not be
Abelian.

Theorem 4.1. Let R be a NEC ring. If R is exchange, then R is clean.

Proof Since R is NEC, R/P(R) is NEC by Lemma 3.12. Since R/P(R) is semiprime, R/P(R) is Abel, this
implies that R/P(R) is an Abel exchange ring, so R/P(R) is clean by [26]. Therefore R is clean. �

It is well known that an exchange ring with only two idempotents is local.

Lemma 4.2. Let R be a NEC exchange ring. If P is a prime ideal of R, then R/P is local.

Proof Since R is a NEC exchange ring, R/P(R) is Abel. Assume that â is any idempotent of R̂ = R/P,
then there exists e ∈ E(R) such that ê = â because R is exchange. Clearly, in R̄ = R/P(R), ēR̄(1̄ − ē) = 0̄, so
eR(1 − e) ⊆ P(R) ⊆ P. Since P is a prime ideal of R, e ∈ P or 1 − e ∈ P, this gives â = 0̂ or â = 1̂. Therefore R/P
is local. �

The following corollary is an immediate result of Lemma 4.2.

Corollary 4.3. Let R be a NEC exchange ring. If P is a left (right) primitive ideal of R, then R/P is a division ring.

Theorem 4.4. Let R be a NEC exchange ring. Then R is a left and right quasi-duo ring.
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Proof Assume that M is any maximal left ideal of R, then R/M is a simple left R−module, so P =: {a ∈
R|aR ⊆M} is a left primitive ideal of R, by Corollary 4.3, R/P is a division ring. Clearly, P ⊆M. If M , P, then
there exists m ∈M such that m < P, so there exists t ∈ R such that 1− tm ∈ P, this implies 1 = 1− tm+ tm ∈M,
which is a contradiction. Hence M = P is an ideal of R and so R is left quasi-duo. Similarly, we can show
that R is right quasi-duo. �

A ring R is said to have right (left) square stable range one [15] if xR + yR = R implies that x2 + yz ∈ U(R)
(x2 + zy ∈ U(R)) for some z ∈ R. A ring R is said to have idempotent stable range one (written isr(R) = 1) if
aR + bR = R implies that a + be ∈ U(R) for some e ∈ E(R).

Corollary 4.5. Let R be a NEC ring with isr(R) = 1. Then R is a left and right quasi-duo ring and R has right square
stable range one.

Proof For any a ∈ R, the equation aR + (−1)R = R gives a + (−1)e ∈ U(R) for some e ∈ E(R) because
isr(R) = 1. Thus a is a clean element and R is a clean ring. Hence R is an exchange ring, by Theorem 4.4, R
is a left and right quasi-duo ring.

Now let xR+ yR = R. If x2R+ yR , R, then there exists a maximal right ideal M of R containing x2R+ yR.
Since M is an ideal of R, R/M is a division ring. Clearly xR + yR = R implies xR = x2R + xyR ⊆ M, so
R = xR + yR ⊆ M, which is a contradiction. Hence x2R + yR = R, this leads to x2 + y1 ∈ U(R) for some
1 ∈ E(R). This shows that R has right square stable range one. �

Theorem 4.6. Let R be a NEC exchange ring. Then R has left and right square stable range one.

Proof Since R is a NEC exchange ring, R is a left and right quasi-duo ring by Theorem 4.4, so R/J(R) is a
left quasi-duo ring, by [25, Corollary 2.4], R/J(R) is a reduced ring, hence R/J(R) is an Abel exchange ring,
one gets R/J(R) has stable range one by [26, Theorem 6]. Therefore R has stable range one. Similar to the
proof of Corollary 4.5, we can show that R has left and right square stable range one. �

Corollary 4.7. If R is a NEC exchange ring, then isr(R) = 1.

Proof Let R̄ = R/J(R). By Theorem 4.6, R has right square stable range one and R̄ is an Abel exchange
ring. Follows from [7, Theorem 12], we have isr(R̄) = 1̄. And from [7, Theorem 9], one obtains isr(R) = 1. �

Proposition 4.8. Let R be a NEC exchange ring. Then the following conditions are equivalent:
(1) there exists an u ∈ U(R) such that 1 ± u ∈ U(R);
(2) for any a ∈ R there exists u ∈ U(R) such that a ± u ∈ U(R).

Proof (1) =⇒ (2) Since R is a NEC exchange ring, R/J(R) is an Abel exchange ring by Theorem 4.6, and
by [26, Theorem 6], R/J(R) is an exchange ring of bounded index. By [8, Corollary 2.4], there exists a
u ∈ U(R/J(R)) such that a ± u ∈ U(R/J(R)). Since invertible elements can be lifted modulo J(R), there exists
an u ∈ U(R) such that a ± u ∈ U(R).

(2) =⇒ (1) is trivial. �
We call a ring R a left (right) P−exchange ring if every projective left (right) R−module has the exchange

property. This definition is not left-right symmetric, for example, a left perfect ring which is not right perfect
is a left but not a right P-exchange ring.

Theorem 4.9. Let R be a NEC left P−exchange ring. Then R/J(R) is a strongly regular ring.

Proof Since R is a NEC left P−exchange ring, R is a NEC exchange ring, it follows that R/J(R) is an Abel
ring by Theorem 4.6, by [6, Corollary 2.16], R/J(R) is a weakly π−regular ring. Since R is a left quasi-duo
ring by Theorem 4.4, R/J(R) is left quasi-duo, it follows that R/J(R) is strongly regular. �

The following corollary is an immediate result of Theorem 4.9 which gives a characterization of strongly
regular rings.

Corollary 4.10. R is a strongly regular ring if and only if R is a NEC left P−exchange ring with J(R) = 0.
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Recall that an element a in R is uniquely clean if it has exactly one clean decomposition, and a is said to
be strongly clean if it has a clean decomposition a = e + u in which eu = ue. Following [16], we let ucn(R)
denote the set of uniquely clean elements and scn(R) is the set of strongly clean elements. Clearly, a ring R
is Abel if and only if E(R) ⊆ ucn(R).

Proposition 4.11. Let R be a NEC ring. Then ucn(R) ⊆ scn(R).

Proof Assume that a ∈ ucn(R), then a has the uniquely clean decomposition a = e + u. Since R is NEC,
by the proof of Theorem 3.1(1), we know that ex(1 − e)Re = 0 = eR(1 − e)xe for each x ∈ R. Since J(R) is a
semiprime ideal of R, ex(1 − e) ∈ J(R) and (1 − e)xe ∈ J(R) for each x ∈ R, follows from the decomposition
a = e+u = (e+ex(1−e))+(u−ex(1−e)) = (e+(1−e)xe)+(u−(1−e)xe), we can see that e+(1−e)xe = e = e+ex(1−e)
and u−(1−e)xe = u = u−ex(1−e), this gives ex(1−e) = 0 = (1−e)xe for each x ∈ R. Thus eR(1−e) = 0 = (1−e)Re,
this shows that e ∈ Z(R) and a ∈ scn(R). �

Theorem 4.12. Let R be an exchange ring and I a right ideal of R, which contains no nonzero idempotents. Then R
has stable range one if and only if for any regular element a of R, there exists u ∈ U(R), such that a − aua ∈ I.

Proof (⇒) It is evident.
(⇐) Let a, x ∈ R, e ∈ E(R) such that ax + e = 1. If ea = 0, then a = axa, so there exists u ∈ U(R) such that

a− aua = y ∈ I. we have 1− e = ax = (aua + y)x = auax + yx = au(1− e) + yx, (au− e)2 = auau− aue− eau + e =
(a− y)u−aue+ e = au(1− e)− yu+ e = 1− e− yx− yu+ e = 1− y(u+x). Since R is an exchange ring, there exists
12 = 1 ∈ y(u+x)R ⊆ I such that 1−1 ∈ (1−y(u+x))R. Since I contains no nonzero idempotents, one gets 1 = 0,
so 1 ∈ (1− y(u + x))R. Aussme 1 = (1− y(u + x))z for some z ∈ R, so that (au− e)2z = 1. Let v = (au− e)z. Then
(au− e)v = 1; If ea , 0, let f = ax = 1− e, r = f a− a, then rx = ( f a− a)x = (axa− a)x = (ax− 1)ax = −e(1− e) = 0
and f r = f 2a − f a = 0. Let a/ = a + r. Then a/x = ax + rx = f , a/xa/ = f a/ = f a + f r = f a = r + a = a/ and
a/x + e = ax + e = 1, so we have ea/ = 0. Follows from the above proof, there exists u ∈ U(R), v ∈ R, such
that (a/u − e)v = 1, one gets (au + ru − e)v = 1. Since f r = 0, r = (1 − f )r = er, we have (au + e(ru − 1))v = 1.
Hence in any case, one has u ∈ U(R), v ∈ R such that (au + es)v = 1 for some s ∈ R, where s = −1 or s = ru− 1.
Write h = v(au + es). Then h2 = h and (au + es)h = au + es. Since v(au + es) + 1 − h = 1, by the above proof,
there exists w ∈ U(R), t, q ∈ R such that (vw + (1 − h)t)q = 1, so au + es = (au + es)(vw + (1 − h)t)q = wq, then
q = w−1(au + es). Hence (vw + (1 − h)t)w−1(au + es) = 1, this implies au + es ∈ U(R), so a + esu−1

∈ U(R).
Therefore R has stable range one. �

Corollary 4.13. [21, Proposition 5.3] An exchange ring R has stable range one if and only if for each regular element
a of R, there exists u ∈ U(R) such that a − aua ∈ J(R).

Corollary 4.14. [27, Proposition 4.6] An exchange ring R has stable range one if and only if for each regular element
a of R, there exists u ∈ U(R) such that a − aua ∈ Zl(R).

Corollary 4.15. An exchange ring R has stable range one if and only if for each regular element a of R, there exists
u ∈ U(R) such that a − aua ∈ Zr(R).

5. Generalized Inverses

An involution a 7−→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

A ring R with an involution ∗ is called ∗−ring. An element a† in a ∗-ring R is called the Moore-Penrose
inverse (or MP-inverse) of a, if [20]

aa†a = a, a†aa† = a†, aa† = (aa†)∗, a†a = (a†a)∗.

In this case, we call a is MP-invertible in R. The set of all MP-invertible elements of R is denoted by R†.
An involution ∗ of R is called proper if x∗x = 0 implies x = 0 for all x ∈ R.
Following [5], an element a of a ring R is called group invertible if there is a] ∈ R such that
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aa]a = a, a]aa] = a], aa] = a]a.

Denote by R] the set of all group invertible elements of R. Clearly, a ring R is strongly regular if and only if
R = R].

Duo to [11], an element a of a ∗−ring R is said to be EP if a ∈ R] ∩ R† and a] = a†. In [10], many
characterizations of EP elements are given.

Noting that a ∈ R] if and only if a ∈ Ra2
∩ a2R. Hence Lemma 3.7 implies that the following lemma.

Lemma 5.1. Let R be a NEC ring. If a ∈ R†, then a ∈ R].

Theorem 5.2. Let R be a NEC ring. If a ∈ R†, then a ∈ R] and
(1) a = a2a†a†a;
(2) aa] = aa† + a†a − a†a2a†;
(3) aa] = aa†a†a;
(4) a† = a†aa] + a]aa† − a];
(5) a]a† = a]aa†a†;
(6) a = a2a† + a†a2

− a†a3a†.

Proof Since R is a NEC ring and a ∈ R†, by Lemma 5.1, a ∈ R], so a] exists.
Write f = aa†, 1 = a†a and e = aa]. Then f = f 2, 1 = 12, e = e2 and a = a1 = f a = ea = ae. Noting

that a] = f a] = a]1. Then a(1 − f ), (1 − 1)a] ∈ N(R), this gives that (1 − 1)a]a(1 − f ) = a(1 − f )(1 − 1)a], so
a(1 − f )(1 − 1)a] f = 0. Noting that a = f a. Then a(1 − f )(1 − 1)a]a = 0, which implies that

a(1 − f )(1 − 1)a] = 0 (5.1)

and

(1 − 1)a]a(1 − f ) = 0 (5.2)

Equation (5.1) gives that

a]a = a2a†a†aa] (5.3)

Hence a = (aa])a = (a2a†a†aa])a = a2a†a†a, (1) is completed.
Noting that a]a = a](a2a†a†a) = aa†a†a. Then (3) is completed.
Equation (5.2) gives that aa] = aa† + a†a − a†a2a†, hence (2) holds.
Since (1 − e)a†(1 − e) = (1 − e)a†eaa†(1 − e) = ((1 − e)a†e)(eaa†(1 − e)) = (eaa†(1 − e))((1 − e)a†e) = 0, we have

a† = ea† + a†e − ea†e = a†aa] + a]aa† − a], which implies that (4) holds.
(5) Noting that a](1− f ), (1− f )a† ∈ N(R) and a† = a† f . Then a](1− f )a† = (1− f )a†a](1− f ) = 0, it follows

that a]a† = a]aa†a†.
(6) Noting that (a−a2a†)2 = 0 = (aa]−a†a)2. Then (aa]−a†a)(a−a2a†) = (a−a2a†)(aa]−a†a). Since (a−a2a†)a =

0, (a − a2a†)(aa] − a†a) = −(a − a2a†)(a†a) = −aa†a + a2a†a†a, by (1), one obtains that (a − a2a†)(aa] − a†a) = 0.
Hence (aa] − a†a)(a − a2a†) = 0, this gives that a = a2a† + a†a2

− a†a3a†. �
We don′t know whether a is EP under the conditions of Theorem 5.2. However, we have the following

theorem.

Theorem 5.3. Let R be a NEC ring and a ∈ R†. If Ra is a minimal left ideal of R, then a is EP.

Proof Since R is NEC and a ∈ R†, by Lemma 5.1, a ∈ R]. If a] = a†aa], then aR = a]R = a†aa] = a†aR = a†R,
one obtains that (1 − a†a)aR = (1 − a†a)a†R = 0, a = a†a2, it follows that a is an EP element. If a] , a†aa],
then, by Theorem 5.2(4), we have a† , a]aa†, so (1 − a]a)a† , 0. Noting that a† = a†aa†. Then (1 − a]a)a†a , 0.
Since Ra is a minimal left ideal of R, Ra = R(1 − a]a)a†a. Write a = c(1 − a]a)a†a for some c ∈ R. Then
Ra† = Raa† = Rc(1 − a]a)a†aa† = Rc(1 − a]a)a†. By Theorem 5.2(4), Ra† = Rc(a†a − 1)a] ⊆ Ra] = Ra. Hence
Ra = Ra†, which implies that a is EP. �

Let a ∈ R] ∩ R† and write χa = {a, a], a†, a∗, (a])∗, (a†)∗}. Then we have the following theorem.
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Theorem 5.4. Let a ∈ R] ∩ R†. Then a is an EP element if and only if the equation

a†axa = ax (5.4)

has at least a solution in χa.

Proof The necessity is clear.
Conversely, we assume that the equation (4.1) has at least a solution in χa.
(1) If x = a is a solution, then a†a3 = a2, this implies a†a = aa]. Hence a is EP.
(2) If x = a] is a solution, then a†aa]a = aa], that is, a†a = aa], so a is EP.
(3) If x = a† is a solution, then a†aa†a = aa†, that is a†a = aa†. Hence a is EP.
(4) If x = a∗ is a solution, then a†aa∗a = aa∗. Noting that a∗ = a†aa∗. Then a∗a = aa∗. Since aR = aa∗R and

a∗R = a∗aR, aR = a∗R, this gives that (1− a†a)aR = (1− a†a)a∗R = 0. Hence a = a†a2, which implies that a is EP.
(5) If x = (a])∗ is a solution, then a†a(a])∗a = a(a])∗, it follows that (a]a†a)∗a = a(a])∗. Noting that a] = a]a†a.

Then (a])∗a = a(a])∗. Applying the involution to the last equation, we have a∗a] = a]a∗, this gives that
Ra∗ = Raa∗ = Ra]a∗ = Ra∗a] ⊆ Ra] = Ra. Noting that a(1 − a†a) = 0. Then a∗(1 − a†a) = 0, this gives that
(1 − a†a)a = 0. Hence a = a†a2, one obtains a is EP.

(6) If x = (a†)∗ is a solution, then a†a(a†)∗a = a(a†)∗, that is, (a†a†a)∗a = a(a†)∗. Applying the involution to
the last equation, we have a†a∗ = a∗a†a†a. Multiplying by a from the left sided, one has (a2a†)∗ = aa∗a†a†a, this
gives that a2a† = a†a(a†)∗aa∗. Hence aR = a2R = a2a†R = a†a(a†)∗aa∗R ⊆ a†R, which implies that (1−a†a)aR = 0.
Hence a is EP. �

References

[1] H. Abu-Khuzam, A. Yaqub, Some conditions for commutativity of rins with constraints on nilpotent elements, Math. Japonica,
2(1980): 549-551.

[2] H. Abu-Khuzam, A. Yaqub, Commutativity and structure of rings with commuting nilpotents, Internat. J. Math. Sci., 6(1983):
119-124.

[3] P. Ara, Extensions of exchange rings, J. Algebra, 197(1997): 409-423.
[4] A. Badawi, On abelian π−regular rings, Comm. Algebra, 25(1997): 1009-1021.
[5] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd., Springer, New York, 2003.
[6] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra,

115(1997): 213-230.
[7] H. Y. Chen, Rings with many idempotents, Intern. J. Math., 22(1999): 547-558.
[8] H. Y. Chen, Excange rings generated by their units, Acta. Math. Since.(English series), 23(2007): 357-364.
[9] W. X. Chen. On EP elements, normal elements and paritial isometries in rings with involution. Electron. J. Linear Algebra,

23(2012): 553-561.
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[11] Dragan S. Djordjević, Products of EP operators on Hilbert spaces, Proc. Amer. Math. Soc., 129(2000): 1727-1731.
[12] M. P. Drazin, Rings with central idempotent or nilpotent elements, Proc. Edinb. Math. Soc., 9(1958): 157-165.
[13] G. Ehrlich, Unit regular rings, Portugal Math., 27(1968): 209-212.
[14] K. R. Goodearl, Ring Theory. Nonsingular Rings and Modules, Pure and Applied Mathematics, 33, Marcel Dekker, Inc., New

York-Basel, 1976
[15] D. Khurana, T. Lam, L. Z. Wang, Rings of square stable range one, J. Algebra, 338(2011): 122-143.
[16] D. Khurana, T. L. Lam, P. Nielsen, Y. Q. Zhou, Uniquely clean elements in rings, Comm. Algebra, 43(2015): 1742-1751.
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