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Abstract. We propose a new notion of contraction mappings for two class of functions involving measure
of noncompactness in Banach space. In this regard we present some theory and results on the existence of
tripled fixed points and some basic Darbo’s type fixed points for a class of operators in Banach spaces. Also
as an application we discuss the existence of solutions for a general system of nonlinear functional integral
equations which satisfy in new certain conditions . Further we give an example to verify the effectiveness
and applicability of our results.

1. Introduction

Measures of noncompactness are very useful and powerful tools in functional analysis, for instance in
the theory of operator equations in Banach spaces and in metric fixed point theory. They are also used in the
studies of ordinary and partial differential equations, functional equations, integral and integro-differential
equations, fractional partial differential equations, optimal control theory, and in the characterizations of
compact operators between Banach spaces. In 1930, Kuratowski [24] introduce the first concept of measure
of noncompactness (MNC). Later on, in 1955, G. Darbo [16] proved a fixed point theorem via the concept
of Kuratowski MNC, which generalizes both the classical Schauder fixed point theorem and a special
variant of Banach contraction principle. In 1957, the other measures of noncompactness were introduced
by Goldenštein, Gohberg, and Markus [20], which was called the ball or Hausdorff MNC. There are some
other definitions of measure of noncompactness which the authors were trying to introduce this definition
in an axiomatic way. At first, it appeared in the paper of Sadovskii [30], but his axiomatics seems to be too
general. In 1980 Banas [11] was introduced another axiomatic measure of noncompactness which was very
useful in applications. Up to now several authors have presented some papers on the existence of solution
for nonlinear integral equations which involves the use of measure of noncompactness and many other
techniques, for instance see [1]-[6] and [7]-[31].

In this paper, we apply the method related to the technique of measures of noncompactness in order
to extend the Darbo’s fixed point theorem [16]. Our results are a generalization of the results of Roshan
[29] from two dimension in to a three dimension version and the results of the paper Karakaya et al. [16]
( with the approach that, the conditions of the related operators of integral equations are generalized. See
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Theorem 4.1) for proving some existence theorems of three dimension fixed points and tripled fixed points
for a class of operators in Banach spaces. Moreover, as an application of this theorems, we study the
problem of existence of solutions for the following class of system of nonlinear integral equations (which
satisfy in new certain conditions).
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2. Preliminaries

In this section, we recall notations, definitions and preliminary facts which are used throughout this
paper. Denote by R the set of real numbers and put R+ = [0,+∞) . Let (E, ‖.‖) be a real Banach space with
zero element 0, and B̄ (x, r) denotes the closed ball in E centered at x with radius r. The symbol B̄r stand for
the ball B̄ (0, r) . If X is a nonempty subset of E, we denote by X, ConvX the closure and the closed convex
hull of X respectively. Moreover, we denote byME the family of nonempty bounded subsets of E and by
NE its subfamily consisting of all relatively compact subsets of E.

In this paper, we will use axiomatically defined measures of noncompactness as presented in the book
[11].

Definition 2.1. ([11]) A mapping µ :ME → [0,∞) is said to be a measure of noncompactness in E if it satisfies the
following condition:

M1 ) The family kerlµ =
{
X ∈ ME, µ (X) = 0

}
is nonempty and kerµ ⊆ NE.

M2 ) If X ⊆ Y then µ (X) = µ (Y) .

M3) µ
(
X
)

= µ (X) .

M4 ) µ (conυX) = µ (X) .

M5) µ (λX + (1 − λ) Y) ≤ λµ (X) + (1 − λ)µ (Y) for any λ ∈ [0, 1) .

M6 ) If (Xn) is a sequence of closed sets fromME such that Xn+1 ⊆ Xn, (n ≥ 1) and limn→∞µ (Xn) = 0, then the
intersection set X∞ = ∩∞n=1 Xn is nonempty.

The family kerµ described in (M1) said to be the kernel of the measure of noncompactness µ. Observe
that the intersection set X∞ from (M6) is a member of the family kerµ. In fact, since µ (X∞) ≤ µ (xn) for any
n, we infer that µ (X∞) = 0. This yields that X∞ ∈ kerµ.

Now we present the definition of a tripled fixed point for a bivariate vector function which we need
in the proof of main results and a useful theorem in [11] related to the construction of a measure of
noncompactness on finite product space.

Definition 2.2. ([15]) An element
(
x, y, z

)
∈ X × X × X is called the tripled fixed point of mapping

T : X × X × X→ X if


T
(
x, y, z

)
= x

T
(
y, x, y

)
= y

T
(
z, y, x

)
= z

. (1)
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Theorem 2.3. ([11]) Suppose thatµ1, µ2, ..., µn be the measures of noncompactness in the Banach spaces E1,E2, ....,En
respectively. Moreover, assume that the function F :[0,∞)n

→ [0,∞) is convex and F (x1, x2, ..., xn) = 0 if and only
if xi = 0 for i = 1, 2, ...,n. Then µ̃ (X) = F

(
µ1 (X) , µ2 (X) , ..., µn (X)

)
define a measure of noncompactness at

E1 × E2 × ....,×En where Xi denotes the projection of X into Ei for i = 1, 2, ...,n.

Theorem 2.4. Suppose thatµ1, µ2, µ3 be the measures of noncompactness in the Banach spaces E1,E2,E3 respectively.
Moreover, assume that the function F :[0,∞)3

→ [0,∞) is convex and F (x1, x2, x3) = 0 if and only if xi = 0 for
i = 1, 2, 3. Then µ̃ (X) = F

(
µ1 (X) , µ2 (X) , µ3 (X)

)
define a measure of noncompactness on E1 × E2 × E3 where Xi

denotes the projection of X into Ei for i = 1, 2, 3.

Example 2.5. Assume that µ be a measure of noncompactness on a Banach space E, consider F
(
x, y, z

)
= x + y + z

for every
(
x, y, z

)
∈ [0,∞)3, then F is convex and if F

(
x, y, z

)
= x + y + z = 0 since x ≥ 0, y ≥ 0, z ≥ 0 thus

x = y = z = 0. So µ̃ (X) = µ (X1) +µ (X2) +µ (X3) is a measures of noncompactness on E×E×E. Which Xi denotes
the projection of X into Ei for i = 1, 2, 3.

Example 2.6. Assume thatµ be a measure of noncompactness on a Banach space E, consider F
(
x, y, z

)
= max

{
x, y, z

}
for every

(
x, y, z

)
∈ [0,∞)3then F is convex and if F

(
x, y, z

)
= max

{
x, y, z

}
= 0 since x ≥ 0, y ≥ 0, z ≥ 0 thus

x = y = z = 0 unto Theorem 2.3 µ̃ (X) = max
{
µ (X1) , µ (X2) , µ (X3)

}
is a measures of noncompactness on E×E×E.

Which Xi denotes the projection of X into Ei for i = 1, 2, 3.

Theorem 2.7. (Schauder[3]) Let Ω be a closed and convex subset of a Banach space E. Then every compact,
continuous map T : Ω→ Ω has at least one fixed point.

Theorem 2.8. (Darbo[8]) Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E and let T :
Ω→ Ω be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that µ (T (X)) ≤ kµ (X) for any
X ⊂ Ω. Then T has a fixed point.

3. Main Results

In this section, we give and prove some theorems for the existence of tripled fixed point to a special
class of operators. This basic result will be used in the next section.

First, we introduce the class Ψ of all functions ψ : R+ × R+ × R+ → R+ which have the following
properties:

(k1) ψ (t1 + t2, s1 + s2, r1 + r2) ≤ ψ (t1, s1, r1) + ψ (t2, s2, r2)
(k2) ψ (t, s, r) = 0 ⇐⇒ t = r = s = 0
(k3)ψ is a lower semicontinuous function onR+×R+×R+ i.e, for every arbitrary sequences {an} , {bn} , {cn}

we have

ψ(lim inf
n→∞

an, lim inf
n→∞

bn, lim inf
n→∞

cn) ≤ lim inf
n→∞

ψ(an, bn, cn).

For example the functions ψ1 (t, s, r) = ln (t + s + r + 1) and ψ2 (t, s, r) = max {t, s, r} belong to Ψ.

Theorem 3.1. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let µ be a measure
of noncompactness. Moreover, assume that T : Ω ×Ω ×Ω→ Ω ×Ω ×Ω be a continuous function satisfying

φ
(
µ̃ (T (X))

)
≤ φ

(
µ̃ (X)

)
− ψ

(
µ̃ (X) , µ̃ (X) , µ̃ (X)

)
(2)

for any nonempty subset X of Ω ×Ω ×Ω, where µ̃ is defined by

µ̃ (X) = F
(
µ1 (X) , µ2 (X) , µ3 (X)

)
,

and φ : R+ → R+ is a continuous mapping and ψ ∈ Ψ. Then T has at least one fixed point in Ω ×Ω ×Ω.
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Proof. By induction we construct the sequence {Ωn ×Ωn ×Ωn}
∞

n=1 such that Ω0 × Ω0 × Ω0 = Ω × Ω × Ω and
Ωn ×Ωn ×Ωn = conνT (Ωn−1 ×Ωn−1 ×Ωn−1) for n = 1, 2, 3, ....

Now we have

T (Ω0 ×Ω0 ×Ω0) = T (Ω ×Ω ×Ω) ⊂ Ω ×Ω ×Ω = Ω0 ×Ω0 ×Ω0,

and

Ω1 ×Ω1 ×Ω1 = conνT (Ω0 ×Ω0 ×Ω0) ⊆ conv Ω0 ×Ω0 ×Ω0 = Ω0 ×Ω0 ×Ω0.

So

Ω2 ×Ω2 ×Ω2 = conνT (Ω1 ×Ω1 ×Ω1) ⊆ conνT (Ω0 ×Ω0 ×Ω0) = Ω1 ×Ω1 ×Ω1

Thus by continuing this process, we obtain

.... ⊂ Ωn ×Ωn ×Ωn ⊂ .... ⊂ Ω2 ×Ω2 ×Ω2 ⊂ Ω1 ×Ω1 ×Ω1.

If there exists an integer number N > 0 such that µ̃ (ΩN ×ΩN ×ΩN) = 0 then ΩN × ΩN × ΩN is relatively
compact and since

T (ΩN ×ΩN ×ΩN) ⊆ conνT (ΩN ×ΩN ×ΩN) = ΩN+1 ×ΩN+1 ×ΩN+1 ⊆ ΩN ×ΩN ×ΩN,

therefore Theorem 2.7 implies that T has a fixed point. So we can assume that µ̃ (Ωn ×Ωn ×Ωn) > 0 for any
n ≥ 0.

By our assumption, we get

φ
(
µ̃ (Ωn+1 ×Ωn+1 ×Ωn+1)

)
= φ

(
µ̃ (conνT (Ωn ×Ωn ×Ωn))

)
= φ

(
µ̃ (Ωn ×Ωn ×Ωn)

)
≤ φ

(
µ̃ (Ωn ×Ωn ×Ωn)

)
−ψ

(
µ̃ (Ωn ×Ωn ×Ωn) , µ̃ (Ωn ×Ωn ×Ωn) , µ̃ (Ωn ×Ωn ×Ωn)

)
.

Since the sequence µ̃ (Ωn ×Ωn ×Ωn) is nonincreasing and non-negative real numbers, thus there is an r ≥ 0 so
that µ̃ (Ωn ×Ωn ×Ωn)→ r as n→∞.

Now from (2) we have

φ (r) = lim sup
n→∞

φ
(
µ̃ (Ωn+1 ×Ωn+1 ×Ωn+1)

)
≤ lim sup

n→∞
φ

(
µ̃ (Ωn ×Ωn ×Ωn)

)
− lim inf

n→∞
ψ

(
µ̃ (Ωn ×Ωn ×Ωn) , µ̃ (Ωn ×Ωn ×Ωn) , µ̃ (Ωn ×Ωn ×Ωn)

)
≤ lim sup

n→∞
φ

(
µ̃ (Ωn ×Ωn ×Ωn)

)
− ψ

(
lim inf

n→∞
µ̃ (Ωn ×Ωn ×Ωn) , lim inf

n→∞
µ̃ (Ωn ×Ωn ×Ωn) , lim inf

n→∞
µ̃ (Ωn ×Ωn ×Ωn)

)
= φ (r) − ψ (r, r, r) .

Consequently ψ (r, r, r) = 0 so r = 0. Therefore we deduce that µ̃ (Ωn ×Ωn ×Ωn) → 0 as n → ∞. Since
Ωn+1 ×Ωn+1 ×Ωn+1 ⊆ Ωn ×Ωn ×Ωn, thus by axiom (M6) of Definition 2.1 we derive that the set Ω∞ ×Ω∞ ×Ω∞ =
∩
∞

n=1Ωn × Ωn × Ωn is a nonempty convex closed set, invariant under the operator T and belongs to Kerµ. Now by
Theorem 2.7 T has at least one fixed point in Ω∞ ×Ω∞ ×Ω∞ and hence in Ω ×Ω ×Ω.
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Theorem 3.2. Let Ω be a closed, bounded, convex and nonempty subset of Banach space E. Moreover, assume that
T : Ω ×Ω ×Ω→ Ω be a continuous function where satisfying at the following condition.

φ
(
µ (T (X1 × X2 × X3))

)
≤

1
3
φ

(
µ (X1) + µ (X2) + µ (X3)

)
− ψ

(
µ (X1) , µ (X2) , µ (X3)

)
(3)

for every X1,X2,X3 ⊆ Ω where φ : R+ → R+ is a continuous and linear function and for every t, s ∈ R+, and
ψ ∈ Ψ. Then T has a tripled fixed point.

Proof. First note that Example 2.5 show that µ̃ (X) = µ (X1) +µ (X2) +µ (X3) is a measure of noncompactness in the
space E×E×E.Where Xi, i = 1, 2, 3 denoted the natural projections of X into E.Now define T̃ on the Ω×Ω×Ω by
the formula T̃

(
x, y, z

)
=

(
T
(
x, y, z

)
,T

(
y, z, x

)
,T

(
z, x, y

))
, for every

(
x, y, z

)
∈ Ω ×Ω ×Ω. Since T is continuous

so T̃ is continuous on Ω × Ω × Ω. We claim that T̃ satisfies all the condition of Theorem 3.1. To prove this, let
X ⊂ Ω ×Ω ×Ω be a nonempty subset. Then by (M2) and (3) we get

φ
(
µ̃
(

T̃ (X)
))
≤ ψ

(
µ̃ (T (X1 × X2 × X3) ,T(X2 × X3 × X1) ,T(X3 × X1 × X2

)
)

= φ
(
µ (X1 × X2 × X3) + µ (X2 × X3 × X1) + µ (X3 × X1 × X2)

)
= φ

(
µ (T (X1 × X2 × X3))

)
+ φ

(
µ (T(X2 × X3 × X1))

)
+ φ

(
µ (T(X3 × X1 × X2))

)
≤

1
3
φ

((
µ (X1) + µ (X2) + µ (X3)

))
− ψ

(
µ (X1) , µ (X2) , µ (X3)

)
+

1
3
φ

((
µ (X1) + µ (X2) + µ (X3)

))
− ψ

(
µ (X2) , µ (X3) , µ (X1)

)
+

1
3
φ

((
µ (X1) + µ (X2) + µ (X3)

))
− ψ

(
µ (X3) , µ (X1) , µ (X2)

)
= φ

(
µ (X1) + µ (X2) + µ (X3)

)
−

[
ψ

(
µ (X1) , µ (X2) , µ (X3)

)
+ ψ

(
µ (X2) , µ (X3) , µ (X1)

)
+ψ

(
µ (X3) , µ (X1) , µ (X2)

) ]
≤ φ

(
µ (X1) + µ (X2) + µ (X3)

)
− ψ

(
µ (X1) + µ (X2) + µ (X3) , µ (X2) + µ (X3) + µ (X1) ,

µ (X3) + µ (X1) + µ (X2)

)
= φ

(
µ̃ (X)

)
− ψ

(
µ̃ (X) , µ̃ (X) , µ̃ (X)

)
.

So we get

φ
(
µ̃
(

T̃ (X)
))
≤ φ

(
µ̃ (X)

)
− ψ

(
µ̃ (X) , µ̃ (X) , µ̃ (X)

)
hence, by using Theorem 3.1 T has at least one tripled fixed point.

Corollary 3.3. Let Ω be a nonempty, closed, bounded and convex subset of Banach space E and µ be a measure of
noncompactness. Moreover, assume that

T : Ω ×Ω ×Ω→ Ω is a continuous function such that there exist nonnegative constant k with 0 < k < 1
3 . If

µ (T(X1 × X2 × X3)) ≤ kµ (X1 × X2 × X3) ,

for every X1,X2,X3 ⊆ Ω. Then T has at least one tripled fixed point.

Proof. Taking φ (t) = t , t > 0 and ψ (t, s, r) = 1−3k
3 (s + t + r) in Theorem 3.2 we obtain the desired result.
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Corollary 3.4. Let Ω be a nonempty, closed, bounded and convex subset of Banach space E and µ be an arbitrary
measure of noncompactness. Moreover, assume that

T : Ω × Ω × Ω → Ω is a continuous function such that there exist nonnegative constants k1, k2, k3 such that
k1 + k2 + k3 < 1. If

µ (T(X1 × X2 × X3)) ≤
k1

3
µ (X1) +

k2

3
µ (X2) +

k3

3
µ (X3)

for every X1,X2,X3 ⊆ Ω. Then T has at least one tripled fixed point.

Proof. Taking φ (t) = t , t > 0 and ψ (t, s, r) =
(

1−k1
3

)
t +

(
1−k2

3

)
s +

(
1−k3

3

)
r in Theorem 3.2 we conclude that T has at

least one tripled fixed point in Ω ×Ω ×Ω.

Corollary 3.5. Let Ω be a nonempty, closed, bounded and convex subset of Banach space E and µ be a arbitrary
measure of noncompactness. Moreover, assume that

T : Ω ×Ω×Ω→ Ω is a continuous function and there exists a nonnegative constant k with 0 < k < 1 such that

µ (T(X1 × X2 × X3)) ≤ k max
{
µ (X1) , µ (X2) , µ (X3)

}
for every X1,X2,X3 ⊆ Ω.
Then T has a tripled fixed point i.e.

T
(
x, y, z

)
= x

T
(
y, x, y

)
= y

T
(
z, y, x

)
= z

.

Proof. Taking φ (t) = t , t > 0 and ψ (t, s, r) = (1 − k) max {t, s, r} in Theorem 3.2 we conclude that T has at least one
tripled fixed point in Ω ×Ω ×Ω.

Corollary 3.6. Let Ω be a nonempty, closed, bounded and convex subset of Banach space E and µ be a arbitrary
measure of noncompactness. Moreover, assume that T : Ω ×Ω ×Ω→ Ω is a continuous function such that there
exists a nonnegative constants k1, k2, k3 such that k1 + k2 + k3 < 1. If

µ (T(X1 × X2 × X3)) ≤ k1µ (X1) + k2µ (X2) + k3µ (X3) ,

for every X1,X2,X3 ⊆ Ω. Then T has at least a tripled fixed point.

Proof. It should be noted that

µ (T (X1 × X2 × X3))
≤ k1µ (X1) + k2µ (X2) + k3µ (X3)
≤ k1 max

{
µ (X1) , µ (X2) , µ (X3)

}
+ k2 max

{
µ (X1) , µ (X2) , µ (X3)

}
+ k3 max

{
µ (X1) , µ (X2) , µ (X3)

}
= (k1 + k2 + k3) max

{
µ (X1) , µ (X2) , µ (X3)

}
= k max

{
µ (X1) , µ (X2) , µ (X3)

}
where k = k1 + k2 + k3 < 1. Now from Corollary (3.5), T has at least one tripled fixed point.

Corollary 3.7. Let Ω be a nonempty, closed, bounded and convex subset of Banach space E and µ be an arbitrary
measure of noncompactness. Moreover, assume that

T : Ω ×Ω ×Ω→ Ω is a continuous function such that

µ (T (X1 × X2 × X3)) ≤
µ (X1) + µ (X2) + µ (X3)

3
− ln

(
µ (X1) + µ (X2) + µ (X3) + 1

)
for every X1,X2,X3 ⊆ Ω. Then T has at least one tripled fixed point in Ω ×Ω ×Ω.
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Proof. Taking φ (t) = t, t > 0 and ψ (s, t, r) = ln (s + t + r + 1) and using Theorem 3.2 we conclude that T has one
tripled fixed point in Ω ×Ω ×Ω.

In this part of the paper we will introduce another class of functions and in this direction, we present
some tripled fixed point theorem.

First, we consider the usual order relation“4“ on R+ ×R+ ×R+ as follows :

(s1, t1, r1) 4 (s2, t2, r2)⇐⇒ s1 ≤ s2, t1 ≤ t2, r1 ≤ r2

for every s1, t1, r1, s2, t2, r2, s3, t3, r3 ∈ R+.
Now we denote by Φ, the class of all functions φ : R+ ×R+ ×R+ → R+ with the following properties:

ϕ1) φ is continuous and nondecreasing function on R+ ×R+ ×R+.

ϕ2) φ (t, t, t) < t for every t > 0.

ϕ3) 1
3

[
φ (s1, t1, r1) + φ (s2, t2, r2) + φ (s3, t3, r3)

]
≤ φ

(
s1+s2+s3

3 , t1+t2+t3
3 , r1+r2+r3

3

)
for every s1, t1, r1, s2, t2, r2, s3, t3, r3 ∈ R+.

For example the functions φ1 (s, t, r) = ln
(
1 + s+t+r

3

)
and φ2 (s, t, r) = k1t + k2s + k3r where k1, k2, k3 ∈ R+

and k1 + k2 + k3 < 1 belong to Φ.

Theorem 3.8. Let Ω be a closed, bounded, convex and nonempty subset of Banach space E. Moreover, assume that
T: Ω ×Ω×Ω→Ω ×Ω×Ω be a continuous function where satisfying at the following condition

µ̃ ( T (X)) ≤ φ
(
µ̃ (X) , µ̃ (X) , µ̃ (X)

)
for every nonempty subset X of Ω ×Ω ×Ω and also µ̃ as µ̃ (X) = F

(
µ (X1) , µ (X2) , µ (X3)

)
and φ ∈ Φ. Then T

has at least one fixed point in Ω ×Ω ×Ω.

Proof. By induction we construct the sequence {Ωn ×Ωn ×Ωn}
∞

n=1 such that Ω0 × Ω0 × Ω0 = Ω × Ω × Ω and
Ωn ×Ωn ×Ωn = conνT (Ωn−1 ×Ωn−1 ×Ωn−1) for n = 1, 2, 3, ....

Similar to the proof of Theorem 3.1 we obtain

... ⊂ Ωn ×Ωn ×Ωn ⊂ .... ⊂ Ω2 ×Ω2 ×Ω2 ⊂ Ω1 ×Ω1 ×Ω1.

If there exists an integer number N > 0 such that µ̃ (ΩN ×ΩN ×ΩN) = 0 then ΩN × ΩN × ΩN is relatively
compact and since

. . .T (ΩN ×ΩN ×ΩN) ⊆ conνT (ΩN ×ΩN ×ΩN) = ΩN+1 ×ΩN+1 ×ΩN+1 ⊆ ΩN ×ΩN ×ΩN,

therefore Theorem 2.7 implies that T has a fixed point. So we can assume that
µ̃ (ΩN ×ΩN ×ΩN) > 0 for any n ≥ 0. By our assumption, we get

µ̃(Ωn+1 ×Ωn+1 ×Ωn+1) = µ̃ (conνT (Ωn ×Ωn ×Ωn))
= µ̃ (Ωn ×Ωn ×Ωn)

≤ φ

(
µ̃ (Ωn ×Ωn ×Ωn) , µ̃ (Ωn ×Ωn ×Ωn) ,

µ̃ (Ωn ×Ωn ×Ωn)

)
.

Since the sequence µ̃ (Ωn ×Ωn ×Ωn) is nonincreasing and nonnegative real numbers, thus, there is an r ≥ 0 so
that µ̃ (Ωn ×Ωn ×Ωn)→ r as n→∞. We claim that r = 0. On the contrary if r > 0

then we obtain
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r = lim
n→∞

µ̃(Ωn+1 ×Ωn+1 ×Ωn+1)

≤ φ
(

lim
n→∞

µ̃ (Ωn ×Ωn ×Ωn) , lim
n→∞

µ̃ (Ωn ×Ωn ×Ωn) , lim
n→∞

µ̃ (Ωn ×Ωn ×Ωn)
)

= φ (r, r, r) < r.

Which is a contradiction. Hence µ̃ (Ωn ×Ωn ×Ωn) = 0.
Then Ωn ×Ωn ×Ωn is relatively compact. On the other hand, Ωn+1 ×Ωn+1 ×Ωn+1 ⊆ Ωn ×Ωn ×Ωn thus by

axiom (M6) of Definition 2.1 we derive that the set Ω∞ × Ω∞ × Ω∞ = ∩∞n=1Ωn × Ωn × Ωn is a nonempty closed
convex set, invariant under the operator T and belongs to Kerµ. Now by Theorem 2.7 T has at least one fixed point in
Ω∞ ×Ω∞ ×Ω∞ and hence in Ω ×Ω ×Ω.

Theorem 3.9. Let Ω be a closed, bounded, convex and nonempty subset of Banach space E and µ be an arbitrary
measure of noncompactness. Moreover, assume that Ti: Ω ×Ω×Ω→Ω, i = 1, 2, 3 are continuous functions where
satisfying at the following condition:

µ (T1 (X1 × X2 × X3)) ≤ φ
(
µ (X1) , µ (X2) , µ (X3)

)
µ (T2 (X2 × X3 × X1)) ≤ φ

(
µ (X2) , µ (X3) , µ (X1)

)
µ (T3 (X3 × X1 × X2)) ≤ φ

(
µ (X3) , µ (X1) , µ (X2)

)
for all X1,X2,X3 ⊆ Ω, where φ ∈ Φ. Then there exist x∗, y∗, z∗ such that

T1(x∗, y∗, z∗) = x∗

T2(y∗, z∗, x∗) = y∗

T3(z∗, x∗, y∗) = z∗
.

Proof. First µ̃ (X) = µ (X1) + µ (X2) + µ (X3) is a measure of noncompactness in E × E × E which Xi, i = 1, 2, 3 is
natural projection of X into E. Now we define T̃ :Ω ×Ω ×Ω→ Ω ×Ω ×Ω with the following:

T̃
(
x, y, z

)
=

(
T1

(
x, y, z

)
,T2(y, z, x

)
,T3

(
z, x, y

)
)

for every
(
x, y, z

)
∈ Ω ×Ω ×Ω. It is easy to see that T̃ is continuous on Ω ×Ω ×Ω. We claim that T̃ satisfying

in all condition of the Theorem 3.8. For this, assume that X ⊂ Ω ×Ω ×Ω be a nonempty subset. Then the condition
(M2) of Definition 2.1 and Theorem 3.8 imply that :

µ̃
(
T̃ (X)

)
≤ µ̃ (T1 (X1 × X2 × X3) ,T2(X2 × X3 × X1) ,T3(X3 × X1 × X2))

= µ
(
T1 (X1 × X2 × X3)) + µ(T2(X2 × X3 × X1

)
) + µ(T3(X3 × X1 × X2))

≤ φ
(
µ (X1) , µ (X2) , µ (X3)

)
+ φ

(
µ (X2) , µ (X3) , µ (X1)

)
+ φ

(
µ (X3) , µ (X1) , µ (X2)

)
≤ 3φ

(
µ (X1) + µ (X2) + µ (X3)

3
,
µ (X1) + µ (X2) + µ (X3)

3
,
µ (X1) + µ (X2) + µ (X3)

3

)
.

Now suffice we chose that µ̃′ = 1
3 µ̃, we get

µ̃
′
(
T̃ (X)

)
≤ φ

(
µ̃
′

(X) , µ̃
′

(X) , µ̃
′

(X)
)
.

Since µ̃′ is a measure of noncompactness, so by Theorem 3.8 T̃ has at least a fixed point i.e. there exist
(
x∗, y∗, z∗

)
∈

Ω ×Ω ×Ω such that
T1(x∗, y∗, z∗) = x∗

T2(y∗, z∗, x∗) = y∗

T3(z∗, x∗, y∗) = z∗
.
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Corollary 3.10. Let Ω be a nonempty, closed, bounded and convex subset of Banach space E, and µ be an arbitrary
measure of noncompactness. Moreover, assume that Ti: Ω ×Ω×Ω→Ω, i = 1, 2, 3 are continuous functions where
satisfying at the following condition:

µ (T1(X1 × X2 × X3)) ≤ k1µ (X1) + k2µ (X2) + k3µ (X3) ,
µ (T2(X2 × X3 × X1)) ≤ k1µ (X2) + k2µ (X3) + k3µ (X1) ,
µ (T3(X3 × X1 × X2)) ≤ k1µ (X3) + k2µ (X1) + k3µ (X2) ,

for each X1,X2,X3 ⊆ Ω, where k1, k2, k3 are nonnegative constants such that k1 + k2 + k3 < 1.
Then there exist

(
x∗, y∗, z∗

)
∈ Ω ×Ω ×Ω such that

T1(x∗, y∗, z∗) = x∗

T2(y∗, z∗, x∗) = y∗

T3(z∗, x∗, y∗) = z∗
.

Proof. Taking φ (s, t, r) = k1t + k2s + k3r in Theorem 3.9, we obtain the desired conclusion.

Corollary 3.11. Let Ω be a nonempty, closed, bounded and convex subset of Banach space E, and µ be a arbitrary
measure of noncompactness. Moreover, assume that Ti: Ω ×Ω×Ω→Ω, i = 1, 2, 3 are continuous functions where
satisfying at the following condition:

µ (T1(X1 × X2 × X3)) ≤ ln
(
1 +

µ (X1) + µ (X2) + µ (X3)
3

)
,

µ (T2(X2 × X3 × X1)) ≤ ln
(
1 +

µ (X1) + µ (X2) + µ (X3)
3

)
,

µ (T3(X3 × X1 × X2)) ≤ ln
(
1 +

µ (X1) + µ (X2) + µ (X3)
3

)
.

for every X1,X2,X3 ⊆ Ω. Then there exist
(
x∗, y∗, z∗

)
∈ Ω ×Ω ×Ω such that

T1(x∗, y∗, z∗) = x∗

T2(y∗, z∗, x∗) = y∗

T3(z∗, x∗, y∗) = z∗
.

Proof. Takingφ (s, t, r) = ln
(
1 + s+t+r

3

)
in Theorem 3.9, we obtain the desired conclusion.

Now, we present a three-dimension version of Corollary 3.5 in Aghajani et al. [5]

Corollary 3.12. Let Ω be a nonempty, closed, bounded and convex subset of Banach space E and let Fi : Ω ×Ω×Ω −→
E for i = 1, 2, 3 are operators such that∥∥∥F1

(
x, y, z

)
− F1 (u, v,w)

∥∥∥ ≤ φ
(
‖x − u‖ ,

∥∥∥y − v
∥∥∥ , ‖z − w‖

)
,∥∥∥F2

(
y, z, x

)
− F2 (v,w,u)

∥∥∥ ≤ φ
(∥∥∥y − v

∥∥∥ , ‖z − w‖ , ‖x − u‖
)
,∥∥∥F2

(
z, x, y

)
− F2 (w,u, v)

∥∥∥ ≤ φ
(
‖z − w‖ , ‖x − u‖ ,

∥∥∥y − v
∥∥∥) .

Assume that Gi : Ω ×Ω ×Ω −→ E be continuous and compact operators and the operators
Ti : Ω ×Ω ×Ω −→ Ω for i = 1, 2, 3 defined as the following∥∥∥T1

(
x, y, z

)
− T1 (u, v,w)

∥∥∥ ≤

∥∥∥F1
(
x, y, z

)
− F1 (u, v,w)

∥∥∥ + ψ
(∥∥∥G1

(
x, y, z

)
− G1 (u, v,w)

∥∥∥)∥∥∥T2
(
y, z, x

)
− T2 (v,w,u)

∥∥∥ ≤

∥∥∥F2
(
y, z, x

)
− F2 (v,w,u)

∥∥∥ + ψ
(∥∥∥G2

(
y, z, x

)
− G2 (v,w,u)

∥∥∥)∥∥∥T2
(
z, x, y

)
− T2 (w,u, v)

∥∥∥ ≤

∥∥∥F2
(
z, x, y

)
− F2 (w,u, v)

∥∥∥ + ψ
(∥∥∥G2

(
z, x, y

)
− G2 (w,u, v)

∥∥∥)
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where φ ∈ Φ and ψ : R+ −→ R+ is a continuous and nondecreasing function and ψ (0) = 0.
Then there exist

(
x∗, y∗, z∗

)
∈ Ω ×Ω ×Ω such that

T1(x∗, y∗, z∗) = x∗

T2(y∗, z∗, x∗) = y∗

T3(z∗, x∗, y∗) = z∗
.

Proof. Assume that X1,X2,X3 are the subset of Ω. From the definition of Kuratowski measure of noncompactness for
every ε > 0, conclusion that there exist A1,A2, ...,An,B1,B2, ...,Bn and C1,C2, ...,Cn such that

X1 × X2 × X3 ⊂ ∪
n
k=1Ak

X2 × X3 × X1 ⊂ ∪
n
k=1Bk

X3 × X1 × X2 ⊂ ∪
n
k=1Ck

and

diam (F1 (Ak)) ≤ α (F1 (X1 × X2 × X3)) + ε,

diam (G1 (Ak)) < ε, (4)

diam (F2 (Bk)) ≤ α (F2 (X1 × X2 × X3)) + ε,

diam (G2 (Bk)) < ε, (5)

diam (F3 (Ck)) ≤ α (F (X1 × X2 × X3)) + ε,

diam (G3 (Ck)) < ε. (6)

Let k ∈ {1, 2, . . .n} be arbitrary. Then for every a1, a2 ∈ Ak, b1, b2 ∈ Bk and c1, c2 ∈ Ck we have

‖T1 (a1) − T1 (a2)‖ ≤ ‖F1 (a1) − F1 (a2)‖ + ψ (‖G1 (a1) − G1 (a2)‖) ,
‖T2 (b1) − T2 (b2)‖ ≤ ‖F2 (b1) − F2 (b2)‖ + ψ (‖G2 (b1) − G2 (b2)‖) ,
‖T3 (c1) − T3 (c2)‖ ≤ ‖F3 (c1) − F3 (c2)‖ + ψ (‖G3 (c1) − G3 (c2)‖) ,

therefore from the properties ψ we obtain

diam (T1 (Ak)) ≤ diam (F1 (Ak)) + ψ (diam (G1 (Ak))) ,
diam (T2 (Bk)) ≤ diam (F2 (Bk)) + ψ (diam (G2 (Bk))) ,
diam (T3 (Ck)) ≤ diam (F3 (Ck)) + ψ (diam (G3 (Ck))) .

Hence from (4), (5) and (6)

diam (T1 (Ak)) ≤ α (F1 (X1 × X2 × X3)) + ε + ψ (ε) ,
diam (T2 (Bk)) ≤ α (F2 (X2 × X3 × X1)) + ε + ψ (ε) ,
diam (T2 (Ck)) ≤ α (F3 (X3 × X1 × X2)) + ε + ψ (ε) .

Since ε is arbitrary and φ is a continuous and nondecreasing function thus

α (T1 (X1 × X2 × X3)) ≤ α (F1 (X1 × X2 × X3)) ,
α (T2 (X2 × X3 × X1)) ≤ α (F2 (X2 × X3 × X1)) , (7)
α (T3 (X3 × X1 × X2)) ≤ α (F3 (X3 × X1 × X2)) .

Now we show that F satisfying in the following condition

α (F1 (X1 × X2 × X3)) ≤ φ
(
µ (X1) , µ (X2) , µ (X3)

)
,

α (F2 (X2 × X3 × X1)) ≤ φ
(
µ (X2) , µ (X3) , µ (X1)

)
, (8)

α (F3 (X3 × X1 × X2)) ≤ φ
(
µ (X3) , µ (X1) , µ (X2)

)
.
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For this, let x,u ∈ X1, y, v ∈ X2, z,w ∈ X3 then we have∥∥∥F1
(
x, y, z

)
− F1 (u, v,w)

∥∥∥ ≤ φ
(
‖x − u‖ ,

∥∥∥y − v
∥∥∥ , ‖z − w‖

)
≤ φ (diam (X1) , diam (X2) , diam (X3)) ,∥∥∥F2

(
y, z, x

)
− F2 (v,w,u)

∥∥∥ ≤ φ
(∥∥∥y − v

∥∥∥ , ‖z − w‖ , ‖x − u‖
)

≤ φ (diam (X2) , diam (X3) , diam (X1)) ,∥∥∥F3
(
z, x, y

)
− F3 (w,u, v)

∥∥∥ ≤ φ
(
‖z − w‖ , ‖x − u‖ ,

∥∥∥y − v
∥∥∥)

≤ φ (diam (X3) , diam (X1) , diam (X2)) ,

and therefore

diam {F1 (X1 × X2 × X3)} ≤ φ (diam (X1) , diam (X2) , diam (X3)) ,
diam {F2 (X2 × X3 × X1)} ≤ φ (diam (X2) , diam (X3) , diam (X1)) ,
diam {F3 (X3 × X1 × X2)} ≤ φ (diam (X3) , diam (X1) , diam (X2)) ,

By definition of Kuratowski measure of noncompactness we have:

α (F1 (X1 × X2 × X3)) ≤ φ
(
µ (X1) , µ (X2) , µ (X3)

)
,

α (F2 (X2 × X3 × X1)) ≤ φ
(
µ (X2) , µ (X3) , µ (X1)

)
,

α (F3 (X3 × X1 × X2)) ≤ φ
(
µ (X3) , µ (X1) , µ (X2)

)
.

Now from (7) and (8)

α (T1 (X1 × X2 × X3)) ≤ φ
(
µ (X1) , µ (X2) , µ (X3)

)
,

α (T2 (X2 × X3 × X1)) ≤ φ
(
µ (X2) , µ (X3) , µ (X1)

)
,

α (T3 (X3 × X1 × X2)) ≤ φ
(
µ (X3) , µ (X1) , µ (X2)

)
.

Since each Ti is continuous operator for i = 1, 2, 3, so by the Theorem 3.9 the proof is complete.

4. Applications and Examples

Now we are going to describe some measure of noncompactness in the function space BC (R+) discussed
previously. Let us briefly recall that BC (R+) denotes the space of all real functions defined, continuous and
bounded onR+ with the standard supremum norm, i.e.

‖x‖ = sup {|x (t)| : t ≥ 0} .

We will use a measure of noncompactness in the space BC (R+). In order to define this measure let us
fix a nonempty bounded subset of BC (R+), this means that X ∈ MBC(R+). Fix numbers ε > 0, T > 0 and a
function x ∈ X. Let us define the following quantity denote by ωT (x, ε) the modulus of continuity of x on
the interval [0,T] , i.e.

ωT (x, ε) = sup {|x (t) − x (s)| : t, s ∈ [0,T] , |t − s| ≤ ε} .

Moreover, let us put ωT (X, ε) = sup
{
ωT (x, ε) : x ∈ X

}
is the modulus of quantity of the set X. Since the

function ε −→ ωT (X, ε) is nondecreasing, we infer that there exists a finite limit lim
ε→0

ωT (X, ε) .We denote this

limit by ωT
0 (X) , i.e., we put

ωT
0 (X) = lim

ε→0
ωT (X, ε) .
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Next, let us define the quantity ω0 (X) by putting ω0 (X) = lim
T→∞

ωT
0 (X) . If t is a fixed number fromR+, let

us denote

X (t) = {x (t) : x ∈ X} .

Notice that the quantity ω0 (X) is not a measure of noncompactness in the space BC (R+) . To show this
fact, let us take the set X={xn : n = 1, 2, ...} ,where xn : R+ −→ R is the function defined in the following way

xn (t) =

{
sinπ (t + n − 1) for t ∈ [n − 1,n]

0 otherwise.

Obviously X ∈ MBC(R+). Moreover, it is easily seen that ω0 (X) = 0, but X is not relatively compact in
BC (R+) since ‖xn − xm‖ = 1 for m , n,n,m = 1, 2,. . . (See [10], page 6).

Finally, consider the function µ defined on MBC(R+) by formula

µ (X) = ω0 (X) + lim sup
t−→∞

diamX (t) (9)

where

diamX (t) = sup
{∣∣∣x (t) − y (t)

∣∣∣ : x, y ∈ X
}
.

It is shown that the function µ (X) defines a sublinear measure of noncompactness in the sense of
accepted Definition 2.1.

Now we present an application and an example and resolve the following system of nonlinear integral
equations:

x (t) = A1 (t) + h1
(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t))

)
+ f1

(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t)) ,

ϕ(
∫ β1(t)

0 11
(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)

y (t) = A2 (t) + h2
(
t, y (ξ2 (t)) , z (ξ2 (t)) , x (ξ2 (t))

)
+ f2

(
t, y (ξ2 (t)) , z (ξ2 (t)) , x (ξ2 (t)) ,

ϕ(
∫ β2(t)

0 12
(
t, s, y

(
η2 (s)

)
, z

(
η2 (s)

)
, x

(
η2 (s)

))
ds

)

z (t) = A3 (t) + h3
(
t, z (ξ3 (t)) , x (ξ3 (t)) , y (ξ3 (t))

)
+ f3

(
t, z (ξ3 (t)) , x (ξ3 (t)) , y (ξ3 (t)) ,

ϕ(
∫ β3(t)

0 13
(
t, s, z

(
η3 (s)

)
, x

(
η3 (s)

)
, y

(
η3 (s)

))
ds

)
.

(10)

For this consider the following assumptions:

(i) the functions Ai (t) : R+ −→ R are continuous and bounded with Mi = sup {|Ai (t)| : t ∈ R+} .

(ii) the functions ξi, βi, ηi : R+ −→ R+ are continuous and ξi (t) −→ ∞ as t −→ ∞.

(iii) the function ϕ : R+ −→ R is continuous and there are positive constants α, δ such that∣∣∣ϕ (t1) − ϕ (t2)
∣∣∣ ≤ δ |t1 − t2|

α

for any t1, t2 ∈ R+ and moreover, ϕ (0) = 0.

(iv) the functions defined by t −→
∣∣∣ fi (t, 0, 0, 0, 0)

∣∣∣ and t −→ |hi (t, 0, 0, 0)| are bounded on R+, i.e.

M
′

i = sup
{∣∣∣ fi (t, 0, 0, 0, 0)

∣∣∣ , t ∈ R+

}
< ∞,

M
′′

i = sup {|hi (t, 0, 0, 0)| , t ∈ R+} < ∞.



H. Nasiri, J.R. Roshan / Filomat 32:17 (2018), 5969–5991 5981

(v) the functions fi : R+ ×R ×R ×R ×R −→ R and hi : R+ ×R ×R ×R −→ R are continuous and

there is a function φ ∈ Φ, and there are three nondecreasing continuous functions θi : R+ −→ R

with θi (0) = 0 such that

∣∣∣hi
(
t, x, y, z

)
− hi (t,u, v,w)

∣∣∣ ≤ 1
2
φ

(
|x − u| ,

∣∣∣y − v
∣∣∣ , |z − w|

)
and∣∣∣ f i
(
t, x, y, z, p

)
− fi

(
t,u, v,w, q

)∣∣∣ ≤ 1
2
φ

(
|x − u| ,

∣∣∣y − v
∣∣∣ , |z − w|

)
+ θi

(∣∣∣p − q
∣∣∣)

for any t ≥ 0, and for all x, y, z,u, v,w ∈ R+.

(vi) the functions 1i : R+ ×R+ ×R ×R ×R −→ R are continuous function such that

lim
t−→∞

∫ βi(t)

0

∣∣∣1i
(
t, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
− 1i

(
t, s,u

(
η (s)

)
, v

(
η (s)

)
,w

(
η (s)

))∣∣∣ ds = 0 (11)

uniformly with respect to x, y, z,u, v,w ∈ BC (R+) , where

M
′′′

i = sup


∣∣∣∣∣∣
∫ βi(t)

0
1i

(
t, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

∣∣∣∣∣∣
α

, t ∈ R+, x, y, z ∈ BC (R+)

 .
(vii) there exists a positive solution ρ of the inequality

Mi + φi (r, r, r) + M
′

i + M
′′

i + θi

(
δiM

′′′

i

)
< ρ. (12)

Theorem 4.1. Suppose that the conditions (i)-(vii) holds. Then E.q.(10) has at least one solution
in the space BC (R+) × BC (R+) × BC (R+) .

Proof. Consider the following three operators

T1
(
x, y, z

)
= A1 (t)+h1

(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t))

)
+ f1

(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t)) ,

ϕ(
∫ β1(t)

0 11
(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)
,

T2
(
x, y, z

)
= A2 (t)+h2

(
t, y (ξ2 (t)) , z (ξ2 (t)) , x (ξ2 (t))

)
+ f2

(
t, y (ξ2 (t)) , z (ξ2 (t)) , x (ξ2 (t)) ,

ϕ(
∫ β2(t)

0 12
(
t, s, y

(
η2 (s)

)
, z

(
η2 (s)

)
, x

(
η2 (s)

))
ds

)
,

T3
(
x, y, z

)
= A3 (t)+h3

(
t, z (ξ3 (t)) , x (ξ3 (t)) , y (ξ3 (t))

)
+ f3

(
t, z (ξ3 (t)) , x (ξ3 (t)) , y (ξ3 (t)) ,

ϕ(
∫ β3(t)

0 13
(
t, s, z

(
η3 (s)

)
, x

(
η3 (s)

)
, y

(
η3 (s)

))
ds

)
.

Since the proof is similar for all of three operators T1,T2, and T3, so we present it for one of the operators e.g. T1.
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First, since A1, f1, h1 are continuous. Then the operator T1 is continuous. Moreover for x, y, z ∈ BC (R+)

∣∣∣T1
(
x, y, z

)∣∣∣ =

∣∣∣∣∣∣∣∣∣
A1 (t) + h1

(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t))

)
+ f1

(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t)) ,

ϕ(
∫ β1(t)

0 11
(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

) ∣∣∣∣∣∣∣∣∣
≤ |A1 (t)| +

∣∣∣h1
(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t))

)
− h1 (t, 0, 0, 0)

∣∣∣
+


∣∣∣∣∣∣∣ f 1

 t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t)) ,

ϕ
(∫ β1(t)

0 1i
(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)  − f1 (t, 0, 0, 0, 0)

∣∣∣∣∣∣∣


+ |h1 (t, 0, 0, 0)| +
∣∣∣ f1 (t, 0, 0, 0, 0)

∣∣∣
≤M1 +

1
2
φ

(
|x (ξ1 (t))| ,

∣∣∣y (ξ1 (t))
∣∣∣ , |z (ξ1 (t))|

)
+

1
2
φ

(
|x (ξ1 (t))| ,

∣∣∣y (ξ1 (t))
∣∣∣ , |z (ξ1 (t))|

)
+ θ1

(∣∣∣∣∣∣ϕ
(∫ β1(t)

0
11

(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)∣∣∣∣∣∣
)

+ M
′

1 + M
′′

1

≤M1 + M
′

1 + M
′′

1 + φ
(
‖x‖ ,

∥∥∥y
∥∥∥ , ‖z‖)

+ θ1

∣∣∣∣∣∣ϕ
(∫ β1(t)

0
11

(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)∣∣∣∣∣∣
α

≤M1 + M
′

1 + M
′′

1 + φ
(
‖x‖ ,

∥∥∥y
∥∥∥ , ‖z‖) + θ1

(
δ1M

′′′

1

)
< ρ.

Hence T1

(
Bρ × Bρ × Bρ

)
⊆ B, which implies that T1 is well defined.

Now we prove that T1 is continuous on Bρ × Bρ × B. For this taking
(
x, y, z

)
∈ Bρ × Bρ × Bρ and ε > 0 arbitrary.

Moreover, consider (u, v,w) ∈ Bρ × Bρ × Bρ with
∥∥∥(x, y, z) − (u, v,w)

∥∥∥
BC(R+)×BC(R+)×BC(R+) <

ε
2 .

Now we have∣∣∣T1
(
x, y, z

)
− T1 (u, v,w)

∣∣∣ ≤ ∣∣∣∣∣ h1
(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t))

)
−h1 (t,u (ξ1 (t)) , v (ξ1 (t)) ,w (ξ1 (t)))

∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣
f1

(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t)) ,

ϕ(
∫ β1(t)

0 11
(
t, s, x

(
η1 (t)

)
, y

(
η1 (t)

)
, z

(
η1 (t)

))
ds

)
− f1

(
t,u (ξ1 (t)) , v (ξ1 (t)) ,w (ξ1 (t)) ,

ϕ(
∫ β1(t)

0 11
(
t, s,u

(
η1 (t)

)
, v

(
η1 (t)

)
,w

(
η1 (t)

))
ds

)
∣∣∣∣∣∣∣∣∣∣∣∣

≤
1
2
φ

(
|x (ξ1 (t)) − u (ξ1 (t))| ,

∣∣∣y (ξ1 (t)) − v (ξ1 (t))
∣∣∣ ,

|z (ξ1 (t)) − w (ξ1 (t))|

)
+

1
2
φ

(
|x (ξ1 (t)) − u (ξ1 (t))| ,

∣∣∣y (ξ1 (t)) − v (ξ1 (t))
∣∣∣ ,

|z (ξ1 (t)) − w (ξ1 (t))|

)

+ θ1


∣∣∣∣∣∣∣∣∣
ϕ1

(∫ β1(t)

0 11
(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)
−ϕ

(∫ β1(t)

0 11
(
t, s,u

(
η1 (s)

)
, v

(
η1 (s)

)
,w

(
η1 (s)

))
ds

)
∣∣∣∣∣∣∣∣∣


≤ φ
(
‖x − u‖ ,

∥∥∥y − v
∥∥∥ , ‖z − w‖

)
+ θ1

δ ∣∣∣∣∣∣
∫ β1(t)

0

(
11

(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

)
−11

(
t, s,u

(
η1 (s)

)
, v

(
η1 (s)

)
,w

(
η1 (s)

)) ))
ds

∣∣∣∣∣∣
α .
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In addition from (vi) , there exists L > 0 such that if t > L then

θ1

δ ∣∣∣∣∣∣
∫ β1(t)

0

(
11

(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

)
−11

(
t, s,u

(
η1 (s)

)
, v

(
η1 (s)

)
,w

(
η1 (s)

)) ))
ds

∣∣∣∣∣∣
α ≤ ε2

for any x, y, z,u, v,w ∈ BC (R+) .
Now we consider two cases

C1) If t > L, then we get

∥∥∥T1
(
x, y, z

)
− T1 (u, v,w)

∥∥∥ ≤ φ (
ε
2
,
ε
2
,
ε
2

)
+
ε
2

= ε.

C2) If t ∈ [0,L] , then by the argument similar

to those given in

∣∣∣T1
(
x, y, z

)
− T1 (u, v,w)

∣∣∣ ≤ φ1

(
ε
2
,
ε
2
,
ε
2

)
+ θ1

δ ∣∣∣∣∣∣
∫ β1(t)

0

(
11

(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

)
−11

(
t, s,u

(
η1 (s)

)
, v

(
η1 (s)

)
,w

(
η1 (s)

)) ))
ds

∣∣∣∣∣∣
α

<
ε
2

+ θ1

(
δ1

(
βL

1ω (ε)
)α)
,

where

ω (ε) = sup


∣∣∣11

(
t, s, x, y, z

)
− 11 (t, s,u, v,w)

∣∣∣ : t ∈ [0,L] , s ∈
[
0, βL

1

]
,

x, y, z,u, v,w ∈
[
−ρ, ρ

]
,
∥∥∥(x, y, z) − (u, v,w)

∥∥∥ < ε
2


and βL

1 = sup
{
β1 (t) : t ∈ [0,L]

}
.

By using the continuity of 11 on [0,L]×
[
0, βL

1

]
×

[
−ρ, ρ

]
×

[
−ρ, ρ

]
×

[
−ρ, ρ

]
we have ω (ε) −→ 0 as ε −→ 0 and

by continuity of θ1 we get θ1

(
δ1

(
βL

1ω (ε)
)α)
−→ 0 as ε −→ 0.

Hence T1 is continuous on BC (R+) × BC (R+) × BC (R+) .
Now we only need to show that T1 satisfied the conditions of Theorem 3.9. To prove that let L, ε ∈ R+ and

X1 × X2 × X3 be an arbitrary nonempty subset of Bρ and take t1, t2 ∈ [0,L] , such that |t1 − t2| ≤ ε.

Without loss of generality, we may assume that β1 (t1) < β1 (t2) and we assume that
(
x, y, z

)
∈ X1 × X2 × X3.∣∣∣T1

(
x, y, z

)
(t2) − T2

(
x, y, z

)
(t1)

∣∣∣
≤ |A1 (t2) − A1 (t1)|

+
∣∣∣h1

(
t2, x (ξ (t2)) , y (ξ (t2)) , z (ξ (t2))

)
− h1

(
t1, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1))

)∣∣∣
+

∣∣∣∣∣∣∣∣∣
f1

(
t2, x (ξ (t2)) , y (ξ (t2)) , z (ξ (t2)) , ϕ

(∫ β1(t2)

0 11
(
t2, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
− f1

(
t1, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1)) , ϕ

(∫ β1(t1)

0 11
(
t1, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
∣∣∣∣∣∣∣∣∣
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≤ |A1 (t2) − A1 (t1)| +
∣∣∣∣∣ h1

(
t2, x (ξ (t2)) , y (ξ (t2)) , z (ξ (t2))

)
−h1

(
t2, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1))

) ∣∣∣∣∣
+

∣∣∣∣∣ h1
(
t2, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1))

)
−h1

(
t2, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1))

) ∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
f1

(
t2, x (ξ (t2)) , y (ξ (t2)) , z (ξ (t2)) , ϕ

(∫ β1(t2)

0 1i
(
t2, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
− f1

(
t2, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1)) , ϕ

(∫ β1(t2)

0 11
(
t2, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣
f1

(
t2, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1)) , ϕ

(∫ β1(t2)

0 11
(
t2, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
− f1

(
t1, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1)) , ϕ

(∫ β1(t2)

0 11
(
t2, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣
f1

(
t1, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1)) , ϕ

(∫ β1(t2)

0 1i
(
t2, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
− f1

(
t1, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1)) , ϕ

(∫ β1(t2)

0 11
(
t1, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣
f1

(
t1, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1)) , ϕ

(∫ β1(t2)

0 11
(
t2, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
− f1

(
t1, x (ξ (t1)) , y (ξ (t1)) , z (ξ (t1)) , ϕ

(∫ β1(t1)

0 11
(
t1, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

))
∣∣∣∣∣∣∣∣∣

≤ ωT (A1, ε) +
1
2
φ

(
|x (ξ1 (t2)) − x (ξ1 (t1))| ,

∣∣∣y (ξ1 (t2)) − y (ξ1 (t1))
∣∣∣ , |z (ξ1 (t2)) − z (ξ1 (t1))|

)
+ ωT

ρ (h1, ε) +
1
2
φ

(
|x (ξ1 (t2)) − x (ξ1 (t1))| ,

∣∣∣y (ξ1 (t2)) − y (ξ1 (t1))
∣∣∣ , |z (ξ1 (t2)) − z (ξ1 (t1))|

)
+ ωT

ρ,k
(

f1, ε
)

+ θ1


∣∣∣∣∣∣∣∣∣
ϕ

(∫ β1(t2)

0 11
(
t2, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)
−ϕ

(∫ β1(t2)

0 11
(
t1, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)
∣∣∣∣∣∣∣∣∣


+ θ1

(∣∣∣∣∣∣
∫ β1(t2)

β1(t1)
11

(
t1, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))∣∣∣∣∣∣
)

≤ ωT (A1, ε) + ωT
ρ (h1, ε) + φ

(
ωT

(
x, ωT (ξ1, ε)

)
, ωT

(
y, ωT (ξ1, ε)

)
, ωT

(
z, ωT (ξ1, ε)

))
+ ωT

ρ,k
(

f1, ε
)

+ θ1

((
βL

1ω
T
ρ

(
11, ε

))α)
+ θ1

((
kωT (

β1, ε
))α1

)
,

where

ωT (A1, ε) = sup {|A1 (t1) − A1 (t2)| : t1, t2 ∈ [0,L] , |t1 − t2| ≤ ε}

ωT
ρ (h1, ε) = sup

{∣∣∣h1
(
t2, x, y, z

)
− h1

(
t1, x, y, z

)∣∣∣ : t1, t2 ∈ [0,L] , |t1 − t2| ≤ ε, x, y, z ∈
[
−ρ, ρ

]}
,

ωT (ξ1, ε) = sup {|ξ1 (t1) − ξ1 (t2)| : t1, t2 ∈ [0,L] , |t1 − t2| ≤ ε} ,

ωT
(
x, ωT (ξ1, ε)

)
= sup

{
|x (t1) − x (t2)| : t1, t2 ∈ [0,L] , |t1 − t2| ≤ ω

T (ξ1, ε)
}
,

k = βL sup
{∣∣∣11

(
t, x, y, z

)∣∣∣ : t ∈ [0,L] , s ∈
[
0, βL

]
, x, y, z ∈

[
−ρ, ρ

]}
,

ωT
ρ,k

(
f1, ε

)
= sup

{ ∣∣∣ f1 (
t2, x, y, z, p

)
− f1

(
t1, x, y, z, p

)∣∣∣ : t1, t2 ∈ [0,L] , x, y, z ∈
[
−ρ, ρ

]
, p ∈ [−δkα1 , δkα1 ]

}
,

ωT
ρ

(
11, ε

)
= sup

{∣∣∣11
(
t1, s, x, y, z

)
− 11

(
t2, s, x, y, z

)∣∣∣ : t1, t2 ∈ [0,L] , |t1 − t2| ≤ ε, s ∈
[
0, βL

]
, x, y, z ∈

[
−ρ, ρ

]}
,

ωT (
β1, ε

)
= sup

{∣∣∣β1 (t1) − β1 (t2)
∣∣∣ : t1, t2 ∈ [0,L] , |t1 − t2| ≤ ε

}
.

Since
(
x, y, z

)
is an arbitrary element of X1 × X2 × X3, we obtain
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ωT (T1 (X1 × X2 × X3) , ε) ≤ ωT (A1, ε) + ωT
ρ (h1, ε) + φ

(
ωT

(
x, ωT (ξ1, ε)

)
, ωT

(
y, ωT (ξ1, ε)

)
, ωT

(
z, ωT (ξ1, ε)

))
+ ωT

ρ,k
(

f1, ε
)

+ θ1

((
βL

1ω
T
ρ

(
11, ε

))α)
+ θ1

((
kωT (

β1, ε
))α)

. (13)

Since f , 1, and h are uniformly continuous on [0,L]×
[
−ρ, ρ

]
×

[
−ρ, ρ

]
×

[
−ρ, ρ

]
× [−δkα, δkα] , [0,L]×

[
0, βL

]
×[

−ρ, ρ
]
×

[
−ρ, ρ

]
×

[
−ρ, ρ

]
,

[0,L] ×
[
−ρ, ρ

]
×

[
−ρ, ρ

]
×

[
−ρ, ρ

]
respectively, we obtain ωT

ρ,k

(
f , ε

)
−→ 0, ωT

ρ

(
1, ε

)
−→ 0, ωT

ρ (h, ε) −→ 0 as
ε −→ 0.

Moreover, because the functions ξ1, β1 and A1 are uniformly continuous on [0,L] , we have that ωT (ξ1, ε) −→ 0,
ωT (

β1, ε
)
−→ 0, ωT (A1, ε) −→ 0 as ε −→ 0.

By the assumption (v), since θ are nondecreasing continuous functions with θ (0) = 0 and k is finite, therefore we
have

θ
((
βLωT

ρ

(
1, ε

))α)
+ θ

((
kωT (

β, ε
))α)
−→ 0

as ε −→ 0.
Now taking the limit from (13), we derive that

ωT
0 (T1 (X1 × X2 × X3)) ≤ φ

(
ωT

0 (X1) , ωT
0 (X2) , ωT

0 (X3)
)

(14)

as ε −→ 0.
When letting T −→ ∞ in (14) we get

ω0 (T1 (X1 × X2 × X3)) ≤ φ (ω0 (X1) , ω0 (X2) , ω0 (X3)) . (15)

By the same method, one can show that

ω0 (T2 (X2 × X3 × X1)) ≤ φ (ω0 (X2) , ω0 (X3) , ω0 (X1)) ,
ω0 (T3 (X3 × X1 × X2)) ≤ φ (ω0 (X3) , ω0 (X1) , ω0 (X2)) . (16)

On the other hand∣∣∣T1
(
x, y, z

)
(t) − T1 (u, v,w) (t)

∣∣∣
≤

∣∣∣h1
(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t))

)
− h1 (t,u (ξ1 (t)) , v (ξ1 (t)) ,w (ξ1 (t)))

∣∣∣
+

∣∣∣∣∣∣∣∣∣
f1

(
t, x (ξ1 (t)) , y (ξ1 (t)) , z (ξ1 (t)) , ϕ

(∫ β1(t)

0 11
(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

))
− f1

(
t,u (ξ1 (t)) , v (ξ1 (t)) ,w (ξ1 (t)) , ϕ

(∫ β1(t)

0 11
(
t, s,u

(
η1 (s)

)
, v

(
η1 (s)

)
,w

(
η1 (s)

))
ds

))
∣∣∣∣∣∣∣∣∣

≤
1
2
φ

(
|x (ξ1 (t)) − u (ξ1 (t))| ,

∣∣∣y (ξ1 (t)) − v (ξ1 (t))
∣∣∣ , |z (ξ1 (t)) − w (ξ1 (t))|

)
+

1
2
φ

(
|x (ξ1 (t)) − u (ξ1 (t))| ,

∣∣∣y (ξ1 (t)) − v (ξ1 (t))
∣∣∣ , |z (ξ1 (t)) − w (ξ1 (t))|

)
+ θ1


∣∣∣∣∣∣∣∣∣
ϕ

(∫ β1(t)

0 11
(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

))
ds

)
−ϕ

(∫ β1(t)

0 11
(
t, s,u

(
η1 (s)

)
, v

(
η1 (s)

)
,w

(
η1 (s)

))
ds

)
∣∣∣∣∣∣∣∣∣


≤ φ (diamX1 (ξ1 (t)) , diamX2 (ξ1 (t)) , diamX3 (ξ1 (t)))

+ θ1

δ1

∣∣∣∣∣∣
∫ β1(t)

0

(
11

(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

)
− 11

(
t, s,u

(
η1 (s)

)
, v

(
η1 (s)

)
,w

(
η1 (s)

))))
ds

∣∣∣∣∣∣
α . (17)
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Since
(
x, y, z

)
, (u, v,w) and t are arbitrary in (17), we get

diamT1 (X1 × X2 × X3) ≤ φ (diamX1 (ξ1 (t)) , diamX2 (ξ1 (t)) , diamX3 (ξ1 (t)))

+ θ1

δ1

∣∣∣∣∣∣
∫ β1(t)

0

(
11

(
t, s, x

(
η1 (s)

)
, y

(
η1 (s)

)
, z

(
η1 (s)

)
−11

(
t, s,u

(
η1 (s)

)
, v

(
η1 (s)

)
,w

(
η1 (s)

)) ))
ds

∣∣∣∣∣∣
α . (18)

Thus by (ii) and ξ1 (t) −→ ∞ as t −→ ∞ in the inequality (18), then using (11) we obtain

lim sup
t−→∞

diamT1 (X1 × X2 × X3) ≤ φ
(
lim sup

t−→∞
diamX1 (ξ1 (t)) , lim sup

t−→∞
diamX2 (ξ1 (t)) , lim sup

t−→∞
diamX3 (ξ1 (t))

)
.

(19)

By the same method, one can show that

lim sup
t−→∞

diamT2 (X2 × X3 × X1) ≤ φ
(
lim sup

t−→∞
diamX2 (ξ2 (t)) , lim sup

t−→∞
diamX3 (ξ2 (t)) , lim sup

t−→∞
diamX1 (ξ2 (t))

)
,

lim sup
t−→∞

diamT3 (X3 × X1 × X2) ≤ φ
(
lim sup

t−→∞
diamX3 (ξ3 (t)) , lim sup

t−→∞
diamX1 (ξ3 (t)) , lim sup

t−→∞
diamX2 (ξ1 (t))

)
.

(20)

If we blending (15), (19) we conclude that

ω0 (T1 (X1 × X2 × X3)) + lim sup
t−→∞

diamT1 (X1 × X2 × X3)

≤ φ (ω0 (X1) , ω0 (X2) , ω0 (X3)) + φ

(
lim sup

t−→∞
diamX1 (ξ1 (t)) , lim sup

t−→∞
diamX2 (ξ1 (t)) , lim sup

t−→∞
diamX3 (ξ1 (t))

)

≤ 3φ


ω0 (X1) + lim sup

t−→∞
diamX1 (t)

3
,

ω0 (X2) + lim sup
t−→∞

diamX2 (t)

3
,

ω0 (X3) + lim sup
t−→∞

diamX3 (t)

3

 .
So

1
3
µ (T1 (X1 × X2 × X3)) ≤ φ

(
µ (X1)

3
,
µ (X2)

3
,
µ (X3)

3

)
.

Taking µ′ = 1
3µ, we obtain

µ′ (T1 (X1 × X2 × X3)) ≤ φ
(
µ′ (X1) , µ′ (X2) , µ′ (X3)

)
.

Where µ′ is the measure of noncompactness defined in (9).
By the same method, from (16) and (20) we can show that

µ′ (T2 (X2 × X3 × X1)) ≤ φ
(
µ′ (X2) , µ′ (X3) , µ′ (X1)

)
,

µ′ (T3 (X3 × X1 × X2)) ≤ φ
(
µ′ (X3) , µ′ (X1) , µ′ (X2)

)
Thus by Theorem 3.9, E.q. (10) has at least one solution in the space BC (R+) × BC (R+) × BC (R+).

Example 4.2. Let the system of integral equation
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x (t) = 3
4 e−t2

+
(

e−t2

4 + t2

1+t2

)
ln

(
1 +

∣∣∣∣x (
t2
)∣∣∣∣) +

(
e−t

6 + t4

2+t4

)
ln

(
1 +

∣∣∣∣y (
t2
)∣∣∣∣) +

(
e−t2

3 + t2

3+4t2

)
ln

(
1 +

∣∣∣∣z (
t2
)∣∣∣∣)

+ ln

1 +
∫ t

0

ln
(
1 + 3
√

s |x (t)|
)

ln
(
1 + 3
√

s
∣∣∣y (t)

∣∣∣) ln
(
1 + 3
√

s |z (t)|
)

+ s
(
1 + x2 (t)

) (
1 + y2 (t)

) (
1 + z2 (t)

)
et2 (1 + x2 (t))

(
1 + y2 (t)

)
(1 + z2 (t))

ds


+ ln

(
1 +

p
3

)
y (t) = t4

2+t4 + e−t2

2 +
(

e−t

3 + t
3+t

)
ln

(
1 +

∣∣∣∣y (√
t
)∣∣∣∣) +

(
e−t2

5 + e−t

2

)
ln

(
1 +

∣∣∣∣z (√
t
)∣∣∣∣) +

(
e−t2

10 + t4

3+t4

)
ln

(
1 +

∣∣∣∣x (√
t
)∣∣∣∣)

+ ln

1 +
∫ √t

0

ln
(
1 +

5√

s3
∣∣∣y (t)

∣∣∣) ln
(
1 + 5
√

s |z (t)|
)

ln
(
1 + 5
√

s |x (t)|
)

+ s
(
1 + y3 (t)

) (
1 + z3 (t)

) (
1 + x3 (t)

)
et (1 + y3 (t)

)
(1 + z3 (t)) (1 + x3 (t))

ds


+ ln

(
1 +

p
3

)
z (t) = 3

4 e−t2
+ t4

5(2+t4) +
(

e−t2

4 + 1
1+t2

)
ln (1 + 2 |z (t)|) + 5e−t

8 ln (1 + 4 |x (t)|) +
(

t2

1+4t2 + e−t

3

)
ln

(
1 + 3

∣∣∣y (t)
∣∣∣)

+ ln

1 +
∫ t2

0

ln
(
1 +

7√

s2 |z (t)|
)

ln
(
1 +

7√

s3 |x (t)|
)

ln
(
1 +

7√

s2
∣∣∣y (t)

∣∣∣) + s2
(
1 + z4 (t)

) (
1 + x4 (t)

) (
1 + y4 (t)

)
et (1 + z4 (t)) (1 + x4 (t))

(
1 + y4 (t)

) ds


+ ln

(
1 +

p
3

)
.

(21)

Where

A1 (t) =
3
4

e−t2
, h1

(
t, x, y, z

)
=

1
4

e−t +
e−t2

4
ln (1 + |x (t)|) +

e−t

6
ln

(
1 +

∣∣∣y (t)
∣∣∣) +

t2

3 + 4t2 ln (1 + |z (t)|) ,

f1
(
t, x, y, z, p

)
=

3
10

e−t +
t2

1 + t2 ln (1 + |x (t)|) +
t4

2 + t4 ln
(
1 +

∣∣∣y (t)
∣∣∣) +

e−t2

3
ln (1 + |z (t)|) + ln

(
1 +

p
3

)
,

11
(
t, s, x, y, z

)
=

ln
(
1 + 3
√

s |x (t)|
)

ln
(
1 + 3
√

s
∣∣∣y (t)

∣∣∣) ln
(
1 + 3
√

s |z (t)|
)

+ s
(
1 + x2 (t)

) (
1 + y2 (t)

) (
1 + z2 (t)

)
et2 (1 + x2 (t))

(
1 + y2 (t)

)
(1 + z2 (t))

,

ξ1 (t) = t2, η1 (t) =
√

t, β1 (t) = t, ϕ (x) = ln
(
1 +
|x|
3

)
, φ (t, s, r) = ln

(
1 +

t + s + r
3

)
, θ (t) =

t
3
.

Also

A2 (t) =
t4

2 + t4 , h2
(
t, x, y, z

)
=

1
2

e−t2
+

e−t

3
ln (1 + |x (t)|) +

e−t2

5
ln

(
1 +

∣∣∣y (t)
∣∣∣)

+
t2 + 1
3 + t2 ln (1 + |z (t)|) ,

f2
(
t, x, y, z, p

)
=

3
10

e−t +
t2

1 + 3t2 +
t

1 + t
ln (1 + |x (t)|) +

e−t3

2
ln

(
1 +

∣∣∣y (t)
∣∣∣) +

e−t2

5
ln (1 + |z (t)|)

+ ln
(
1 +

p
3

)
,

12
(
t, s, x, y, z

)
=

ln
(
1 +

5√

s3 |x (t)|
)

ln
(
1 + 5
√

s
∣∣∣y (t)

∣∣∣) ln
(
1 + 5
√

s |z (t)|
)

+ s
(
1 + x3 (t)

) (
1 + y3 (t)

) (
1 + z3 (t)

)
et2 (1 + x3 (t))

(
1 + y3 (t)

)
(1 + z3 (t))

,

ξ2 (t) =
√

t, η2 (t) = t, β2 (t) =
√

t, φ (t, s, r) = ln
(
1 +

t + s + r
3

)
, θ (t) =

t
3
,

ϕ (x) = ln
(
1 +
|x|
3

)
.
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And so

A3 (t) =
1
7

e−t2
, h3

(
t, x, y, z

)
=

t4

5 (2 + t4)
+

e−t2

4
ln (1 + 2 |x (t)|) +

e−t

8
ln

(
1 + 4

∣∣∣y (t)
∣∣∣)

+
t2

4t2 + 1
ln (1 + 3 |z (t)|) ,

f3
(
t, x, y, z, p

)
=

3
14

e−t2
+

1
1 + t2 ln (1 + 2 |x (t)|) +

e−t

2
ln

(
1 + 4

∣∣∣y (t)
∣∣∣) +

(
e−t

3
+ 1

)
ln (1 + 3 |z (t)|)

+ ln
(
1 +

p
3

)
,

13
(
t, s, x, y, z

)
=

ln
(
1 +

7√

s2 |x (t)|
)

ln
(
1 +

7√

s3
∣∣∣y (t)

∣∣∣) ln
(
1 +

7√

s2 |z (t)|
)

+ s2
(
1 + x4 (t)

) (
1 + y4 (t)

) (
1 + z4 (t)

)
et3 (1 + x4 (t))

(
1 + y4 (t)

)
(1 + z4 (t))

,

ξ3 (t) = t, η3 (t) = t2, β3 (t) = t2, φ (t, s, r) = ln
(
1 +

t + s + r
3

)
, θ (t) =

t
3
, ϕ (x) = ln

(
1 +
|x|
3

)
.

Now we show that all the condition of Theorem 4.1 are satisfied for E.q. (21).

(i) the function A1 (t) = e−t2

3 clearly continuous and bounded with M1 = sup {|A1 (t)| : t ∈ R+} =
3
4 .

(ii) the functions ξ1 (t) = t2 ,η1 (t) =
√

t , β1 (t) = t :R+ −→ R+ are continuous and lim
t−→∞

ξ1 (t) = lim
t−→∞

t = ∞.

(iii) the function ϕ : R+ −→ R with ϕ (x) = ln
(
1 + |x|

2

)
is continuous

∣∣∣ϕ (t1) − ϕ (t2)
∣∣∣ =

∣∣∣∣∣ln (
1 +
|t1|

2

)
− ln

(
1 +
|t2|

2

)∣∣∣∣∣ =

∣∣∣∣∣∣∣ln 1 + |t1 |

2

1 + |t2 |

2

∣∣∣∣∣∣∣ =

∣∣∣∣∣ln 2 + t1

2 + t2

∣∣∣∣∣
= ln

(
1 +
|t1| − |t2|

2 + t2

)
≤ ln (1 + |t1 − t2|) ≤ |t1 − t2|

with α = δ = 1. For any t1, t2 ∈ R+, and moreover, ϕ (0) = ln (1) = 0.

(iv) the functions defined by t −→
∣∣∣ f1 (t, 0, 0, 0, 0)

∣∣∣ and t −→ |h1 (t, 0, 0, 0)| are bounded on R+, i.e.

M
′

1 = sup
{
f 1 (t, 0, 0, 0, 0) : t ∈ R+

}
=

3e−t

10
=

3
10

< ∞,

M
′′

1 = sup {h1 (t, 0, 0, 0) : t2 ∈ R+} =
e−t

4
=

1
4
< ∞.

(v) the functions f1 and h1 are continuous.

Now assume that t ∈ R+ and x, y, z, p,u, v,w, q ∈ R with |x| ≥ |u| ,
∣∣∣y∣∣∣ ≥ |v| , and |z| ≥ |w| .Then by using the

Mean Value Theorem for the function ϕ (x) = ln
(
1 + |x|

2

)
and the fact that φ (t, s, r) = ln

(
1 + t+s+r

3

)
∈ Φ, we can get

following results:
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D1) ∣∣∣h1
(
t, x, y, z

)
− h1 (t,u, v,w)

∣∣∣
=

∣∣∣∣∣∣∣ e−t

4 + e−t2

4 ln (1 + |x (t)|) + e−t

6 ln
(
1 +

∣∣∣y (t)
∣∣∣) + t2

3+4t2 ln (1 + |z (t)|)

−
e−t

4 −
e−t2

4 ln (1 + |u (t)|) − e−t

6 ln (1 + |v (t)|) − t2

3+4t2 ln (1 + |w (t)|)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣ e−t2

4
(ln (1 + |x (t)|) − ln (1 + |u (t)|))

∣∣∣∣∣∣ +

∣∣∣∣∣ e−t

6

(
ln

(
1 +

∣∣∣y (t)
∣∣∣) − ln (1 + |v (t)|)

)∣∣∣∣∣
+

∣∣∣∣∣∣ t2

3 + 4t2
(ln (1 + |z (t)|) − ln (1 + |w (t)|))

∣∣∣∣∣∣
=

e−t

4

∣∣∣∣∣∣ln
(

1 + |x (t)|
1 + |u (t)|

)∣∣∣∣∣∣ +
e−t

6

∣∣∣∣∣∣∣ln
1 +

∣∣∣y (t)
∣∣∣

1 + |v (t)|


∣∣∣∣∣∣∣ +

t2

3 + 4t2

∣∣∣∣∣∣ln
(

1 + |z (t)|
1 + |w (t)|

)∣∣∣∣∣∣
≤

1
4

∣∣∣∣∣∣ln
(
1 +
|x (t)| − |u (t)|

1 + |u (t)|

)∣∣∣∣∣∣ +
1
4

∣∣∣∣∣∣∣ln
1 +

∣∣∣y (t)
∣∣∣ − |v (t)|

1 + |v (t)|


∣∣∣∣∣∣∣ +

1
4

∣∣∣∣∣∣ln
(
1 +
|z (t)| − |w (t)|

1 + |w (t)|

)∣∣∣∣∣∣
≤

1
4

ln (1 + |x − u|) +
1
4

ln
(
1 +

∣∣∣y − v
∣∣∣) +

1
4

ln (1 + |z − w|)

≤
1
2

ln

1 +
|x − u| +

∣∣∣y − v
∣∣∣ + |z − w|

3

 =
1
2
φ

(
|x − u| ,

∣∣∣y − v
∣∣∣ , |z − w|

)
.

So we have∣∣∣h1
(
t, x, y, z

)
− h1 (t,u, v,w)

∣∣∣ ≤ 1
2
φ

(
|x − u| ,

∣∣∣y − v
∣∣∣ , |z − w|

)
. (22)

D2) ∣∣∣ f1 (
t, x, y, z, p

)
− f1

(
t,u, v,w, q

)∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3e−t

10 + t2

1+t2 ln (1 + |x (t)|) + t4

2+t4 ln
(
1 +

∣∣∣y (t)
∣∣∣)

+ e−t2

3 ln (1 + |z (t)|) + ln
(
1 +
|p|
2

)
−

 3e−t

10 + t2

1+t2 ln (1 + |u (t)|) + t4

2+t4 ln (1 + |v (t)|)

+ e−t2

3 ln (1 + |w (t)|) + ln
(
1 +
|q|
2

) 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣ t2

1 + t2
(ln (1 + |x (t)|) − ln (1 + |u (t)|))

∣∣∣∣∣∣ +

∣∣∣∣∣∣ t4

2 + t4

(
ln

(
1 +

∣∣∣y (t)
∣∣∣) − ln (1 + |v (t)|)

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ e−t2

3
(ln (1 + |z (t)|) − ln (1 + |w (t)|))

∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ln
1 +

∣∣∣p∣∣∣
2

 − ln

1 +

∣∣∣q∣∣∣
2


∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣ln
(

1 + |x (t)|
1 + |u (t)|

)∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ln
1 +

∣∣∣y (t)
∣∣∣

1 + |v (t)|


∣∣∣∣∣∣∣ +

1
3

∣∣∣∣∣∣ln
(

1 + |z (t)|
1 + |w (t)|

)∣∣∣∣∣∣ +
1
2

∣∣∣∣∣∣∣∣∣∣ln

(
1 +
|p|
2

)
(
1 +
|q|
2

)

∣∣∣∣∣∣∣∣∣∣

≤
1
4

ln (1 + |x − u|) +
1
4

ln
(
1 +

∣∣∣y − v
∣∣∣) +

1
4

ln (1 + |z − w|) +
1
2

∣∣∣p − q
∣∣∣

≤
1
2
φ

(
|x − u| ,

∣∣∣y − v
∣∣∣ , |z − w|

)
+ θ

(∣∣∣p − q
∣∣∣) .
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So we have

∣∣∣ f1 (
t, x, y, z, p

)
− f1

(
t,u, v,w, q

)∣∣∣ ≤ 1
2
φ

(
|x − u| ,

∣∣∣y − v
∣∣∣ , |z − w|

)
+ θ

(∣∣∣p − q
∣∣∣) , (23)

the case |u| ≥ |x| , |v| ≥
∣∣∣y∣∣∣ , and |w| ≥ |z| can be done in the same manner for 22 and 23.

(vi) Clearly, 1 is continuous, Moreover, for each t, s ∈ R+, and x, y, z,u, v,w ∈ R we have∣∣∣11
(
t, s, x, y, z

)
− 11 (t, s,u, v,w)

∣∣∣
=

∣∣∣∣∣∣∣∣
ln(1+ 3√s|x(t)|) ln(1+ 3√s|y(t)|) ln(1+ 3√s|z(t)|)+s(1+z2(t))(1+x2(t))(1+y2(t))

et(1+x2(t))(1+y2(t))(1+z2(t))

−
ln(1+ 3√s|u(t)|) ln(1+ 3√s|v(t)|) ln(1+ 3√s|w(t)|)+s(1+u2(t))(1+v2(t))(1+w2(t))

et(1+u2(t))(1+v2(t))(1+w2(t))

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
ln(1+ 3√s|x(t)|) ln(1+ 3√s|y(t)|) ln(1+ 3√s|z(t)|)

et(1+x2(t))(1+y2(t))(1+z2(t))
+ s

et

−
ln(1+ 3√s|u(t)|) ln(1+ 3√s|v(t)|) ln(1+ 3√s|w(t)|)

et(1+u2(t))(1+v2(t))(1+w2(t)) −
s
et

∣∣∣∣∣∣∣∣
≤

2s
et .

Therefore

lim
t−→∞

∫ t

0

∣∣∣11
(
t, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
− 11

(
t, s,u

(
η (s)

)
, v

(
η (s)

)
,w

(
η (s)

))∣∣∣ ds

≤ lim
t−→∞

∫ t

0

2s
et ds = lim

t−→∞

t
et = 0,

uniformly with respect to x, y, z,u, v,w ∈ BC (R+) .
Moreover, we have

∣∣∣∣∣∣
∫ β(t)

0
11

(
t, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

∣∣∣∣∣∣
≤

∫ t

0

∣∣∣11
(
t, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))∣∣∣ ds

≤

∫ t

0

2s
et ds =

t
et ,

for any t, s ∈ R+, and x, y, z ∈ R.
Thus

M
′′′

1 = sup
{∣∣∣∣∣∣

∫ β(t)

0
11

(
t, s, x

(
η (s)

)
, y

(
η (s)

)
, z

(
η (s)

))
ds

∣∣∣∣∣∣ : t, s ∈ R+, x, y, z ∈ BC (R+)
}

≤ sup
{ t

et : t ≥ 0
}

= r0 < ∞. (24)

(vii) By choosing M′′′

1 = r0 from (24) along with M1 = 3
4 ,M

′

1 = 3
10 ,M

′′

1 = 1
4 , and δ = 1 in the inequality (12), we

obtain the inequality 2
5 + ln (1 + r) + r0 < r, which ρ = 3 is a solution. Consequently, all conditions of Theorem 4.1

are satisfied for the first equation in E.q. (21) and the rest of them, can be proven equivalently.
Accordingly, the system of integral equations of (21) has at least one solution in the space BC (R+)×BC (R+)×BC

(R+) .
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[8] J. Banaś, On Measures of noncompactness in Banach spaces, Comment. Math.Univ. Carolin. 21 (1980), 131-143.
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