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Abstract. Based on the concepts of α-proximal admissible mappings and simulation function, we establish
some best proximity point and coupled best proximity point results in the context of b-complete b-metric
spaces. We also provide some concrete examples to illustrate the obtained results. Moreover, we prove the
existence of the solution of nonlinear integral equation and positive definite solution of nonlinear matrix

equation X = Q +
m∑

i=1
A∗iγ(X)Ai −

m∑
i=1

B∗iγ(X)Bi. The given results not only unify but also generalize a number

of existing results on the topic in the corresponding literature.

1. Introduction and Preliminaries

In 1989, Bakhtin [6] introduced the concept of b-metric space and presented the generalization of Banach
contraction principle (see Banach [7]) (see also Czerwik [10]). Subsequently, several researchers studied
fixed point theory for single-valued and set-valued mappings in b-metric spaces (see [1, 8, 15] and references
therein).

Definition 1.1. [6, 10] Let X be a nonempty set, and let k ≥ 1 be a given real number. A functional
d : X × X→ [0,∞) is said to be a b-metric if for all x, y, z ∈ X, the following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ k(d(x, z) + d(z, y)).

In this case pair (X, d) is called b-metric space with coefficient k.
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There exist many examples in the literature (see [6, 10]) showing that the class of b-metrics is effectively
larger than that of metric spaces. The notions of convergence, compactness, closedness and completeness
in b-metric spaces are given in the same way as in metric spaces. For more work on fixed point theory in
b-metric spaces, we refer to [1, 8, 11] and the references therein.

Example 1.2. [6] The space lp, (0 < p < 1), lp =

{
(xn) ⊂ R|

∑
∞

n=1 |xn|
p < ∞

}
together with the function

d : lp × lp → R, given by d(x, y) =

(∑
∞

n=1 |xn − yn|
p

) 1
p

,where x = (xn), y = (yn) ∈ lp, is a b-metric space. Indeed,

by an elementary calculation we obtain

d(x, z) ≤ 2
1
p [d(x, y) + d(y, z)],

hence k = 2
1
p in this case.

Example 1.3. [6] The space Lp, (0 < p < 1) for all real function x(t), t ∈ [0, 1] such that
∫ 1

0 |x(t)|pdt < ∞, is
b-metric space if we take

d(x, y) =

( ∫ 1

0
|x(t) − y(t)|pdt

) 1
p

.

Khojasteh et al. [18] introduced the notion of simulation function:

Definition 1.4. [18] A simulation function is a mapping ξ : [0,∞)× [0,∞)→ Rwhich satisfies the following
conditions:

(ξ1
∗) ξ(0, 0) = 0;

(ξ2
∗) ξ(s, t) < t − s for all s, t > 0;

(ξ3
∗) If {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 then

lim
n→∞

sup ξ(sn, tn) < 0.

Later, Argoubi et al. [5] slightly modified the definition of simulation function by withdrawing a
condition

(
ξ∗1

)
.

Definition 1.5. [5] A simulation function is a mapping ξ : [0,∞)× [0,∞)→ Rwhich satisfies the following
conditions:

(ξ1) ξ(s, t) < t − s for all s, t > 0;

(ξ2) If {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 then

lim
n→∞

sup ξ(sn, tn) < 0.

LetZ∗ denote the class of simulation functions in the sense of Argoubi et al. [5].

Example 1.6. [5] Let ξλ : [0,∞) × [0,∞)→ R be a function defined by

ξλ(t, s) =

{
1 i f (t, s) = (0, 0),

λs − t otherwise,

where λ ∈ (0, 1). Then, ξλ ∈ Z∗.
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Example 1.7. [13] Let ξ : [0,∞) × [0,∞) → R be a function defined by ξ(t, s) = ψ(s) − φ(t) for all s, t ≥ 0,
where ψ : [0,∞)→ R is an upper semi-continuous function and ϕ : [0,∞)→ R is a lower semi-continuous
function such that ψ(t) < t ≤ ϕ(t), for all t > 0. Then ξ ∈ Z∗.

Khojasteh et al. [18] presented a new contractive condition generalizing the contraction principal via
simulation function. Later on, many authors presented the contractive conditions involving simulation
functions (see, e.g. [3, 13, 20, 33] and references therein).

Definition 1.8. [18] Assume that (X, d) is a metric space and ξ ∈ Z∗. A self mapping T on X is called
Z-contraction with respect to ξ, whenever the inequality

ξ(d(Tx,Ty), d(x, y)) ≥ 0 for all x, y ∈ X

is satisfied.

Theorem 1.9. [18] Let (X, d) be a complete metric space and T : X→ X be aZ-contraction with respect to ξ. Then
T has a unique fixed point u in X and for every x0 ∈ X the Picard sequence xn, where xn = Txn+1 for all n ∈ N
converges to the fixed point of T.

On the other hand, best proximity point theory analyze the existence of an approximate solution that is
optimal. Let A be a non-empty subset of a metric space (X, d) and f : A → X has a fixed point in A if the
fixed point equation f x = x has at least one solution. If the fixed point equation f x = x does not possess a
solution, then d(x, f x) > 0 for all x ∈ A. In that case, we aim to find an element x ∈ A such that d(x, f x) is
minimum as much as possible.

Let A and B be two non-empty subsets of a metric space (X, d) and T : A → B is a non-self mapping,
then d(x,Tx) ≥ d(A,B) for all x ∈ A. In general for a non- self mapping T : A→ B, the fixed point equation
Tx = x may not have a solution. In this case, it is focused on the possibility of finding an element x that
is in closed proximity to Tx in some sense, i.e., to find an approximate solution x ∈ A such that the error
d(x,Tx) is minimum, possibly d(x,Tx) = d(A,B). A point x ∈ A is called best proximity point of T : A→ B if
d(x,Tx) = d(A,B), where d(A,B) := inf{d(x, y) : (x, y) ∈ A × B}.

The purpose of this paper is to define the notion of modified α-type Z-contraction and to prove the
existence of best proximity point results in the frame work of complete b-metric spaces. Moreover we
obtain best proximity point results in b-metric spaces endowed with binary relation through our main
results. As an application we obtain some fixed point and coupled fixed point results for such contractions
in b-complete b-metric and b-metric spaces endowed with binary relation. Examples are given to prove
the validity of our results. Moreover, we show the existence of solution of nonlinear integral and matrix
equations.

In the sequel, (X, d) a b-metric space and x ∈ X, define

A0 = {a ∈ A : there exists some b ∈ B such that d(a, b) = d(A,B)}
B0 = {b ∈ B : there exists some a ∈ A such that d(a, b) = d(A,B)}

d(x,A) = inf{d(x, a) : a ∈ A}.

Definition 1.10. [28] Let (A,B) be a pair of nonempty subsets of a b-metric space (X, d) with A0 , ∅. Then
the pair (A,B) is said to have the P-property if and only if for any x1, x2 ∈ A and y1, y2 ∈ B,

d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

}
implies d(x1, x2) = d(y1, y2).

Definition 1.11. [17] Let T : A→ B and α : A × A→ [0,∞). We say that T is α-proximal admissible if

α(x1, x2) ≥ 1
d(u1,Tx1) = d(A,B)
d(u2,Tx2) = d(A,B)

 implies α(u1,u2) ≥ 1,

for all x1, x2,u1,u2 ∈ A.



A. Hussain et al. / Filomat 32:17 (2018), 6087–6106 6090

Definition 1.12. [31] We denote by Ψ the set of all functions ψ : [0,∞)→ [0,∞) satisfying

1. ψ is continuous and

2. ψ(t) = 0 if and only if t = 0.

2. Best Proximity Point Results

We begin this section with the following definition:

Definition 2.1. Let (X, d) be a b-metric space and A,B be two nonempty subsets of X. Let α : A × A → R+

be a function. Suppose that T : A→ B be a mapping. Then T is called modified α-typeZ-contraction with
respect to ξ if there are ξ ∈ Z∗, such that

ξ(α(x, y)d(Tx,Ty), λM(x, y)) ≥ 0 (2.1)

for each x, y ∈ A, λ ∈ (0, 1), where

M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty)}.

Example 2.2. Let X = Rwith b-metric d(x, y) = |x− y|2 for all x, y ∈ X with k = 2. Let A = [0, 1] and B = [2, 3],
then d(A,B) = 1. Define T : A→ B by

Tx = 2 +
x2

2
for all x ∈ A,

α : A × A→ [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1]
0 otherwise,

and ξ(x, y) = y − 2+x
1+x x for all x, y ≥ 0. Now for x, y ∈ A, let x = 1

2 and y = 1
6 then Tx = 2 + 1

8 , Ty = 2 + 1
72 and

d(Tx,Ty) = | 18 −
1
72 |

2 = 1
81 .

M(x, y) = max {d(x, y), d(x,Tx), d(y,Ty)}

= max {|
1
2
−

1
6
|
2, |

1
2
− 2 −

1
8
|
2, |

1
6
− 2 −

1
72
|
2
}

= max {0.027777, 2.640625, 3.412229}
= 3.412229.

Then for λ = 1
2

ξ(α(x, y)d(Tx,Ty), λM(x, y)) =
1
2

M(x, y) −
2 + α(x, y)d(Tx,Ty)
1 + α(x, y)d(Tx,Ty)

α(x, y)d(Tx,Ty)

=
1
2

3.412229 −
2 + 1

81

1 + 1
81

×
1

81

= 1.7061145 −
163
82
×

1
81

= 1.7061145 − 0.0245408 > 0.

This implies that T is modified α-typeZ-contraction.

We now present our first main result:
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Theorem 2.3. Let A and B be nonempty closed subsets of a b-complete b-metric space (X, d) such that A0 is nonempty.
Let α : A × A→ [0,∞). Suppose that T : A→ B a non-self mapping satisfying the following conditions:

(i) T(A0) ⊆ B0 and (A,B) satisfies the P-property;

(ii) T is α-proximal admissible;

(iii) there exist elements x0 and x1 in A0 such that

d(x1,Tx0) = d(A,B), α(x0, x1) ≥ 1;

(iv) T is continuous modified α-typeZ-contraction with respect to ξ ∈ Z∗.

Then, there exists an element x∗ ∈ A0 such that

d(x∗,Tx∗) = d(A,B).

Proof. From assumption (iii), there exist elements x0 and x1 in A0 such that

d(x1,Tx0) = d(A,B), α(x0, x1) ≥ 1.

Since T(A0) ⊆ B0, there exists x2 ∈ A0 such that

d(x2,Tx1) = d(A,B).

Since T is α-proximal admissible, we have α(x1, x2) ≥ 1. Again, since T(A0) ⊆ B0, there exists x3 ∈ A0 such that

d(x3,Tx2) = d(A,B)

and since T is α-proximal admissible, we get α(x2, x3) ≥ 1. Continuing this process, we can construct a sequence
{xn} ⊂ A0 such that

d(xn+1,Txn) = d(A,B), α(xn, xn+1) ≥ 1, (2.2)

for all n ∈N ∪ {0}. Since T is modified α-typeZ-contraction with respect to ξ ∈ Z∗, for all n ∈N, we have

ξ(α(xn−1, xn)d(Txn−1,Txn), λM(xn−1, xn)) ≥ 0, (2.3)

where

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1,Txn−1), d(xn,Txn)}
= max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}
= max{d(xn−1, xn), d(xn, xn+1)}.

So (2.3) gives

ξ(α(xn−1, xn)d(Txn−1,Txn), λmax {d(xn−1, xn), d(xn, xn+1)}) ≥ 0. (2.4)

By P-property, (2.4) become

ξ(α(xn−1, xn)d(xn, xn+1), λmax {d(xn−1, xn), d(xn, xn+1)}) ≥ 0. (2.5)

If there is some n0 ∈ N ∪ {0} such that d(xn0 , xn0+1) = 0, then from (2.2), we get that d(xn0 ,Txn0 ) = d(A,B), that is,
xn0 is a best proximity point and so the proof is complete. Suppose now that d(xn, xn+1) > 0, for all n = 0, 1, 2, · · · .
Therefore, from (2.5) and (ξ1), we have

0 < λmax {d(xn−1, xn), d(xn, xn+1)} − α(xn−1, xn)d(xn, xn+1).
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Consequently, we derive that

d(xn, xn+1) ≤ α(xn−1, xn)d(xn, xn+1) < λmax {d(xn−1, xn), d(xn, xn+1)},

for all n ≥ 1. Necessarily, we have

λmax {d(xn−1, xn), d(xn, xn+1)} = λd(xn−1, xn), (2.6)

for all n ≥ 1. Consequently, we obtain

d(xn, xn+1) < λd(xn−1, xn), f or all n ≥ 1. (2.7)

Hence according to Lemma 2.2 of [23], we get that {xn} is a Cauchy sequence in (X, d). Since (X, d) is b-complete and
A is closed, there exists x∗ ∈ A such that xn → x∗ as n→ ∞. On the other hand continuity of T implies Txn → Tx∗

as n→∞ and from (2.2), we have
d(A,B) = d(x∗,Tx∗)

as n→∞. This complete the proof.

Example 2.4. Let X = [0,∞) × [0,∞) with b-metric d(x, y) = |x1 − x2|
2 + |y1 − y2|

2 for all x = (x1, x2), y =
(y1, y2) ∈ X and k = 2. Suppose A = {( 1

2 , a) : 0 ≤ a < ∞} and B = {(0, a) : 0 ≤ a < ∞}, then d(A,B) = 1
2 . Define

T : A→ B by

T
(1

2
, a

)
=


(
0, a

2

)
i f a ≤ 1(

0, a2
)

i f a > 1,

α : A × A→ [0,∞) by

α(x, y) =

{
1 i f x, y ∈

{
( 1

2 , a) : 0 ≤ a ≤ 1
}

0 otherwise,

and ξ : [0,∞)× [0,∞)→ R by ξ(t, s) = 1
2 s− t. Notice that A0 = A, B0 = B and T(A0) ⊆ B0. Also the pair (A,B)

satisfies P−property. Let u1,u2 ∈ {( 1
2 , a) : 0 ≤ a ≤ 1}, then Tu1,Tu1 ∈ {(0, a

2 ) : 0 ≤ a ≤ 1}. Consider v1, v2 ∈ A
such that d(v1,Tu1) = d(A,B) and d(v2,Tu2) = d(A,B). Then we have v1, v2 ∈ {( 1

2 , a) : 0 ≤ a ≤ 1}. Hence T
is α-proximal admissible mapping. For x0 = ( 1

2 , 1) ∈ A0 and (0, 1
2 ) = Tx0 in B0, we have x1 = ( 1

2 ,
1
2 ) ∈ A0

such that d(x1,Tx0) = d(A,B) and α(x0, x1) = 1. If x = ( 1
2 ,

1
2 ), y = ( 1

2 ,
1
3 ) ∈ A0, then we have Tx = (0, 1

4 ) and
Ty = (0, 1

6 ). Now for λ = 1
2 we have

0 ≤ ξ(α(x, y)d(Tx,Ty),
1
2

M(x, y)) =
1
2

M(x, y) − α(x, y)d(Tx,Ty) (2.8)

where

M(x, y) = max {|
1
2
−

1
2
|
2 + |

1
2
−

1
3
|
2, (|

1
2
− 0|2 + |

1
2
−

1
4
|
2), (|

1
2
− 0|2 + |

1
3
−

1
6
|
2)}

=
5

16
.

So (2.8) become

ξ(α(x, y)d(Tx,Ty),
1
2

M(x, y)) =
1
2
×

5
16
− (1)|

1
4
−

1
6
|
2

=
43

288
> 0.

Hence T is modified α-typeZ-contraction. Therefore, all the conditions of Theorem 2.3 holds and T has a
best proximity point ( 1

2 , 1).
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If we remove the condition of continuity on T in Theorem 2.3 and replace it with conditionH , then we
have the following best proximity point result:

(H) : If {xn} is a sequence in A converges to x ∈ A such that α(xn, xn+1) ≥ 1, then there is a subsequence {xnk }

of {xn}with α(xnk , x) ≥ 1 for all k.

Theorem 2.5. Let A and B be nonempty closed subsets of a b-complete b-metric space (X, d) such that A0 is nonempty.
Let α : A × A→ [0,∞) and T : A→ B a non-self mapping satisfying the following conditions:

(i) T(A0) ⊆ B0, and (A,B) satisfies the P-property;

(ii) T is α-proximal admissible;

(iii) there exist elements x0, x1 ∈ A0 with d(x1,Tx0) = d(A,B), α(x0, x1) ≥ 1;

(iv) T is modified α-typeZ-contraction with respect to ξ ∈ Z∗;

(v) (H) holds.

Then there exists an element x∗ ∈ A0 such that d(x∗,Tx∗) = d(A,B).

Proof. Following the proof of Theorem 2.3, we have a Cauchy sequence {xn} in A such that xn → x∗ ∈ A as n → ∞
and α(xn, xn + 1) ≥ 1 for all n ∈N. Since (H) holds, we have that

α(xnk , x
∗) ≥ 1 for all k ∈N. (2.9)

Regarding (i), we note that Tx∗ ∈ B0 and hence

d(y1,Tx∗) = d(A,B), for some y1 ∈ A0.

Since (A,B) satisfies P-property, and

d(y1,Tx∗) = d(xnk+1 ,Txnk ) = d(A,B) (2.10)

we get that

d(xnk+1 , y1) = d(Txnk ,Tx∗). (2.11)

Therefore, by condition (iv), we get

0 ≤ ξ(α(xnk , x
∗)d(Txnk ,Tx∗), λM(xnk , x

∗)
< λM(xnk , x

∗) − α(xnk , x
∗)d(Txnk ,Tx∗)

= λM(xnk , x
∗) − α(xnk , x

∗)d(xnk+1 , y1), (2.12)

where
M(xnk , x

∗) = max
{
d(xnk , x

∗), d(xnk ,Txnk ), d(x∗,Tx∗)
}
.

This implies
d(xnk+1 , y1) ≤ α(xnk , x

∗)d(xnk+1 , y1) < λM(xnk , x
∗) = d(xnk , x

∗)

and so
lim
k→∞

d(xnk+1 , y1)→ 0.

Thus y1 = x∗ and (2.10) gives
d(x∗,Tx∗) = d(A,B).

This complete the proof.
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Now, we prove the uniqueness of best proximity point. For this, we need the following additional
condition:

(U) : α(x, y) ≥ 1 for all best proximity points x, y of T.

Theorem 2.6. Adding condition (U) to the hypothesis of Theorem 2.3 (2.5), we obtain that x∗ is the unique best
proximity point of T.

Proof. We argue with contradiction, that there exist x∗, y∗ ∈ A0 such that

d(x∗,Tx∗) = d(A,B)
d(y∗,Ty∗) = d(A,B)

with x∗ , y∗. Since pair (A,B) satisfies P-property, then

d(x∗, y∗) = d(Tx∗,Ty∗).

By assumption (U), we have α(x∗, y∗) ≥ 1. So, by (ξ1), we get

0 ≤ ξ(α(x∗, y∗)d(Tx∗,Ty∗), λM(x∗, y∗))
= ξ(α(x∗, y∗)d(x∗, y∗), λM(x∗, y∗))
< λM(x∗, y∗) − α(x∗, y∗)d(x∗, y∗).

Consequently, we derive that

d(x∗, y∗) ≤ α(x∗, y∗)d(x∗, y∗)
< λM(x∗, y∗)
= λmax

{
d(x∗, y∗), d(x∗,Tx∗), d(y∗,Ty∗)

}
= λd(x∗, y∗),

a contradiction. Hence, x∗ = y∗.

Corollary 2.7. Let A and B be nonempty closed subsets of a b-complete b-metric space (X, d) such that A0 is nonempty.
Let α : A×A→ [0,∞). Suppose that T : A→ B is s non-self continuous mapping satisfying the following conditions:

(i) T(A0) ⊆ B0, and (A,B) satisfies the P-property;

(ii) T is α-proximal admissible;

(iii) there exist elements x0 and x1 in A0 such that

d(x1,Tx0) = d(A,B), α(x0, x1) ≥ 1;

(iv) for all x, y ∈ A and ψ ∈ Ψ, α(x, y)d(Tx,Ty) ≤ ψ(M(x, y)), where

M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty)}.

Then, there exists an element x∗ ∈ A0 such that

d(x∗,Tx∗) = d(A,B).

Proof. Define ξA(s, t) = ψ(t)− s for each s, t ∈ [0,∞). It is clear that the mapping T is modified α-typeZ-contraction
with respect to ξA ∈ Z

∗. Therefore by taking ξA = ξ in Theorem 2.3 (respectively in, 2.5, 2.6), we have the required
result.
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3. Best Proximity Point Results in b-Metric Space Endowed with an Arbitrary Binary Relation

Let (X, d) be a b-metric space and R be a binary relation on X. Denote

S = R ∪ R−1;

this is a symmetric relation attached to R. Clearly,

x, y ∈ X, xSy if and only if xRy or yRx.

Definition 3.1. [17] We say that T : A→ B is proximal comparative mapping if

x1Sx2
d(u1,Tx1) = d(A,B)
d(u2,Tx2) = d(A,B)

 implies u1Su2,

for all x1, x2,u1,u2 ∈ A.

We now prove our second new result.

Theorem 3.2. Let A and B be nonempty closed subsets of a b-complete b-metric space (X, d) with A0 is nonempty.
Let R be a binary relation on X. Suppose that T : A → B is a non-self continuous mapping satisfying the following
conditions:

(i) T(A0) ⊆ B0, and (A,B) satisfies the P-property;

(ii) T is a proximal comparative mapping;

(iii) there exist elements x0 and x1 in A0 such that

d(x1,Tx0) = d(A,B), x0Sx1;

(iv) for some x, y ∈ A : xSy implies ξ(d(Tx,Ty), λM(x, y)) ≥ 0.

Then there exists an element x∗ ∈ A0 such that d(x∗,Tx∗) = d(A,B).

Proof. Define a mapping α : A × A→ [0,∞) by

α(x, y) =

{
1 xSy,
0 otherwise. (3.1)

Suppose that
α(x1, x2) ≥ 1,

d(u1,Tx1) = d(A,B),
d(u2,Tx2) = d(A,B).

For some x1, x2,u1,u2 ∈ A. By the definition of α, we get that
x1Sx2,

d(u1,Tx1) = d(A,B),
d(u2,Tx2) = d(A,B).

By (ii) we have u1Su2, and by the definition of α, we get α(u1,u2) ≥ 1 and so T is α-proximal admissible. Condition
(iii) implies that

d(x1,Tx0) = d(A,B) and α(x0, x1) ≥ 1.
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From (iv), we have

0 ≤ ξ(d(Tx,Ty), λM(x, y))
< λM(x, y) − d(Tx,Ty)

this implies

0 ≤ d(Tx,Ty) ≤ α(x, y)d(Tx,Ty) ≤ λM(x, y)
≤ λM(x, y) − α(x, y)d(Tx,Ty)
≤ ξ(α(x, y)d(Tx,Ty), λM(x, y))

for all x, y ∈ A, that is, T is modified α-typeZ-contraction. All the conditions of Theorem 2.3 are satisfied, hence the
result follows.

Condition of continuity can be replaced with the one:

(P): If the sequence {xn} in A and the point x ∈ A are such that xnSxn+1 for all n and lim
n→∞

d(xn, x) = 0, then

there exists a subsequence {xnk } of {xn} such that xnkSx for all k.

Theorem 3.3. Let A and B be nonempty closed subsets of a b-complete b-metric space (X, d) with A0 is nonempty.
Let R be a binary relation on X. Suppose that T : A→ B is a non-self mapping satisfying the following conditions:

(i) T(A0) ⊆ B0, and (A,B) satisfies the P-property;

(ii) T is a proximal comparative mapping;

(iii) there exist elements x0 and x1 in A0 such that

d(x1,Tx0) = d(A,B), x0Sx1;

(iv) for some x, y ∈ A, xSy implies ξ(d(Tx,Ty), λM(x, y)) ≥ 0;

(v) (P) holds.

Then there exists an element x∗ ∈ A0 such that d(x∗,Tx∗) = d(A,B).

Proof. The result follows from Theorem 2.5 by considering the mapping α given by (3.1) and by observing that
condition (P) implies condition (R).

3.1. Coupled best proximity point results in b-metric space endowed with an arbitrary binary relation

We now apply the results obtained in previous section to prove the existence of coupled best proximity
points.

Definition 3.4. [34] Let A and B be two subsets of a b-metric space (X, d). An element (x∗, y∗) ∈ A × A
is called coupled best proximity point of the mapping F : A × A → B if d(x∗,F(x∗, y∗)) = d(A,B) and
d(y∗,F(y∗, x∗)) = d(A,B).

We need the following notations:

X := X × X, A := A × A, B := B × B.

Define the non-self mapping T : A×A→ B by

T(x, y) = (F(x, y),F(y, x)), for all (x, y) ∈ A.

We endow the product set Xwith the b-metric d1 given by

d1((x, y), (u, v)) = d(x,u) + d(y, v), for all (x, y), (u, v) ∈ X.

Clearly, if (X, d) is complete, then (X, d1) is complete.
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Definition 3.5. [17] We say that F : A × A→ B is bi-proximal comparative mapping if

x1Sx2, y1Sy2
d(u1,F(x1, y1)) = d(A,B)
d(u2,F(x2, y2)) = d(A,B)

 implies u1Su2,

for all x1, x2, y1, y2,u1,u2 ∈ A.

We now prove the following coupled best proximity point result:

Theorem 3.6. Let A and B be nonempty closed subsets of a b-complete b-metric space (X, d) with A0 is nonempty. Let
R be a binary relation on X. Suppose that F : A × A→ B a continuous mapping satisfying the following conditions:

(i) F(A0 × A0) ⊆ B0 and (A,B) satisfies the P-property;

(ii) F is bi-proximal comparative mappings;

(iii) there exist elements x0, x1, y0, y1 in A0 such that

d(x1,F(x0, y0)) = d(y1,F(y0, x0)) = d(A,B) and x0Sx1, y0Sy1;

(iv) there exist ξ ∈ Z∗ such that x, y,u, v ∈ A, xSu, ySv implies

ξ(d(F(x, y),F(u, v)) + d(F(y, x),F(v,u)), λM(x, y,u, v)) ≥ 0,

where

M(x, y,u, v) = max{d(x,u) + d(y, v), d(x,F(x, y)) + d(y,F(y, x)), d(u,F(u, v)) + d(v,F(v,u))}.

Then there exist x∗, y∗ ∈ A0 such that

d(x∗,F(x∗, y∗)) = d(y∗,F(y∗, x∗)) = d(A,B).

Proof. Define the binary relation R1 over X by

(x, y), (u, v) ∈ X, (x, y)R1(u, v)⇔ xSu, ySv.

If we denote by S1 the symmetric relation attached to R1, clearly, we have S1 = R1.
To complete the proof we have to show that T : A→ B has a best proximity point z∗ = (x∗, y∗) ∈ A0 ×A0, that is ,

d1(z∗,Tz∗) = d1(A,B).

Since F is continuous, it follows that T is continuous.
Now defineA0 and B0 by

A0 = {(a1, a2) ∈ A : d1((a1, a2), (b1, b2)) = d1(A,B) f or some (b1, b2) ∈ B}
B0 = {(b1, b2) ∈ B : d1((a1, a2), (b1, b2)) = d1(A,B) f or some (a1, a2) ∈ A}.

We can observe that
d1(A,B) = 2d(A,B).

In fact, we have

d1(A,B) = inf {d1((a1, a2), (b1, b2)) : (a1, a2) ∈ A, (b1, b2) ∈ B}
= inf {d(a1, b1) + d(a2, b2) : (a1, b1) ∈ A × B, (a2, b2) ∈ A × B}
= inf {d(a1, b1) : (a1, b1) ∈ A × B} + inf {d(a2, b2) : (a2, b2) ∈ A × B}
= d(A,B) + d(A,B)
= 2d(A,B).
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Now, let (a1, a2) ∈ A0. Then, there exists (b1, b2) ∈ B such that

d1((a1, a2), (b1, b2)) = d1(A,B),

that is,
d(a1, b1) + d(a2, b2) = 2d(A,B).

Thus we have
d(a1, b1) + d(a2, b2) = 2d(A,B),

d(a1, b1) ≥ d(A,B),
d(a2, b2) ≥ d(A,B),

which implies that
d(a1, b1) = d(a2, b2) = d(A,B).

Similarly, if (a1, a2) ∈ A0 × A0, we have (a1, a2) ∈ A0. Thus we proved that

A0 = A0 × A0.

Similarly we can show that
B0 = B0 × B0.

Since A0 is nonempty, thenA0 is nonempty. On the other hand, from condition (i), we have

T(A0) = {(F(x, y),F(y, x)) : (x, y) ∈ A0 × A0} ⊂ F(A0 × A0) ⊆ B0.

Suppose now that for some (a1, a2), (x1, x2) ∈ A and (b1, b2), (y1, y2) ∈ B, we have

d1((a1, a2), (b1, b2)) = d1(A,B),
d1((x1, x2), (y1, y2)) = d1(A,B).

Since (A,B) satisfies the P-property, we get that

d(a1, x1) = d(b1, y1) and d(a2, x2) = d(b2, y2),

which implies that
d1((a1, a2), (x1, x2)) = d1((b1, b2), (y1, y2)).

Thus we have proved that the pair (A,B) satisfies the P-property.
Suppose that for some (a1, a2), (x1, x2), (u1,u2), (v1, v2) ∈ A, we have

(a1, a2)S1(x1, x2),
d1((u1,u2),T(a1, a2)) = d(A,B),
d1((v1, v2),T(x1, x2)) = d(A,B).

This implies that

a1Sx1, a2Sx2

d(u1,F(a1, a2)) = d(A,B),
d(v1,F(x1, x2)) = d(A,B),

and

a2Sx2, a1Sx1

d(u2,F(a2, a1)) = d(A,B),
d(v2,F(x2, x1)) = d(A,B).

Since F is bi-proximal comparative mapping, we get that
u1Sv1 and u2Sv2,

that is, (u1,u2)S1(v1, v2). Thus we proved that T is proximal comparative mapping. Now, from condition (iii), we
have
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d(x1,F(x0, y0)) + d(y1,F(y0, x0)) = 2d(A,B) and (x0, y0)S1(x1, y1),

which implies that

d1((x1, y1),T(x0, y0)) = d1(A,B) and (x0, y0)S1(x1, y1).

Now let p = (x, y), q = (u, v) ∈ A0 such that pS1q, that is xSu and ySv, then

d1(p, q) = d(x,u) + d(y, v),
d1(Tp,Tq) = d(F(x, y),F(u, v)) + d(F(y, x),F(v,u)),

d1(p,Tp) = d(x,F(x, y)) + d(y,F(y, x)),
d1(q,Tq) = d(u,F(u, v)) + d(v,F(v,u)).

So, condition (iv) is reduced to

ξ(d1(Tp,Tq), λM(p, q)) ≥ 0, where

M(p, q) = max {d1(p, q), d1(p,Tp), d1(q,Tq)}.

Hence T satisfies all the hypothesis of Theorem 3.2 and thus T has a best proximity point inA0, that is, there exist an
element z∗ = (x∗, y∗) ∈ A0, such that

d1(z∗,Tz∗) = d1(A,B);

which implies that,
d1((x∗, y∗),T(x∗, y∗)) = d1(A × A,B × B).

That is
d(x∗,F(x∗, y∗) + d(y∗,F(y∗, x∗) = d(A,B) + d(A,B)

from which we have

d(x∗,F(x∗, y∗) = d(A,B) and d(y∗,F(y∗, x∗) = d(A,B).

Therefore (x∗, y∗) ∈ A0 × A0 is coupled best proximity point of F.

Similarly, from Theorem 3.3, we get the following result:

Theorem 3.7. Let A and B be nonempty closed subsets of a b-complete b-metric space (X, d) such that A0 is nonempty.
Let R be a binary relation on X. Suppose that F : A × A→ B is a mapping satisfying the following conditions:

(i) F(A0 × A0) ⊆ B0 and (A,B) satisfies the P-property;

(ii) F is a bi-proximal comparative mappings;

(iii) there exist elements x0, x1, y0, y1 in A0 such that

d(x1,F(x0, y0)) = d(y1,F(y0, x0)) = d(A,B) and x0Sx1, y0Sy1;

there exist ξ ∈ Z∗ such that x, y,u, v ∈ A, xSu, ySv implies

ξ(d(F(x, y),F(u, v)) + d(F(y, x),F(v,u)), λM(x, y,u, v)) ≥ 0,

where

M(x, y,u, v) = max {d(x,u) + d(y, v), d(x,F(x, y)) + d(y,F(y, x)), d(u,F(u, v)) + d(v,F(v,u))}.

(iv) (P) holds.

Then there exist x∗, y∗ ∈ A0 such that

d(x∗,F(x∗, y∗)) = d(y∗,F(y∗, x∗)) = d(A,B).
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4. Some Fixed Point Results

Taking A = B = X in Theorem 2.3 (respectively in Theorem 2.5, 2.6), we obtain the following fixed point
results:

Theorem 4.1. Let (X, d) be a b-complete b-metric space and α : X × X → [0,∞). Suppose that T : X → X a self
mapping satisfying the following conditions:

(i) T is α-admissible;

(ii) T is continuous modified α-typeZ-contraction with respect to ξ ∈ Z∗.

Then T has a fixed point.

Theorem 4.2. Let (X, d) be a b-complete b-metric space and α : X × X → [0,∞). Suppose that T : X → X is a self
mapping satisfying the following conditions:

(i) T is α-admissible;

(ii) T is continuous modified α-typeZ-contraction with respect to ξ ∈ Z∗;

(iii) (H) holds.

Then T has a fixed point.

Theorem 4.3. Let (X, d) be a b-complete b-metric space and α : X × X → [0,∞). Suppose that T : X → X is a self
mapping satisfying the following conditions:

(i) T is α-admissible;

(ii) T is continuous modified α-typeZ-contraction with respect to ξ ∈ Z∗;

(iii) (U) holds.

Then T has a unique fixed point.

4.1. Fixed point results in b-metric space endowed with an arbitrary binary relation
Taking A = B = X in Theorem 3.2 (respectively in Theorem 3.3, 3.6), we obtain the following fixed point

results:

Definition 4.4. [30] A mapping T : X → X is called comparative mapping if it maps comparable elements
into comparable elements, that is,

x, y ∈ X, xSy implies TxSTy.

Theorem 4.5. Assume that T : X→ X is a continuous comparative map, and

x, y ∈ X, xSy implies ξ(d(Tx,Ty), λM(x, y)) ≥ 0,

where ξ ∈ Z∗. Suppose that there exists x0 ∈ X such that x0STx0. Then T has a fixed point.

Theorem 4.6. Assume that T : X→ X is a comparative map satisfying

x, y ∈ X, xSy implies ξ(d(Tx,Ty), λM(x, y)) ≥ 0,

for some ξ ∈ Z∗. Suppose that there exists x0 ∈ X such that x0STx0 and (P) holds. Then T has a fixed point.

Theorem 4.7. In addition to the hypothesis of Theorem 4.5 (resp. Theorem 4.6), suppose that for all (x, y) ∈ X × X
with (x, y) < S, there exists z ∈ X such that xSz and ySz. Then T has a unique fixed point.
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4.2. Coupled fixed point results in b-metric space endowed with an arbitrary binary relation
We continue to use same notation as in Section 4.1. We need the following definitions:

Definition 4.8. [17] Let F : X × X→ X be a given mapping. We say that F is a bi-comparative mapping if

(x1, y1), (x2, y2) ∈ X × X, x1Sx2, y1Sy2 implies F(x1, y1)SF(x2, y2).

Definition 4.9. [34] Let F : X × X → X be a given mapping. We say that (x, y) ∈ X × X is a coupled fixed
point of F if

x = F(x, y) and y = F(y, x).

We now have the following coupled fixed point results:

Theorem 4.10. Suppose that F : X × X→ X is a continuous mapping satisfying the following conditions:

(i) F is a bi-comparative mapping;

(ii) there exist elements x0, y0 in X such that

x0SF(x0, y0), y0SF(y0, x0);

(iii) there exist ξ ∈ Z∗ and λ ∈ (0, 1) such that x, y,u, v ∈ X, xSu, ySv implies

ξ(d(F(x, y),F(u, v)) + d(F(y, x),F(v,u)), λM(x, y,u, v)) ≥ 0,

where

M(x, y,u, v) = max {d(x,u) + d(y, v), d(x,F(x, y)) + d(y,F(y, x)), d(u,F(u, v)) + d(v,F(v,u))}.

Then F has a coupled fixed point.

Proof. It follows immediately from Theorem 3.6 by taking A = B = X and that a bi-proximal comparative mapping
is a bi-comparative mapping.

Theorem 4.11. Suppose that F : X × X→ X is a mapping satisfying the following conditions:

(i) F is a bi-comparative mapping;

(ii) there exist elements x0, y0 in X such that

x0SF(x0, y0), y0SF(y0, x0);

(iii) there exist ξ ∈ Z∗ and λ ∈ (0, 1) such that x, y,u, v ∈ X, xSu, ySv implies

ξ(d(F(x, y),F(u, v)) + d(F(y, x),F(v,u)), λM(x, y,u, v)) ≥ 0,

where

M(x, y,u, v) = max {d(x,u) + d(y, v), d(x,F(x, y)) + d(y,F(y, x)), d(u,F(u, v)) + d(v,F(v,u))};

(iv) (P) holds.

Then F has a coupled fixed point.

Theorem 4.12. In addition to the hypothesis of Theorem 4.10 (resp. Theorem 4.11), suppose that for all (x, y) ∈ X×X,
there exists z ∈ X such that xSz and ySz. Then T has a unique coupled fixed point (x∗, y∗) ∈ X × X. Moreover, we
have x∗ = y∗.
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5. Application to Integral Equations

We now apply Theorem 4.1 to prove the existence of solution to the nonlinear integral equations.

Theorem 5.1. Let C[a, b] be the set of all continuous functions on [a, b], the b-metric d with k = 2p−1 defined by
d(u, v) = supt∈[a,b] |u(t) − v(t)|p for all u, v ∈ C[a, b] and some p > 1. Consider the nonlinear integral equation

u(t) = 1(t) +

∫ b

a
K(t, x,u(x))dx,

where t ∈ [a, b], 1 : [a, b]→ R,K : [a, b] × [a, b] × u[a, b]→ R for each u ∈ C[a, b].
Suppose that the following hold:

(i) 1 is continuous on [a, b] and K(t, x,u(x)) is integrable with respect to x on [a, b];

(ii) Tu ∈ C[a, b] for all u ∈ [a, b], where Tu(t) = 1(t) +
∫ b

a K(t, x,u(x))dx for all t ∈ [a, b];

(iii) for all u ∈ C[a, b] and u(x) ≥ 0 for all x ∈ [a, b], we have Tu(x) ≥ 0 for all x ∈ [a, b];

(iv) For all x, t ∈ [a, b] and u, v ∈ C[a, b] such that u(x), v(x) ∈ [0,∞) for all x ∈ [a, b], we have

|K(t, x,u(x)) − K(t, x, v(x))| ≤ µ(t, x) max
{
|u(x) − v(x)|, |u(x) − Tu(x)|, |v(x) − Tv(x)|

}
,

where µ : [a, b] × [a, b]→ R is a continuous function satisfying

sup
t∈[a,b]

( ∫ b

a
µp(t, x)dx

)
<

λ

2p(b − a)p−1 , where λ ∈ (0, 1);

(v) there exist u1 ∈ C[a, b] such that u1(t) ≥ 0 and Tu1(t) ≥ 0 for all t ∈ [a, b].

Then the given integral equation has a unique solution in C[a, b].

Proof. Define a mapping T : C[a, b]→ C[a, b] by

Tu(t) = 1(t) +

∫ b

a
K(t, x,u(x))dx

for all u ∈ C[a, b] and for all t ∈ [a, b]. It follows from hypothesis (i) and (ii) that T is well-defined. Notice that the
existence of solution of given integral equation is equivalent to the existence of fixed point of T. Now, we will show
that all hypothesis of Theorem 4.1 are satisfied.

Define a mapping α : C[a, b] × C[a, b]→ R by

α(u, v) =

{
1 if u(x), v(x) ∈ [0,∞) for all x ∈ [a, b]
0 otherwise.

We shall show that T is α-proximal admissible mapping. Indeed, for u, v ∈ C[a, b] such that α(u, v) ≥ 1, we have
u(x), v(x) ≥ 0 for all x ∈ [a, b]. It follows from condition (iii) that Tu(x),Tv(x) ≥ 0. Therefore α(Tu(x),Tv(x)) ≥ 1
and hence T is α-proximal admissible mapping.

We claim that T is α-type modifiedZ-contraction mapping. That is, there exist ξ ∈ Z∗ such that

ξ(α(x, y)d(Tx,Ty), λM(x, y)) ≥ 0,

for each x, y ∈ C[a, b], where
M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty)}.
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Let ξ(s, t) = t − 2s. Indeed, let q > 1 such that 1
p + 1

q = 1. From condition (4), for all u, v ∈ C[a, b] such that
u(x), v(x) ∈ [0,∞) for all x ∈ [a, b], we have

2pα(u, v)|Tu(x) − Tv(x)|p

= 2p
|Tu(x) − Tv(x)|p

≤ 2p

∣∣∣∣∣∣
∫ b

a
K(t, x,u(x))dx −

∫ b

a
K(t, x, v(x))dx

∣∣∣∣∣∣
p

≤ 2p

∣∣∣∣∣∣
∫ b

a
(K(t, x,u(x)) − K(t, x, v(x)))dx

∣∣∣∣∣∣
p

≤ 2 × 2p−1

( ∫ b

a
|K(t, x,u(x)) − K(t, x, v(x))|dx

)p

≤ 2 ×
[
2p−1

( ∫ b

a
dx

) 1
q
( ∫ b

a
|K(t, x,u(x)) − K(t, x, v(x))|pdx

) 1
p
]p

≤ 2p−1(b − a)p−1

( ∫ b

a
µp(t, x)dx

)(
max

{
|u(x) − v(x)|p, |u(x) − Tu(x)|p, |v(x) − Tv(x)|p

})
≤ 2p−1(b − a)p−1

( ∫ b

a
µp(t, x)dx

)(
max

{
sup

x∈[a,b]
|u(x) − v(x)|p, sup

x∈[a,b]
|u(x) − Tu(x)|p, sup

x∈[a,b]
|v(x) − Tv(x)|p

})
≤ 2p−1(b − a)p−1

(∫ b

a
µp(t, x)dx

)
(max {d(x, y), d(x,Tx), d(y,Ty)})

= 2p(b − a)p−1

(∫ b

a
µp(t, x)dx

)
M(u, v)

≤ 2p(b − a)p−1 sup
t∈[a,b]

(∫ b

a
µp(t, x)dx

)
M(u, v)

< λM(u, v),

where 2p(b − a)p−1 supt∈[a,b](
∫ b

a µ
p(t, x)dx) < λ. This implies that

2pα(u, v)|Tu(x) − Tv(x)|p ≤ λM(u, v).

Now
ξ(α(u, v)d(Tu(x),Tv(x)), λM(x, y)) = λM(u, v) − 2α(u, v)d(Tu(x),Tv(x))

= λM(u, v) − 2pα(u, v)|Tu(x) − Tv(x)|p > 0.

Therefore, T is α-type modifiedZ-contraction mapping.
Let {un} ⊂ C[a, b] such that α(un,un+1) ≥ 1 and lim

n→∞
un = u ∈ C[a, b]. Then u(x),un(x) ∈ [0,∞) for all x ∈ [a, b]

and n ≥ 0. Therefore, α(un,u) ≥ 1 for all n ≥ 1.
Therefore, we conclude that all the hypothesis of Theorem 4.1 are satisfied. Thus, T has a fixed point u ∈ C[a, b]

and hence given integral equation has a solution u ∈ C[a, b].

6. Application to Matrix Equations

In this section, an illustration of Theorem 4.10 to guarantee the existence of positive definite solution of
nonlinear matrix equations is given. We shall use the following notations: LetM(n) be the set of all n × n
complex matrices, H(n) ⊆ M(n) be the class of all n × n Hermitian matrices, P(n) ⊆ H(n) be the set of all
n×n Hermitian positive definite matrices, H+(n) ⊆ H(n) be the set of all n×n positive semidefinite matrices.
Instead of X ∈ P(n) we will write X � 0.
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Furthermore, X � 0 means X ∈ H+(n). Also we will use X � Y(X � Y) instead of X − Y � 0(Y − X � 0).
Also, for every X,Y ∈ H(n) there is a greatest lower bound and a least upper bound. The symbol ||.||
denotes the spectral norm of the matrix A, that is, ||A|| =

√
λ+(A∗A) such that λ+(A∗A) is the largest

eigenvalue of A∗A where A∗ is the conjugate transpose of A. We denote by ||.||τ the Ky Fan norm defined

by ||A||τ =
n∑

i=1
si(A) = tr((A∗A)

1
2 ), where si(A), i = 1, ...,n, are the singular values of A ∈ M(n) and tr(A)

for (Hermitian) nonnegative matrices. For a given Q ∈ P(n) we denote the modified norm ||.||τ,Q by
||A||τ,Q = ||Q

1
2 AQ

1
2 ||τ. The set H(n) equipped with the metric induced by ||.||1,Q is a complete metric space

for any positive definite matrix Q. Moreover, H(n) is a partially ordered set with partial order � where
X � Y⇔ Y � X.
Denote d(X,Y) = ||Y − X||τ,Q = tr(Q

1
2 (γ(Y) − γ(X))Q

1
2 ). We consider the following class of non-linear matrix

equation:

X = Q +

m∑
i=1

A∗iγ(X)Ai −

m∑
i=1

B∗iγ(X)Bi, (6.1)

where Q ∈ P(n), Ai,Bi, i = 1, 2, ...m, are arbitrary n × n matrices and a continuous mapping γ : H(n)→ H(n)
which maps P(n) into P(n). Matrix equations of this type often arise from many areas, such as ladder
networks [2, 4], dynamic programming [24], control theory [14], etc. Assume that γ is an order-preserving
(γ is order preserving if A,B ∈ H(n) with A � B implies that γ(A) � γ(B).

Lemma 6.1. [29] Let A � 0 and B � 0 be n × n matrices. Then 0 ≤ tr(AB) ≤ ||A||.tr(B).

Lemma 6.2. [22] Let A ∈ H(n) satisfy A ≺ I; then ||A|| < 1.

Theorem 6.3. Let γ : H(n) → H(n) be an order-preserving mapping which maps P(n) into P(n) and Q ∈ P(n).
Assume that

(i) there exist a positive number R for which∑m
i=1 Q−

1
2 AiQA∗i Q

−
1
2 � RIn ,

∑m
i=1 Q−

1
2 BiQB∗i Q

−
1
2 � RIn,

(ii)
∑m

i=1 A∗iγ(Q)Ai � 0,
∑m

i=1 B∗iγ(Q)Bi � 0,

(iii) for all X � U, Y � V and λ ∈ (0, 1), we have

d(γ(X), γ(U)) ≤
λ

2R
M(X,Y,U,V) and d(γ(Y), γ(V)) ≤

λ
2R

M(X,Y,U,V),

where

M(X,Y,U,V) = max {d(X,U) + d(Y,V), [d(X,F(X,Y)) + d(Y,F(Y,X))], [d(U,F(U,V)) + d(V,F(V,U))]}.

Then (6.1) has a solution in P(n).

Proof. We claim that there exist (X,Y) ∈ H(n) ×H(n), a solution to the system{
X = Q +

∑m
i=1 A∗iγ(X)Ai −

∑m
i=1 B∗iγ(Y)Bi,

Y = Q +
∑m

i=1 A∗iγ(Y)Ai −
∑m

i=1 B∗iγ(X)Bi.
(6.2)

Define F : H(n) ×H(n)→ H(n) by

F(X,Y) = Q +

m∑
i=1

A∗iγ(X)Ai −

m∑
i=1

B∗iγ(Y)Bi, (6.3)
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for all X,Y ∈ H(n). It is clear that F is a mapping having the bi-comparative property with respect to symmetric
relation S. Then a coupled fixed point of F is a solution of (6.2). Let X,Y,U,V ∈ H(n) with X � U,Y � V, then
γ(X) � γ(Y), γ(Y) � γ(V). So, we have

d(F(X,Y) − F(U,V)) = ||F(X,Y) − F(U,V)||τ,Q

= tr(Q
1
2 (F(X,Y) − F(U,V))Q

1
2 )

= tr
(
Q

1
2

( m∑
i=1

A∗iγ(X)Ai −

m∑
i=1

B∗iγ(Y)Bi −

m∑
i=1

A∗iγ(U)Ai +

m∑
i=1

B∗iγ(V)Bi

)
Q

1
2

)

=

m∑
i=1

tr(Q
1
2 (A∗i (γ(X) − γ(U))Ai) + (B∗i (γ(V) − γ(Y))Bi)Q

1
2 )

=

m∑
i=1

tr(Q
1
2 (A∗i (γ(X) − γ(U))Ai)Q

1
2 ) + tr(Q

1
2 (B∗i (γ(V) − γ(Y))Bi)Q

1
2 )

=

m∑
i=1

tr(AiQA∗i (γ(X) − γ(U))) + tr(BiQB∗i (γ(V) − γ(Y)))

=

m∑
i=1

tr(AiQA∗i Q
−

1
2 Q

1
2 (γ(X) − γ(U))Q

1
2 Q−

1
2 ) + tr(BiQB∗i Q

−
1
2 Q

1
2 (γ(V) − γ(Y))Q

1
2 Q−

1
2 )

=

m∑
i=1

tr(Q−
1
2 AiQA∗i Q

−
1
2 Q

1
2 (γ(X) − γ(U))Q

1
2 ) + tr(Q−

1
2 BiQB∗i Q

−
1
2 Q

1
2 (γ(V) − γ(Y))Q

1
2 )

= tr
( m∑

i=1

Q−
1
2 AiQA∗i Q

−
1
2 (Q

1
2 (γ(X) − γ(U))Q

1
2 )
)

+ tr
( m∑

i=1

Q−
1
2 BiQB∗i Q

−
1
2 (Q

1
2 (γ(V) − γ(Y))Q

1
2 )
)

≤

∥∥∥∥∥∥ m∑
i=1

Q−
1
2 AiQA∗i Q

−
1
2

∥∥∥∥∥∥||γ(X) − γ(U)||τ,Q +

∥∥∥∥∥∥ m∑
i=1

Q−
1
2 BiQB∗i Q

−
1
2

∥∥∥∥∥∥||γ(V) − γ(Y)||τ,Q

≤

λ

∥∥∥∥∥∥∑m
i=1 Q−

1
2 AiQA∗i Q

−
1
2

∥∥∥∥∥∥
R

M(Y,X,U,V) +

λ

∥∥∥∥∥∥∑m
i=1 Q−

1
2 BiQB∗i Q

−
1
2

∥∥∥∥∥∥
R

M(Y,X,U,V)

≤
λM(X,Y,U,V)

2
+
λM(X,Y,U,V)

2
= λM(X,Y,U,V).

Thus, the contractive condition of Theorem (4.10) is satisfied for all X,Y,U,V ∈ H(n) with X � U and Y � V. Now
from Theorem (4.10), we conclude that F has a coupled fixed point and hence matrix equation (6.2) has a solution in
H(n) ×H(n).

Since, (X,Y) is coupled fixed point of F and let X = Y =X̂. Thus X̂∈ H(n) is a solution of (6.1).
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