On Warped Product Semi-Slant Submanifolds of Nearly Trans-Sasakian Manifolds

Abstract. In this paper, we study warped product semi-slant submanifold of type $M = N_T \times_f N_\theta$ with slant fiber, isometrically immersed in a nearly Trans-Sasakian manifold by finding necessary and sufficient conditions in terms of Weingarten map. A characterization theorem is proved as main result.

1. Introduction

The study on warped product submanifolds got momentum after B.-Y. Chen’s papers on CR-warped product [13, 14]. A contact CR-warped product submanifold is the Riemannian product of invariant and anti-invariant submanifold. It was proved in [21] that there does not exist any contact CR-warped product of type $M = N_L \times_f N_\theta$, of nearly Trans-Sasakian manifolds in both cases when structure field tangent to either base manifold or fiber. Also, it was also found in the same paper, the non-trivial contact CR-warped product of the form $M = N_T \times_f N_L$, in a nearly Trans-Sasakian manifold such that N_T invariant tangent to Reeb vector field. Similarly, the Riemannian product of invariant and slant submanifolds with non constant warping function is called warped product semi-slant submanifold. The non-existence of the warped product semi-slant submanifold $M = N_0 \times_f N_T$, isometrically immersed in a nearly Trans-Sasakian manifold with structure vector field is tangent N_0 and N_T has discussed in [22]. On the other hand, the existence case of the non-trivial warped product semi-slant submanifold of type $M = N_T \times_f N_\theta$, in a nearly Trans-Sasakian manifold has been proved in [22] with N_T is an invariant submanifold which is tangent to the Reeb vector field and constructed a geometric inequality for the extrinsic invariant in terms of warping function. Therefore, it is natural to see that the warped product semi-slant submanifold is a generalized version of contact CR-warped product submanifold in case of a nearly Trans-Sasakian manifold. Similar notions have been studied in the series of articles [1–8, 17, 21, 22, 24–29]. In this paper, we prove a characterization theorem involving the shape operator under which a semi-slant submanifold of a nearly Trans-Sasakian manifold reduces to a warped product.
2. Preliminaries

An almost contact manifold is an odd-dimensional manifold \tilde{M} which carries a field φ of endomorphisms of tangent space, vector field ξ, called characteristic or Reeb vector field and a 1-form η satisfying

$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

(2.1)

where $I : TM \to TM$ is the identity mapping. Now from definition it follows that $\varphi \circ \xi = 0$ and $\eta \circ \varphi = 0$, then the $(1, 1)$ tensor field φ has constant rank $2n$ (cf. [9]). An almost contact manifold $(\tilde{M}, \varphi, \eta, \xi)$ is said to be normal when the tensor field $N_\varphi = [\varphi, \varphi] + 2d\eta \otimes \xi$ vanishes identically, where $[\varphi, \varphi]$ is the Nijenhuis of φ.

An almost contact metric structure (φ, ξ, η) is said to be a normal in the form of almost complex structure if almost complex structure J on a product manifold $\tilde{M} \times \mathbb{R}$ given by

$$f(U, f \frac{d}{dt}) = \left(\varphi U - f \xi, \eta(U) \frac{d}{dt}\right),$$

where f is a smooth function on $\tilde{M} \times \mathbb{R}$, has no torsion, i.e., J is integrable. Every almost contact manifold $(\tilde{M}, \varphi, \eta, \xi)$ admits a Riemannian metric g which is satisfying

$$g(\varphi U, \varphi V) = g(U, V) - \eta(X)\eta(Y), \quad \eta(U) = g(U, \xi),$$

(2.2)

for all $U, V \in \Gamma(TM)$. This metric g is called compatible metric and the manifold \tilde{M} endowed with the structure (φ, η, ξ, g) is called an almost contact metric manifold. As an immediate consequence of (2.1), we have $g(\varphi U, V) = -\eta(U)\eta(V)$. Hence, the second fundamental 2-form Φ is defined by $\Phi(U, V) = g(\varphi U, V)$. Any almost contact metric such that both η and Φ are closed is called almost cosymplectic manifold and those for which $d\eta = \Phi$ are called contact metric manifolds. Finally, a normal almost cosymplectic manifold is called cosymplectic manifold and a normal contact manifold is called Sasakian manifold. In term of the covariant derivative of φ the cosymplectic and the Sasakian manifolds conditions can be expressed respectively by

$$(\nabla_U \varphi)V = 0, \quad \text{and} \quad (\nabla_U \varphi)V = g(U, V)\xi - \eta(V)U,$$

for all $U, V \in \Gamma(TM)$ (see [9]). It should be noted that both in cosymplectic and Sasakian manifolds ξ is killing vector field. On the other hand, the Sasakian and the cosymplectic manifolds represent the two external cases of the larger class of quasi-Sasakian manifolds. An almost contact metric structure (φ, η, ξ) is said to be nearly Trans-Sasakian manifold (cf. [19]) i.e., if

$$(\nabla_U \varphi)V + (\nabla_V \varphi)U = a(2g(U, V)\xi - \eta(U)V - \eta(V)U) - \beta(\eta(V)\varphi U + \eta(U)\varphi V),$$

(2.3)

for any U, V tangent to \tilde{M}, where ∇ is the Riemannian connection metric g on \tilde{M}. If we replace $U = \xi, V = \xi$ in (2.3), we find that $(\nabla_\xi \varphi)\xi = 0$ which is implies that $\varphi \nabla_\xi \xi = 0$. Now applying φ and using (2.1), we get $\nabla_\xi \xi = 0$. Since from Gauss formula finally, we get $\nabla_\xi \xi = 0$ and $h(\xi, \xi) = 0$. For more classification (see [? ? ?]).

Note 2.1. If $\alpha = 0$ and $\beta = 0$ in (2.3), then nearly Trans-Sasakian becomes nearly cosymplectic manifold, if $\alpha = 1$ and $\beta = 0$ in (2.3), thus its called nearly Sasakian manifold. Let $\alpha = 0$ and $\beta = 1$ in (2.3), then nearly Trans-Sasakian turn into nearly Kenmotsu manifold. Similarly nearly α-Sasakian manifold and nearly β–Kenmotsu manifold can be defined from the nearly Trans-Sasakian manifold by substituting $\beta = 0$ and $\alpha = 0$ in (2.3), respectively.

Now let M be a submanifold of \tilde{M}, then we will denote by ∇ is the induced Riemannian connection on M and g is the Riemannian metric on M as well as the metric induced on M. Let TM and T^*M be the Lie algebra of vector fields tangent to M and normal to M, respectively and ∇^\perp the induced connection on T^*M. Denote by $\mathcal{F}(M)$ the algebra of smooth functions on M and by $\Gamma(TM)$ the $\mathcal{F}(M)$-module of smooth sections of TM over M. Then the Gauss and Weingarten formulas are given by

$$\nabla_U V = \nabla_U T + h(U, V).$$

(2.4)

$$\nabla_U N = -A_N U + \nabla_U T,$$

(2.5)
for each $U, V \in \Gamma(TM)$ and $N \in \Gamma(T^\perp M)$, where h and A_N are the second fundamental form and the shape operator (corresponding to the normal vector field N) respectively for the immersion of M into \tilde{M}. They are related as:

$$g(h(U, V), N) = g(A_N U, V).$$

(2.6)

Now, for any $U \in \Gamma(TM)$, we defined as:

$$\varphi U = TU + FU,$$

(2.7)

where TU and FU are the tangential and normal components of φU, respectively. If M is invariant and anti-invariant, then FU and TU are identically zero, respectively. Similarly for any $N \in \Gamma(T^\perp M)$, we have

$$\varphi N = tN + fN,$$

(2.8)

where tN (resp. fN) is the tangential (resp. normal) components of φN. From (2.2) and (2.7), it is easy to observe that for each $U, V \in \Gamma(TM)$, $g(TU, V) = -g(U, TV)$. Further, the covariant derivative of the endomorphism φ is defined as

$$(\nabla_U \varphi)V = \nabla_U \varphi V - \varphi \nabla_U V, \ \forall U, V \in \Gamma(TM).$$

(2.9)

Proposition 2.1. On a nearly Trans-Sasakian manifold, the following condition is satisfied

$$g(\nabla_V \xi, U) + g(\nabla_U \xi, V) = 2\beta g(\varphi X, \varphi Y),$$

for any vector fields U, V tangent to \tilde{M}, where \tilde{M} is a nearly Trans-Sasakian manifold

Proof. Setting $U = \xi$ in (2.3), then we find

$$(\nabla_\xi \varphi)V + (\nabla_V \varphi)\xi = \alpha |2g(\xi, V)\xi - V - \eta(V)\xi\} - \beta \varphi V.$$

Taking the inner product with φU in the above equation we get

$$g((\nabla_\xi \varphi)V, \varphi U) = -g((\nabla_V \varphi)\xi, \varphi U) - \alpha g(V, \varphi U) - \beta g(\varphi V, \varphi U).$$

(2.10)

Interchanging U and V in the above equation, we derive

$$g((\nabla_\xi \varphi)U, \varphi V) = -g((\nabla_V \varphi)\xi, \varphi U) - \alpha g(U, \varphi V) - \beta g(\varphi V, \varphi U).$$

(2.11)

Adding equation (2.10) and (2.11), we find

$$g((\nabla_\xi \varphi)V, \varphi U) + g((\nabla_\xi \varphi)U, \varphi V) = -g((\nabla_V \varphi)\xi, \varphi U) - g((\nabla_V \varphi)\xi, \varphi V) - 2\beta g(\varphi V, \varphi U).$$

As left hand side of the above equation should be zero from the fact that $\nabla_\xi \varphi = 0$, for almost contact metric manifold, hence

$$-g((\nabla_V \varphi)\xi, \varphi U) - g((\nabla_V \varphi)\xi, \varphi V) = 2\beta g(\varphi V, \varphi U).$$

The proof follows from the above equations and this complete the proof of the Proposition. \qed

We denote the tangential and normal parts of $(\nabla_U \varphi)V$ by $P_U V$ and $Q_U V$ such that

$$(\nabla_U \varphi)V = P_U V + Q_U V$$
Then in a nearly Trans-Sasakian manifold, we have
\begin{align}
\mathcal{P}_U V + \mathcal{P}_V U &= \alpha(2\langle U, V \rangle \xi - \eta(U)V - \eta(V)U) - \beta[\eta(V)TU + \eta(U)TV], \\
\mathcal{Q}_U V + \mathcal{Q}_V U &= -\beta[\eta(V)FU + \eta(U)FV],
\end{align}
for any \(U, V \) are tangent to \(M \). It is straightforward to verify the following properties of \(\mathcal{P} \) and \(\mathcal{Q} \),
\begin{align}
(i) \quad \mathcal{P}_{U+V} W &= \mathcal{P}_U W + \mathcal{P}_V W, \\
(ii) \quad \mathcal{Q}_{U+V} W &= \mathcal{Q}_U W + \mathcal{Q}_V W, \\
(iii) \quad \mathcal{P}_U(W + Z) &= \mathcal{P}_U W + \mathcal{P}_U Z, \\
(iv) \quad \mathcal{Q}_U(W + Z) &= \mathcal{Q}_U W + \mathcal{Q}_U Z, \\
(v) \quad g(\mathcal{P}_U V, W) &= -g(V, \mathcal{P}_U W), \\
(vi) \quad g(\mathcal{Q}_U V, N) &= -g(V, \mathcal{Q}_U N), \\
(vii) \quad \mathcal{P}_U \phi V + \mathcal{Q}_U \phi V &= -\phi(\mathcal{P}_U V + \mathcal{Q}_U V).
\end{align}

Next we will give the definition of slant submanifold as follows:

Definition 2.1. [11] For each non zero vector \(U \) tangent to \(M \) at \(p \), such that \(U \) is not proportional to \(\xi \), we denote by \(0 \leq \theta(U) \leq \pi/2 \), the angle between \(\phi U \) and \(T_p M \) is called the Wirtinger angle. If the angle \(\theta(U) \) is constant for all \(U \in T_p M \), \(<\xi> \), and \(p \in M \). Then \(M \) is said to be a slant submanifold and the angle \(\theta \) is called slant angle of \(M \). Obviously if \(\theta = 0 \), \(M \) is invariant and if \(\theta = \pi/2 \), \(M \) is anti-invariant submanifold. A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.

In a contact metric manifold, J. L. Cabrerizo (cf. [11]) obtained the following theorem.

Theorem 2.1. Let \(M \) be a submanifold of an almost contact metric manifold \(\bar{M} \) such that \(\xi \in T M \). Then \(M \) is slant if and only if there exists a constant \(\lambda \in [0, 1] \) such that
\begin{equation}
T^2 = \lambda(-I + \eta \otimes \xi).
\end{equation}
Furthermore, in such a case, if \(\theta \) is slant angle, then it satisfies that \(\lambda = \cos^2 \theta \).

Hence, for a slant submanifold \(M \) of an almost contact metric manifold \(\bar{M} \), the following relations are consequences of the above theorem.
\begin{align}
g(TX, TY) &= \cos^2 \theta g(X, Y) - \eta(X)\eta(Y), \\
g(FX, FY) &= \sin^2 \theta g(X, Y) - \eta(X)\eta(Y)
\end{align}
for any \(X, Y \in \Gamma(TM) \). Another characterization of consequence of the Theorem 2.1 is easily derived as follows:

Theorem 2.2. Let \(M \) be a slant submanifold of an almost contact metric manifold \(\bar{M} \) such that \(\xi \in T M \). Then
\begin{align}
(a) \quad tFX &= \sin^2 \theta(-X + \eta(X)\xi), \quad \text{and} \quad (b) \quad fFX &= -FTX,
\end{align}
for any \(X \in \Gamma(TM) \).

3. Warped Product Semi-Slant Submanifolds

A natural generalization of CR-submanifolds of almost Hermitian manifolds in terms of slant distribution was described by N. Papaghiuc (cf. [23]). These submanifolds are known as semi-slant submanifolds. The semi-slant submanifolds of almost contact metric manifolds were defined and studied by Cabrerizo. They defined these submanifolds as:
Definition 3.1. [12] A Riemannian submanifold \(M \) of an almost contact manifold \(\tilde{M} \) is said to be a semi-slant submanifold if there exist two orthogonal distributions \(D \) and \(D^0 \) such that

(i) \(TM = D^0 \oplus D \oplus \langle \xi \rangle \), where \(\langle \xi \rangle \) is 1-dimensional distribution spanned by \(\xi \).

(ii) \(D \) is invariant distribution under \(\varphi \) i.e., \(\varphi D \subseteq D \).

(iii) \(D^0 \) is slant distribution with slant angle \(\theta \neq 0, \frac{\pi}{2} \).

If we denote the dimension of \(D_i \) by \(d_i \) for \(i = 1, 2 \), then it is clear that contact CR-submanifolds and slant submanifolds are semi-slant submanifolds with \(\theta = \pi/2 \) and \(d_1 = 0 \), respectively. It is called proper semi-slant if slant angle is different from 0 and \(\pi/2 \). Moreover, if \(\mu \) is an invariant subspace under \(\varphi \) of normal bundle \(T^i M \), then in case of semi-slant submanifold, the normal bundle \(T^i M \) can be decomposed as \(T^i M = FD^0 \oplus \mu \). A semi-slant submanifold is said to be a mixed totally geodesic if \(h(X, Z) = 0 \), for any \(X \in \Gamma(D^0) \) and \(Z \in \Gamma(D) \).

Let \(f \) be a positive differentiable function on \(N_i \) of two Riemannian manifolds \(N_1 \) and \(N_2 \) endowed with two Riemannian metrics \(g_1 \) and \(g_2 \), respectively. Then warped product \(M = N_1 \times_f N_2 \) is the manifold \(N_1 \times N_2 \) equipped with the Riemannian metric \(g = g_1 + f^2 g_2 \). The function \(f \) is called warping function of the warped product. If for any \(X, Y \in \Gamma(T N_1) \) and \(Z, W \in \Gamma(T N_2) \), then

\[
V_Z X = V_X Z = (X \ln f) Z, \tag{3.1}
\]

where \(V \) denote the Levi-Civita connection on \(M \). On the other hand, \(V \ln f \) is the gradient of \(\ln f \) is defined as \(g(V \ln f, X) = X \ln f \). A warped product manifold \(M = N_1 \times_f N_2 \) is said to be trivial if the warping function \(f \) is constant.

There are two types of warped products between proper slant and invariant submanifolds. Now we study warped product semi-slant submanifolds and its characterization of type of \(M = N_T \times_f N_0 \). For first case, we recall the following result which was obtained by Mustafa, et.al (cf. [22]) for warped product semi-slant submanifolds of nearly Trans-Sasakian manifolds:

Theorem 3.1. [22] There do not exist warped product semi-slant submanifolds \(M = N_0 \times_f N_T \) in a nearly Trans-Sasakian manifold \(M \), where \(N_0 \) and \(N_T \) are proper slant and invariant submanifolds of \(\tilde{M} \), respectively.

First, we give the following definition which based on the results S. Hiepk[20].

Definition 3.2. Assume that \(M \) be a semi-slant submanifold of a nearly-Trans Sasakian manifold \(\tilde{M} \), then we say that \(M \) is a locally warped product manifold semi-slant submanifold of \(\tilde{M} \) if \(D \) defines a totally geodesic foliation on \(M \) and \(D^0 \) defines a spherical foliation on \(M \), that is each leaf of \(D^0 \) is totally umbilical with parallel mean curvature vector field in \(M \).

Now we give following results for later use given in (cf. [22]) for warped product semi-slant submanifold of nearly-Trans Sasakian manifolds as:

Lemma 3.1. [22] Assume that \(M = N_T \times_f N_0 \) be a warped product semi-slant submanifold of a nearly Trans-Sasakian manifold \(\tilde{M} \). Then

\[
\xi \ln f = \beta, \tag{3.2}
\]

\[
g(h(X, Y), FZ) = 0, \tag{3.3}
\]

\[
g(h(Z, X), FZ) = - \left(\langle \varphi X \lambda \rangle + \alpha \eta(X) \right) ||Z||^2, \tag{3.4}
\]

\[
g(h(X, Z), FTZ) = \frac{1}{3} \cos^2 \theta \left(X \ln f - \beta \eta(X) \right) ||Z||^2, \tag{3.5}
\]

for any \(Z \in \Gamma(T N_0) \) and \(X, Y \in \Gamma(T N_T) \).
Following relations are the particular case, of above lemma. By interchanging \(X \) by \(\varphi X \) in (3.5), we find

\[
g(h(\varphi X, Z), FTZ) = \frac{1}{3} \cos^2 \theta \varphi (X \ln f)||Z||^2,
\]

(3.6)

Now we prove our main result

Theorem 3.2. Let a proper semi-slant submanifold \(M \) of nearly Trans-Sasakian manifold \(\tilde{M} \) such that the normal component \(Q_X \) lies in \(\varphi \)–invariant normal subbundle of \(M \). Then \(M \) is locally a non-trivial warped product submanifold of type \(M = N_T \times_f N_0 \) if and only if the following condition is satisfied

\[
A_{FTZ}X - A_{FZ}\varphi X = -\frac{1}{3} \left(2 + \sin^2 \theta \right) (X\lambda)Z + \beta \eta(X) \left(1 - \frac{1}{3} \cos^2 \theta \right) ||Z||^2,
\]

for any \(\lambda \in \Gamma(TM) \), \(X \in \Gamma(D \oplus \xi) \) and \(Z \in \Gamma(\mathcal{D}^0) \). Moreover, for a differentiable function \(\lambda \) on \(M \) such that \(Z \lambda = 0 \), for any \(Z \in \Gamma(\mathcal{D}^0) \).

Proof. Assume that \(M = N_T \times_f N_0 \) be a non-trivial warped product semi-slant submanifold of a nearly Trans-Sasakian manifold \(\tilde{M} \) such that \(N_0 \) and \(N_T \) are proper slant and \(\varphi \)–invariant submanifolds of \(\tilde{M} \), respectively. Thus from (3.3) and (2.6), we get \(g(A_{FZ}X, Y) = 0 \), for any \(X, Y \in \Gamma(TN_T) \) and \(Z \in \Gamma(TN_0) \). Since, \(N_T \) is an invariant submanifold, then rearranging \(X \) by \(\varphi X \), we find that \(g(A_{FZ}\varphi X, Y) = 0 \), which indicates that the components of linear operator \(A_{FZ}\varphi X \) are not lying in \(TN_T \). Similarly, rearranging \(Y \) by \(T \) in (3.3) and from (2.6), it is easily see that \(g(A_{FTZ}X, Y) = 0 \), which again shows that \(A_{FTZ}X \) has no components in \(TN_T \). Hence, this means that \(A_{FZ}\varphi X - A_{FTZ}X \) lies in \(TN_0 \). Therefore, from the Lemmas 3.2-(3.5), we have

\[
g(h(X, Z), FTZ) = \frac{1}{3} \cos^2 \theta (X \ln f)||Z||^2 - \frac{1}{3} \cos^2 \theta \beta \eta(X)||Z||^2.
\]

(3.8)

On the other hand, replacing \(X \) by \(\varphi X \) in the Eqs (3.3) and using (2.1)(i), we derive

\[
g(h(Z, \varphi X), FZ) = (X \ln f)||Z||^2 - \beta \eta(X)\xi ||Z||^2 + \alpha \eta(\varphi X)||Z||^2.
\]

Since, from (3.2) and the fact that \(\eta(\varphi X) = \eta(\varphi X, \xi) = 0 \), we obtain

\[
g(h(Z, \varphi X), FZ) = (X \ln f)||Z||^2 - \beta \eta(X)||Z||^2,
\]

(3.9)

for any \(X \in \Gamma(TN_T) \) and \(Z \in \Gamma(TN_0) \). We get the following relation by follows (3.8), (3.9) and (2.6) as:

\[
g(A_{FZ}\varphi X - A_{FTZ}X, Z) = \left(1 - \frac{1}{3} \cos^2 \theta \right) (X \ln f)||Z||^2 + \beta \eta(X) \left(1 - \frac{1}{3} \cos^2 \theta \right) ||Z||^2.
\]

(3.10)

Thus \(A_{FZ}\varphi X - A_{FTZ}X \) lies in \(TN_0 \) and from (3.10), we get the required result (3.7). Hence, the first part is proved completely.

Conversely Let \(M \) be a semi-slant submanifold of nearly Trans-Sasakian manifold with the condition (3.7) holds. For any \(X, Y \in \Gamma(D \oplus \xi) \) and \(Z \in \Gamma(\mathcal{D}^0) \), we obtain

\[
g(\nabla_X Y, Z) = g(\varphi \nabla_X Y, \varphi Z) + \eta(\nabla_X Y)\eta(Z) = g(\nabla_X \varphi Y, \varphi Z) - g(\nabla_X \varphi Y, \varphi Z).
\]

From the structure Eqs (2.3) and from the property of Riemannian connection, one obtains

\[
g(\nabla_X Y, Z) = -g(\varphi Y, \nabla_X \varphi Z) - g(P_X Y, T Z) + g(Q_X Y, F Z)
\]

Taking the help of Eqs (2.8) and the property of covariant derivative of \(\varphi \), we find

\[
g(\nabla_X Y, Z) = g(\varphi \nabla_X T Z, Y) - g(\nabla_X F Z, \varphi Y) + g(Y, P_X T Z) - g(Q_X Y, F Z).
\]
Using (2.4), (2.5) and (2.12), we derive
\[g(V_X Y, Z) = g(V_X T^2 Z, Y) + g(V_X FTZ, Y) - g((V_X \phi)TZ, Y) \]
\[+ g(FZ, h(X, \phi Y)) + g(Y, P_X T Z) - g(Q_X Y, FZ). \]

Following the Theorem 2.1 and (2.5), it is easy to see that
\[\sin^2 \theta g(V_X Y, Z) = -g(A_{FTZ} X - A_{TZ} \phi X, Y) - g(P_X T Z, Y) - g(Q_X Y, FZ) + g(P_X T Z, Y). \]

Therefore, from the hypothesis of the Theorem 3.2, we know that \(Q_X Y \) lies in \(\mu \) and from the Eqs (3.7), we get
\[\sin^2 \theta g(V_X Y, Z) = \frac{1}{3} \left(2 + \sin^2 \theta \right) (X \lambda) g(Z, Y) + \beta \eta(X) \left(\frac{1}{3} \cos^2 \theta - 1 \right) g(Z, Y), \]
which implies that
\[\sin^2 \theta g(V_X Y, Z) = 0. \quad (3.11) \]

But \(M \) is a proper semi-slant submanifold, i.e., \(\sin^2 \theta \neq 0 \). From (3.11) we know that \(g(V_X Y, Z) = 0 \), this means that \(V_X Y \in \Gamma(\mathcal{D} \oplus \xi) \), for every \(X, Y \in \Gamma(\mathcal{D} \oplus \xi) \). Therefore, \(\mathcal{D} \oplus \xi \) is integrable and its leaves are totally geodesic in \(M \). Moreover, for any \(Z, W \in \Gamma(\mathcal{D}^\perp) \) and \(X \in \Gamma(\mathcal{D} \oplus \xi) \), we have
\[g([Z, W], X) = g(\phi V_W Z, \phi X) + (\xi(\nabla_W Z) \eta(X) - g(\phi \nabla_Z W, \phi X) - \eta(\nabla_Z W) \eta(X) \]

From the covariant derivative property, we get
\[g([Z, W], X) = g(\phi \nabla_W Z, \phi X) - g((\nabla_W \phi) Z, \phi X) - g(\phi \nabla_Z \phi W, \phi X) + g((\nabla_W \phi) Z, \phi X) \]
\[+ \eta(\nabla_W Z) \eta(X) - \eta(\nabla_Z W) \eta(X) \]
\[= g(\phi \nabla_W T Z, \phi X) - (A_{FW} \phi X, W) - g(P_Z W, \phi X) + g(\phi \nabla_Z T W, X) \]
\[+ g(\phi \nabla_F T W, X) + g(P_Z W, \phi X) + g(A_{FW} \phi X, Z) + \eta(\nabla_W Z) \eta(X) \]
\[- \eta(\nabla_Z W) \eta(X) - g(A_{TZ} \phi X, W). \]

It is implies from the Eqs (2.5), i.e.,
\[g([Z, W], X) = -g(\phi \nabla_W T Z, X) - g((A_{FW} \phi X, W) - g(P_Z W, \phi X) + g(\phi \nabla_Z T W, X) \]
\[+ g(\phi \nabla_F T W, X) + g(P_Z W, \phi X) + g(A_{FW} \phi X, Z) + \eta(\nabla_W Z) \eta(X) \]
\[- \eta(\nabla_Z W) \eta(X) - g(A_{TZ} \phi X, W). \]

From Theorem 2.1 and Eq. (2.5) one derives
\[g([Z, W], X) = g(P_Z T W, X) + \cos^2 \theta g(\nabla_W Z, X) + g(A_{FTZ} X, W) - (P_Z W, \phi X) - g(P_Z T W, X) \]
\[- \cos^2 \theta g(\nabla_Z W, X) + g(A_{FW} \phi X, Z) + g(P_Z W, \phi X) - g(A_{FTW} X, Z) \]
\[+ \eta(\nabla_Z W) \eta(X) - \eta(\nabla_W Z) \eta(X) - g(A_{TZ} \phi X, W). \quad (3.12) \]

Using the properties of \(P - Q \) from (2.14), we find
\[g(P_Z T W, X) - g(P_Z T W, X) = g(P_Z (\phi Z - F Z), X) - g(P_Z (\phi W - F W), X) \]
\[- g(P_Z (\phi Z, X) - g(P_Z F Z, X) - g(P_Z \phi W, X) + g(P_Z F W, X) \]
\[= - g(\phi P_Z W, X) + g(Q_Z W, X) + g(\phi P_Z W, X) - g(Q_Z W, X) + g(Q_Z W, F Z) \]
\[- g(P_Z W, \phi X) + g(Q_Z W, F Z) - g(P_Z W, \phi X) - g(Q_Z W, F W). \]
Therefore, using the above relation in the Eqs (3.12), we get

\[\sin^2 \theta g([Z, W], X) = g(A_{FTZ} X - A_{FZ} \phi X, W) + 2g(P_W Z, \phi X) + g(Q_W Z, FZ) - g(A_{FTW} X - A_{FW} \phi X, Z) - 2g(P_Z W, \phi X) - g(Q_Z X, FW) + \eta(\tilde{V}_W Z) \eta(X) - \eta(\tilde{V}_Z W) \eta(X). \]

Using properties (2.12)-(2.13) and (2.17), we arrive at

\[
\begin{align*}
\sin^2 \theta g([Z, W], X) &= g(A_{FTZ} X - A_{FZ} \phi X, W) + 2g(P_W Z + P_Z W, \phi X) - g(Q_X W, FZ) \\
& - \sin^2 \theta \beta \eta(X) g(Z, W) - g(A_{FTW} X - A_{FW} \phi X, Z) + g(Q_Z Z, FW) \\
& + \sin^2 \theta \beta \eta(X) g(Z, W) + \eta(\tilde{V}_W Z) \eta(X) - \eta(\tilde{V}_Z W) \eta(X).
\end{align*}
\]

By assumption of the Theorem 3.2 that \(Q_X Z\) lies in \(\mu\) and again using (2.12) we derive

\[
\begin{align*}
\sin^2 \theta g([Z, W], X) &= g(A_{FTZ} X - A_{FZ} \phi X, W) + \eta(\tilde{V}_W Z) \eta(X) \\
& - \eta(\tilde{V}_Z W) \eta(X) - g(A_{FTW} X - A_{FW} \phi X, Z).
\end{align*}
\]

Applying Eqs (3.7) in the Eqs (3.13), one obtains

\[
\begin{align*}
\sin^2 \theta g([Z, W], X) &= - \frac{1}{3} \left(2 + \sin^2 \theta \right)(X \lambda) g(Z, W) - \beta \eta(X) \left(\frac{1}{3} \cos^2 \theta - 1\right) g(Z, W) \\
& + \eta(\tilde{V}_W Z) \eta(X) - \eta(\tilde{V}_Z W) \eta(X) + \frac{1}{3} \left(2 + \sin^2 \theta \right)(X \lambda) g(Z, W) \\
& + \beta \eta(X) \left(\frac{1}{3} \cos^2 \theta - 1\right) g(Z, W),
\end{align*}
\]

which means that

\[
\sin^2 \theta g([Z, W], X) = \eta(\tilde{V}_W Z) \eta(X) - \eta(\tilde{V}_Z W) \eta(X).
\]

Now interchanging \(X\) by \(\phi X\) in the above equation and using the fact that \(\eta(\phi X) = 0\), we derive

\[
\sin^2 \theta g([Z, W], \phi X) = 0.
\]

Since, \(M\) is a proper semi-slant submanifold, then from previous Eq, we deduce that the slant distribution \(\mathcal{D}^\beta\) is integrable. Therefore, we can assume that \(N_0\) be a leaf of \(\mathcal{D}^\beta\) and \(h^\beta\) be a the second fundamental form (extrinsic invariant) of \(N_0\) into \(M\). Then from Gauss formula (2.4), we have

\[
g(h^\beta(Z, W), X) = g(\tilde{V}_Z W, X) = g(\tilde{V}_Z W, \phi X) + \eta(\tilde{V}_Z W) \eta(X) \\
= g(\tilde{V}_Z \phi W, \phi X) - g((\tilde{V}_Z \phi) W, \phi X) + \eta(\tilde{V}_Z W) \eta(X).
\]

From (2.8) and tangential components of \((\tilde{V}_Z \phi) W\), it is easily seen that

\[
g(h^\beta(Z, W), X) = g(\tilde{V}_Z T W, \phi X) + g(\tilde{V}_Z F W, \phi X) - g(P_Z W, \phi X) + \eta(\tilde{V}_Z W) \eta(X).
\]

Using the covariant differentiation property of \(\phi\) and (2.5), we obtain

\[
g(h^\beta(Z, W), X) = g((\tilde{V}_Z \phi) T W, X) - g(\tilde{V}_Z F^2 W, X) - g(\tilde{V}_Z F T W, X) \\
- g(A_{FW} Z, \phi X) + g(\phi P_Z W, X) + \eta(\tilde{V}_Z W) \eta(X).
\]

Then using the Theorem 2.1 and (2.5), we derive

\[
g(h^\beta(Z, W), X) = g((P_Z T W, X) + \cos^2 \theta g(\tilde{V}_Z W, X) + g(A_{FTZ}, X) - g(A_{FW} Z, \phi X) - g(P_Z T W, X) \\
- g(P_Z F W, X) + \eta(\tilde{V}_Z W) \eta(X),
\]
Applying Proposition 2.1 in last Eq. then easily get the following

\[\sin^2 \theta g(h_\theta(Z, W), X) = g(A_{FW}X - A_{FW} \varphi X, Z) + g(QX X, FW) + \eta(\tilde{\theta}_Z W \eta(X)). \]

Using Eq. (2.13) in the second term of the above Eqs. Then from (3.7) and (2.17), we arrive at

\[\sin^2 \theta g(h_\theta(Z, W), X) = -\frac{1}{3} (2 + \sin^2 \theta) (X \lambda) g(Z, W) - \beta \eta(X) \frac{1}{3} \cos^2 \theta g(Z, W) + \beta \eta(X) g(Z, W) - g(QX X, FW) - \beta \eta(X) \sin^2 \theta g(Z, W) + \eta(\tilde{\theta}_Z W \eta(X)). \]

As we have assumed that \(QX Z\) lies in \(\mu\), finally we get

\[\sin^2 \theta g(h_\theta(Z, W), X) = -\frac{1}{3} (2 + \sin^2 \theta) (X \lambda) g(Z, W) + \frac{2}{3} \cos^2 \theta \beta \eta(X) g(Z, W) - \eta(X) g(\tilde{\theta}_Z \xi, W). \tag{3.14} \]

Interchanging \(Z\) by \(W\) in (3.14), we find

\[\sin^2 \theta g(h_\theta(Z, W), X) = -\frac{1}{3} (2 + \sin^2 \theta) (X \lambda) g(Z, W) + \frac{2}{3} \cos^2 \theta \beta \eta(X) g(Z, W) - \eta(X) g(\tilde{\theta}_Z \xi, W). \tag{3.15} \]

From the symmetry of extrinsic invariant \(h_\theta\), then (3.15) and (3.14) implies that

\[2 \sin^2 \theta g(h_\theta(Z, W), X) = -\frac{2}{3} (2 + \sin^2 \theta) (X \lambda) g(Z, W) + \frac{4}{3} \cos^2 \theta \beta \eta(X) g(Z, W) - \eta(X) g(\tilde{\theta}_Z \xi, W). \tag{3.16} \]

Applying the Proposition 2.1 in last Eq. then easily get the following

\[2 \sin^2 \theta g(h_\theta(Z, W), X) = -\frac{2}{3} (2 + \sin^2 \theta) (X \lambda) g(Z, W) + \frac{4}{3} \cos^2 \theta \beta \eta(X) g(Z, W) - 2 \beta \eta(X) g(Z, W), \]

which implies that

\[2 \sin^2 \theta g(h_\theta(Z, W), X) = -\frac{2}{3} (2 + \sin^2 \theta) (X \lambda) g(Z, W) + \left(\frac{4}{3} \cos^2 \theta - 2\right) \beta \eta(X) g(Z, W) \tag{3.17} \]

Hence, replacing \(X\) by \(\varphi X\) in the above relation (3.17) and using fact that \(\eta(\varphi X) = g(\varphi X, \xi) = -g(X, \varphi \xi) = 0\), which gives

\[g(h_\theta(Z, W), \varphi X) = -\frac{1}{3} (2 + \csc^2 \theta + \cot^2 \theta) (\varphi X \lambda) g(Z, W) \]

Finally, from the property of gradient of \(\ln f\), simplification gives

\[g(h_\theta(Z, W), \varphi X) = -\frac{1}{3} (2 + \csc^2 \theta + \cot^2 \theta) g(Z, W) g(\nabla \lambda, \varphi X) \]

It follows that

\[h_\theta(Z, W) = -g(Z, W) \frac{1}{3} (2 + \csc^2 \theta + \cot^2 \theta) \nabla \lambda. \tag{3.18} \]
Theorem 3.2.

Proof.

Directly part follows from (3.6) and (3.4). Moreover, converse part can be easily proved as the for any \(Z \in \text{semi-slant submanifolds in almost contact manifolds with } \xi \)

\[
\text{the table shows that the necessary and sufficient condition for the existence of warped product semi-slant submanifolds in almost contact manifolds with } \xi \text{ tangent to the first factor which are directly generalizing from } (\alpha, \beta)\text{-nearly-Trans Sasakian manifold i.e.,}
\]

\[
A_{FZ}\psi X - A_{FZ}X = \frac{1}{3}(2 - \sin^2 \theta)(\psi X\lambda)Z + \alpha\eta(X)Z.,
\]

for any \(U \in \Gamma(\mathcal{T}M), X \in \Gamma(\mathcal{D} \oplus \xi) \) and \(Z \in \Gamma(\mathcal{D}^0) \). Moreover, for a differentiable function \(\lambda \) on \(M \) such that \(Z\lambda = 0 \), for any \(Z \in \Gamma(\mathcal{D}^0) \).

Proof. Directly part follows from (3.6) and (3.4). Moreover, converse part can be easily proved as the Theorem 3.2.

Case 3.1. If we substitute \(\alpha = 0 \), and, \(\beta = 0 \) in Eqs.(2.3), we immediately get the following result from the Theorem 3.2, i.e.,
A proper semi-slant submanifold M of a nearly cosymplectic manifold \tilde{M} such that the normal components of $(\nabla_X \varphi) U$ lies in φ–invariant normal subbundle of M for any $X \in \Gamma(D)$ and $U \in \Gamma(TM)$. Then M is locally a non-trivial warped product submanifold of the type $M = N_T \times_1 N_0$ such that N_0 is proper slant and N_T is φ–invariant submanifolds if and only if the following condition is satisfied

$$A_{FTZ}X - A_{FZ}\varphi X = - \frac{1}{3} (2 + \sin^2 \theta)(X \lambda) Z,$$

(3.21)

for any $X \in \Gamma(D \oplus \xi)$ and $Z \in \Gamma(D^\theta)$. Moreover, for a differentiable function λ on M such that $Z \lambda = 0$, for any $Z \in \Gamma(D^\theta)$.

Case 3.2. Rearranging $\alpha = 1$ and $\beta = 0$ in Eqs. (2.3), then nearly-Trans Sasakian manifold turn into nearly Sasakian manifold. Thus, we find the following Theorem which is a direct consequence of the Theorem 3.3, that is,

Theorem 3.5. Assume that M be a proper semi-slant submanifold of a nearly Sasakian manifold \tilde{M} such that the normal components of $(\nabla_X \varphi) U$ lies in φ–invariant normal subbundle of M for any $X \in \Gamma(D)$ and $U \in \Gamma(TM)$. Then M is locally a non-trivial warped product submanifold of the type $M = N_T \times_1 N_0$ such that N_0 is proper slant and N_T is φ–invariant submanifolds if and only if the following condition is satisfied

$$A_{FTZ}X - A_{FZ}\varphi X = \left(\frac{1}{3} \cos^2 \theta + 1\right)(\varphi X \lambda) Z + \eta(X)Z,$$

(3.22)

for any $X \in \Gamma(D \oplus \xi)$ and $Z \in \Gamma(D^\theta)$. Moreover, for a differentiable function λ on M such that $Z \lambda = 0$, for any $Z \in \Gamma(D^\theta)$.

Equivalently, we give others necessary and sufficient conditions in the following table for a semi-slant submanifold to be a warped product semi-slant in numerous ambient manifolds, i.e.,

<table>
<thead>
<tr>
<th>Manifolds Name and warped product of the form $M = N_T \times_1 N_0$</th>
<th>Necessary and sufficient conditions with for a differentiable function λ on M such that $Z \lambda = 0$.</th>
<th>Cases to substitute in Eqs. (2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearly Kenmotsu</td>
<td>$A_{FTZ}X - A_{FZ}\varphi X = \frac{1}{3} (2 + \sin^2 \theta)(X \lambda) Z - \eta(X)(\frac{1}{3} \cos^2 \theta - 1) Z.$</td>
<td>$\alpha = 0, \beta = 1.$</td>
</tr>
<tr>
<td>Nearly α–Sasakian</td>
<td>$A_{FTZ}\varphi X - A_{FZ}X = \left(\frac{1}{3} \cos^2 \theta + 1\right)(\varphi X \lambda) Z + \alpha \eta(X)Z.$</td>
<td>$\beta = 0.$</td>
</tr>
<tr>
<td>Nearly β–Kenmotsu</td>
<td>$A_{FTZ}X - A_{FZ}\varphi X = -\frac{1}{3} (2 + \sin^2 \theta)(X \lambda) Z - \beta \eta(X)(\frac{1}{3} \sin^2 \theta + 2) Z.$</td>
<td>$\alpha = 0.$</td>
</tr>
</tbody>
</table>

Acknowledgment

Authors would like express their appreciation to the referees for their comments and valuable suggestions to improve the quality of paper. They also would like to express their gratitude to King Khalid University for providing administrative and technical support.
References

