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Abstract. In the present paper, unique solvability of a source identification inverse problem for a semilinear
equation with a final overdetermination in a Banach space is investigated. Moreover, the first order of
accuracy Rothe difference scheme is presented for numerically solving this problem. The existence and
uniqueness result for this difference scheme is given. The efficiency of the proposed method is evaluated
by means of computational experiments.

1. Introduction and Problem Formulation

The practical problems in the process of diffusion and conduction of materials are induced to the source
identification inverse problems (SIPs). The SIPs are the most frequently encountered inverse problems
because of their importance in the applied sciences [2, 4–6, 8, 9, 12–15]. In many papers, the unknown
source term is considered as time- or space-dependent only. Many researchers have paid attention to the
investigation of SIPs governed by linear or nonlinear equations. Actually, the SIPs for linear equations
are of greater interest comparing for the nonlinear ones. In [4, 6], well-posedness of SIPs for linear
partial differential equations have been studied. Kamynin [8] investigated the existence and uniqueness
of the solution of a space-dependent SIP for linear parabolic equation. Orazov and Sadybekov [9] proved
the existence and uniqueness of classical solutions to a class of problems which models the process of
determining the temperature and density of heat sources for a given initial and finite temperature.

On the other hand, existence and uniqueness results for SIPs governed by semilinear and nonlinear
partial differential equations have been investigated using different techniques. For example, in [12, 13],
method of semigroups is applied to prove existence and uniqueness of the solution of a time-dependent
SIP for semilinear parabolic equations. Also in these papers, finite difference method is applied for the
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numerical solution of these problems. Borukhov and Zayats [5] studied a time-dependent SIP for a nonlinear
hyperbolic or parabolic equation.

It is known that by exact solution of a problem one means a solution that satisfies the governing equation
and initial/boundary/overdetermined conditions. Several methods for obtaining the solutions of SIPs can
be found in [7, 10]. Unfortunately, due to the nonlinearity and variable coefficients in a number of SIPs it
is very difficult to obtain their exact solutions. At this point, the numerical methods play a vital role and
there are considerably many investigations on the numerical aspects of these problems [4, 6, 14, 15].

In this paper, the following inverse problem of identifying the pair
(
u, p

)
, governed by a semilinear

equation with a final overdetermination{
du
dt + Au (t) = f (t,u(t)) + p, 0 < t < T,
u (0) = ϕ, u (T) = ψ

(1)

is considered in an arbitrary Banach space E.Here, A is a linear operator acting in E whose domain is D (A) ,
with the assumption that −A is the generator of the analytic semigroup exp{−tA} with an exponentially
decreasing norm∥∥∥e−tA

∥∥∥
E→E ≤Me−δt, t

∥∥∥Ae−tA
∥∥∥

E→E ≤M, t ≥ 0. (2)

We may note that the main results of this paper were presented in [13] without their proofs.
The rest of the paper is organized as follows: In Section 2, unique solvability of inverse problem (1)

is established. Moreover, the first order of accuracy Rothe difference scheme for the numerical solution
of problem (1) is presented and the unique solvability of this difference scheme is given. In Section 3, an
application of the main results of the paper is considered. In Section 4, the theoretical results are evaluated
by some computational results.

2. Main Results

2.1. Differential Problem

For the theoretical considerations in this subsection, we shall introduce the functional space C ([0,T] ,E)
that is the space of all abstract continuous functions φ (t) defined on [0,T] with values in a Banach space E,
equipped with the norm∥∥∥φ∥∥∥C([0,T],E) = max

0≤t≤T

∥∥∥φ (t)
∥∥∥

E .

Definition 2.1. The pair
(
u(t), p

)
is said to be the solution of problem (1) in C ([0,T] ,E)× E1 if the following

conditions are satisfied:

(i) du
dt ,Au (t) ∈ C ([0,T] ,E) , p ∈ E1 ⊂ E;

(ii)
(
u(t), p

)
satisfies the equation and boundary conditions in (1).

Now, we establish the following theorem on the unique solvability of problem (1) in C ([0,T] ,E)×D (A) .

Theorem 2.2. Suppose that ϕ,ψ ∈ D (A) and the abstract function f ∈ C ([0,T] ,E) satisfies the Lipschitz condition∥∥∥ f (t,u) − f (t, v)
∥∥∥

E ≤ K ‖u − v‖E , K > 0 (3)

for all t ∈ [0,T] , u, v ∈ E with α = 2K
δ max {1,M} (1 + M) < 1. Then, a unique solution of problem (1) exists

in C ([0,T] ,E) ×D (A).
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Proof. If u (t) is a solution of problem (1), then applying the Cauchy formula, we get

u (t) = e−tAϕ +

t∫
0

e−(t−s)A f (s,u(s)) ds + A−1
(
I − e−tA

)
p. (4)

Since the semigroup exp{−tA} obeys exponential decay estimate (2), the operator I − e−TA has a bounded
inverse. Hence, using the condition u (T) = ψ, we get

A−1p =
(
I − e−TA

)−1

ψ − e−TAϕ −

T∫
0

e−(T−s)A f (s,u(s)) ds

 . (5)

Applying formulas (4) and (5), we can write

u (t) = e−tAϕ +

t∫
0

e−(t−s)A f (s,u(s)) ds

+
(
I − e−tA

) (
I − e−TA

)−1

ψ − e−TAϕ −

T∫
0

e−(T−s)A f (s,u(s)) ds

 (6)

for all 0 ≤ t ≤ T. Now, let us introduce the continuous mapping B : C ([0,T] ,E) × E→ C ([0,T] ,E) × E such
that (

u (t)
A−1p

)
= B

(
u (t)
A−1p

)
defined by

B

 u (t)

A−1p

 =



e−tAϕ +
t∫

0
e−(t−s)A f (s,u(s) ds + β

(
I − e−tA

) (
I − e−TA

)−1
A−1p

+
(
1 − β

) (
I − e−tA

) (
I − e−TA

)−1
ψ − e−TAϕ −

T∫
0

e−(T−s)A f (s,u(s)) ds


(
I − e−TA

)−1
ψ − e−TAϕ −

T∫
0

e−(T−s)A f (s,u(s)) ds




.

Here β ∈ [0, 1]. Putting β = 0, and denoting

B1u(t) = e−tAϕ +

t∫
0

e−(t−s)A f (s,u(s) ds

+
(
I − e−tA

) (
I − e−TA

)−1

ψ − e−TAϕ −

T∫
0

e−(T−s)A f (s,u(s)) ds

 ,

B2u(t) =
(
I − e−TA

)−1

ψ − e−TAϕ −

T∫
0

e−(T−s)A f (s,u(s)) ds

 ,
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we get

B

 u (t)

A−1p

 =


B1u(t)

B2u(t)

 .
Applying estimate (2) and formula(

I − e−TA
)−1

= I − e−TA + e−2TA
− · · · ,

we get∥∥∥∥(I − e−TA
)−1∥∥∥∥

E→E
≤ 1 + Me−δT + Me−2δT + · · · ≤ max {1,M}

1
1 − e−δT . (7)

Thus, applying the triangle inequality, estimates (2) and (7), we get

‖B1u (t) − B1v (t)‖E ≤
∥∥∥∥(I − e−TA

)−1∥∥∥∥
E→E

×


t∫

0

∥∥∥e−(t−s)A
− e−(T−s)A

∥∥∥
E→E

∥∥∥ f (s,u(s)) − f (s, v(s))
∥∥∥

E ds

+

T∫
t

∥∥∥∥(I − e−tA
)

e−(T−s)A
∥∥∥∥

E→E

∥∥∥ f (s,u(s)) − f (s, v(s))
∥∥∥

E ds


≤ max {1,M}

K
1 − e−δT

(1 + M)


t∫

0

e−δ(t−s)
‖u (s) − v (s)‖E ds

+

T∫
t

e−δ(T−s)
‖(u (s) − v (s))‖E ds

 ≤ 2K
δ

max {1,M} (1 + M) max
0≤s≤T

‖(u (s) − v (s))‖E

=
2K
δ

max {1,M} (1 + M) ‖u − v‖C([0,T],E) ,

‖B2u (t) − B2v (t)‖E ≤

∥∥∥∥(I − e−TA
)−1∥∥∥∥

E→E

T∫
0

∥∥∥e−(T−s)A
∥∥∥

E→E

∥∥∥ f (s,u(s)) − f (s, v(s))
∥∥∥

E ds

≤ max {1,M}
K

1 − e−δT

T∫
0

e−δ(T−s)
‖u (s) − v (s)‖E ds

≤
K
δ

max {1,M}max
0≤s≤T

‖(u (s) − v (s))‖E =
K
δ

max {1,M} ‖u − v‖C([0,T],E)

for any t ∈ [0,T] . Hence, we get

max
{
‖B1u (t) − B1v (t)‖E , ‖B2u (t) − B2v (t)‖E

}
≤

2K
δ

max {1,M} (1 + M) ‖u − v‖C([0,T],E) .

Therefore, if α = 2K
δ max {1,M} (1 + M) < 1, then by Banach fixed point theorem there exists a unique

solution of problem (1). Moreover,
(
u(t),A−1p

)
= limm→∞

(
mu (t) ,A−1

m p
)
,where

(
mu (t) ,A−1

m p
)
,m = 1, 2, ... are
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defined by the formulas

mu (t) = e−tAϕ +

t∫
0

e−(t−s)A f (s,m−1 u(s) ds

+
(
I − e−tA

) (
I − e−TA

)−1

ψ − e−TAϕ −

T∫
0

e−(T−s)A f (s,m−1 u(s)) ds

 ,
A−1

m p =
(
I − e−TA

)−1

ψ − e−TAϕ −

T∫
0

e−(T−s)A f (s,m−1 u(s)) ds

 ,
where 0u (t) ∈ C ([0,T] ,D (A)) is given.

2.2. Difference Problem
For the theoretical considerations in this subsection, we shall introduce the functional space C ([0,T]τ ,E)

that is the space of grid functions φτ =
{
φk

}N

0
defined on [0,T]τ with values in a Banach space E and is

endowed with the norm∥∥∥φτ∥∥∥C([0,T]τ,E) = max
1≤k≤N

∥∥∥φk

∥∥∥
E .

For numerically solving problem (1), the first order of accuracy Rothe difference scheme
uk−uk−1

τ + Auk = f (tk,uk) + p,

1 ≤ k ≤ N, tk = kτ, Nτ = T,u0 = ϕ, uN = ψ
(8)

is constructed. Now, we establish the following theorem on the unique solvability of difference scheme (8)
in C ([0,T]τ ,E) .

Theorem 2.3. Suppose that ϕ,ψ ∈ D (A) and f satisfies Lipschitz condition (3) with the assumption α =
2K
δ max {1,M} (1 + M) < 1, then a unique solution of difference scheme (8) exists in C ([0,T]τ ,E).

Proof. From difference scheme (8) it follows that

uk = Ruk−1 + R
[

f (tk,uk) + p
]
τ

for all 1 ≤ k ≤ N, where R = (I + τA)−1 . Using this recurrence relation one can see that

uk = Rkϕ +

k∑
i=1

Rk−i+1 f (ti,ui)τ + A−1
(
I − Rk

)
p

for all 1 ≤ k ≤ N. Applying the condition uN = ψ, we obtain

A−1p =
(
I − RN

)−1
ψ − RNϕ −

N∑
i=1

RN−i+1 f (ti,ui)τ

 .
Then, we can write that

uk = Rkϕ +

k∑
i=1

Rk−i+1 f (ti,ui)τ +
(
I − Rk

) (
I − RN

)−1
ψ − RNϕ −

N∑
i=1

RN−i+1 f (ti,ui)τ

 .
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Now, let us introduce the mapping zτ that maps C ([0,T]τ ,E) × E onto C ([0,T]τ ,E) × E defined by

zτ

 uk

A−1p

 =


Rkϕ +

∑k
i=1 Rk−i+1 f (ti,ui)τ

+
(
I − Rk

) (
I − RN

)−1 {
ψ − RNϕ −

∑N
i=1 RN−i+1 f (ti,ui)τ

}
(
I − RN

)−1 {
ψ − RNϕ −

∑N
i=1 RN−i+1 f (ti,ui) τ

}

.

Denoting

Bτ1uk = Rkϕ +

k∑
i=1

Rk−i+1 f (ti,ui)τ

+
(
I − Rk

) (
I − RN

)−1
ψ − RNϕ −

N∑
i=1

RN−i+1 f (ti,ui)τ

 ,
Bτ2uk =

(
I − RN

)−1
ψ − RNϕ −

N∑
i=1

RN−i+1 f (ti,ui) τ

 ,
we get

zτ

 uk

A−1p

 =


Bτ1uk

Bτ2uk

 .
Applying estimate (2), we get

∥∥∥Rk
∥∥∥

E→E ≤
M

(1 + δτ)k
, k ≥ 1;

∥∥∥∥(I − RN
)−1∥∥∥∥

E→E
≤

max {1,M}
1 − 1

(1+δτ)N

. (9)

Applying the triangle inequality, Lipschitz condition (3) and estimate (9), we reach

∥∥∥Bτ1uk − Bτ1vk

∥∥∥
E ≤

∥∥∥∥(I − RN
)−1∥∥∥∥

E→E

×

 k∑
i=1

∥∥∥Rk−i+1
− RN−i+1

∥∥∥
E→E

∥∥∥ f (ti,ui) − f (ti, vi)
∥∥∥

E τ

+

N∑
i=k+1

∥∥∥∥(I − Rk
)

RN−i+1
∥∥∥∥

E→E

∥∥∥ f (ti,ui) − f (ti, vi)
∥∥∥

E τ


≤ max {1,M}

K
1 − 1

(1+δτ)N

(1 + M)

 k∑
i=1

1

(1 + δτ)k−i+1

∥∥∥ f (ti,ui) − f (ti, vi)
∥∥∥

E τ

+

N∑
i=k+1

1

(1 + δτ)N−i+1

∥∥∥ f (ti,ui) − f (ti, vi)
∥∥∥

E τ

 ≤ 2K
δ

max {1,M} (1 + M) max
1≤i≤N

‖ui − vi‖E

=
2K
δ

max {1,M} (1 + M) ‖uτ − vτ‖C([0,T]τ,E) ,
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∥∥∥Bτ2uk − Bτ2vk

∥∥∥
E ≤

∥∥∥∥(I − RN
)−1∥∥∥∥

E→E

N∑
i=1

∥∥∥RN−i+1
∥∥∥

E→E

∥∥∥ f (ti,ui) − f (ti, vi)
∥∥∥

E τ

≤ max {1,M}
K

1 − 1
(1+δτ)N

N∑
i=1

1

(1 + δτ)N−i+1

∥∥∥ f (ti,ui) − f (ti, vi)
∥∥∥

E τ

≤
K
δ

max {1,M}max
1≤i≤N

‖ui − vi‖E =
K
δ

max {1,M} ‖uτ − vτ‖C([0,T]τ,E)

for any k = 1, 2, ...,N. Hence, we get

max
{∥∥∥Bτ1uk − Bτ1vk

∥∥∥
E ,

∥∥∥Bτ2uk − Bτ2vk

∥∥∥
E

}
≤

2K
δ

max {1,M} (1 + M) ‖uτ − vτ‖C([0,T]τ,E) .

Thus, if α = 2K
δ max {1,M} (1 + M) < 1, then by Banach fixed point theorem there exists a unique solution of

problem (8) in C ([0,T]τ ,E). Moreover,
(
uτ,A−1p

)
= limm→∞

(
muτ,A−1

m p
)
, where

(
muτ,A−1

m p
)
, m = 1, 2, ... are

defined by the formulas

Bτ1uk = Rkϕ +

k∑
i=1

Rk−i+1 f (ti,n ui)τ

+
(
I − Rk

) (
I − RN

)−1
ψ − RNϕ −

N∑
i=1

RN−i+1 f (ti,m ui)τ

 ,
A−1

m p =
(
I − RN

)−1
ψ − RNϕ −

N∑
i=1

RN−i+1 f (ti,m ui) τ

 ,
where 0ui ∈ C ([0,T]τ ,D (A)) is given.

3. Application

We shall investigate an application of Theorems 2.2-2.3. We consider the inverse problem for a semilinear
parabolic equation

∂u(t,x)
∂t − a (x) ∂

2u(t,x)
∂x2 + σu (t, x) = p (x) + f (t, x,u (t, x)) ,

x ∈ (0, 1) , t ∈ (0,T) ,
u(0, x) = ϕ (x) , u(T, x) = ψ (x) , x ∈ [0, 1],
u(t, 0) = u(t, 1) = 0, t ∈ [0,T],

(10)

where
(
u(t, x), p(x)

)
are the unknown vector functions, ϕ (x) , ψ (x) and a (x) are given sufficiently smooth

functions with a (x) ≥ a > 0 and σ ≥ 0. It is well-known that (see, for example [1, 3])

−A = a (x)
d2

dx2 − σI (11)

is the generator of the analytic semigroup exp{−tA}with an exponentially decreasing norm∥∥∥e−tA
∥∥∥

C[0,1]→C[0,1]
≤Me−δt, t

∥∥∥Ae−tA
∥∥∥

C[0,1]→C[0,1]
≤M, t ≥ 0.

Here δ > σ.

Theorem 3.1. Suppose that ϕ(x), ψ(x) ∈ C2 [0, 1] and the continuous function f (t, x,u) on [0,T] × [0, 1] satisfies
the Lipschitz condition∥∥∥ f (t, ·,u (·)) − f (t, ·, v (·))

∥∥∥
C[0,1]

≤ K ‖u (·) − v (·)‖C[0,1] , K > 0 (12)

for all t ∈ [0,T] , u, v ∈ C [0, 1] with α = 2K
δ max {1,M} (1 + M) < 1. Then, a unique solution of problem (10) exists

in C ([0,T] ,C [0, 1]) × C2 [0, 1].
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For numerically solving (10) the following Rothe difference scheme is constructed:

uk
n − uk−1

n

τ
− a (xn)

uk
n+1 − 2uk

n + uk
n−1

h2 + σuk
n = φk

n,

φk
n = f (tk, xn,uk

n) + p (xn) , tk = kτ, 1 ≤ k ≤ N, Nτ = T,

xn = nh, 1 ≤ n ≤M − 1, Mh = 1,

u0
n = ϕ (xn) , uN

n = ψ (xn) , xn = nh, 0 ≤ n ≤M,

uk
0 = uk

M = 0, 0 ≤ k ≤ N.

(13)

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied, then problem (14) has a unique solution.

Theorem 3.3. [2, Theorem 2] In implementation of difference scheme (14) the formula

ph (x) = Aψh (x) − Avh
N,

where A is the difference analogue of the operator defined in (11), holds. Here values of vh
N are obtained from the

solution of auxiliary difference scheme

vk
n − vk−1

n

τ
− a (xn)

vk
n+1 − 2vk

n + vk
n−1

h2 + σvk
n = Ψk

n,

Ψk
n = f (tk, xn,uk

n), tk = kτ, 1 ≤ k ≤ N, Nτ = T,

xn = nh, 1 ≤ n ≤M − 1, Mh = 1,

u0
n − uN

n = ϕ (xn) − ψ (xn) , xn = nh, 0 ≤ n ≤M,

uk
0 = uk

M = 0, 0 ≤ k ≤ N.

(14)

4. Numerical Discussion

To support the theoretical considerations by a numerical example, let us consider the space-dependent
SIP governed by a semilinear parabolic equation subject to a final overdetermination

∂u(t,x)
∂t − e−x ∂2u(t,x)

∂x2 + 2u (t, x) = p (x) + f (t, x,u (t, x)) , x ∈ (0, 1) , t ∈ (0,T] ,

f (t, x,u (t, x)) =
(
x2
− x − 2e−x

)
e−t
− cos (πx) + 1

2 sin
(
etu (t, x)

)
−

1
2 sin

(
x2
− x

)
,

u(0, x) = x2
− x, u(T, x) = e−T

(
x2
− x

)
, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ [0,T],

(15)

where the exact solution pair of the problem is
(
u (t, x) , p (x)

)
=

(
e−t

(
x2
− x

)
, cos (πx)

)
.

Numerical solution of this test problem (15) can be obtained by the following iterative difference scheme
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of first order of accuracy:



muk
n −m uk−1

n

τ
− e−xn

muk
n+1 − 2 muk

n +m uk
n−1

h2 + 2muk
n =m φk

n,

mφk
n = f (tk, xn,m−1 uk

n) +m p (xn) , tk = kτ, 1 ≤ k ≤ N, Nτ = T,

xn = nh, 1 ≤ n ≤M − 1, Mh = 1,

mu0
n = x2

− x, muN
n = e−T

(
x2

n − xn

)
, xn = nh, 0 ≤ n ≤M,

muk
0 =m uk

M = 0, 0 ≤ k ≤ N,m = 1, 2, · · · .

(16)

Here m denotes the iteration number and an initial guess 0uk
n, 0 ≤ k ≤ N, 0 ≤ n ≤M is to be made.

For solving difference scheme (16), we follow the numerical steps of article [2]. For 0 ≤ k ≤ N, 0 ≤ n ≤M,
the algorithm is as follows:

1. m = 1,

2. m−1uk
n is known (initially given for m = 1 or calculated in step 5),

3. mvk
n is calculated,

4. mp (xn) is calculated,

5. muk
n is calculated,

6. if the max absolute error between m−1uk
n and muk

n is greater than the given tolerance value, take m=m+1
and go to step 2. Otherwise, terminate the iteration process and take the muk

n as the result of the given
problem.

The values mvN
s , s = n ± 1,n are obtained from the solution of the first order of accuracy auxiliary

difference scheme



mvk
n −m vk−1

n

τ
− e−xn

mvk
n+1 − 2mvk

n +m vk
n−1

h2 + 2 mvk
n =m Ψk

n,

mΨk
n = f (tk, xn,m−1 uk

n), tk = kτ, 1 ≤ k ≤ N, Nτ = T,

xn = nh, 1 ≤ n ≤M − 1, Mh = 1,

mvN
n −m v0

n =
(
e−T
− 1

) (
x2

n − xn

)
, xn = nh, 0 ≤ n ≤M,

mvk
0 =m vk

M = 0, 0 ≤ k ≤ N.

(17)

The matrix representation of auxiliary difference scheme is

An mvn+1 + Bn mvn + Cn mvn−1 = Fn, 1 ≤ n ≤M − 1, v0 = vM =
−→
0 . (18)
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Here, Fn is an (N + 1) × 1 column vector, An, Bn, Cn are (N + 1) × (N + 1) matrices given below:

An = Cn =



0 0 0 0 · · · 0
0 an 0 0 · · · 0
0 0 an 0 · · · 0
0 0 0 an · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · an


,

Bn =



−1 0 0 0 · · · 1
d bn 0 0 · · · 0
0 d bn 0 · · · 0
0 0 d bn · · · 0
...

...
...

. . .
. . .

...
0 0 0 0 d bn


,

Fn =



(
e−T
− 1

) (
x2

n − xn

)
mΨ1

n

mΨ2
n
...

mΨN
n


,

where

an =
e−xn

h2 , bn =
1
τ

+
2e−xn

h2 + 2, d = −
1
τ
, 1 ≤ n ≤M.

For finding the solution of matrix equation (18) we apply the modified Gauss elimination method [11],
in which the solution is searched in the form

vn = αn+1vn+1 + βn+1, n = M − 1, · · · 1, v0 = vM =
−→
0 ,

where αn ’s are (N + 1)× (N + 1) matrices and βn ’s are (N + 1)× 1 column vectors. In order to find αn ’s and
βn ’s we employ the formulas

αn+1 = − (Bn + Cnαn)−1 An, n = 1, · · · ,M − 1
βn+1 = − (Bn + Cnαn)−1 (

Fn − Cnβn
)
, n = 1, · · · ,M − 1,

where α1 is the (N + 1) × (N + 1) zero matrix and β1 is the (N + 1) × 1 zero vector.
Second, for finding the values of mp (xn) at the grid points, by Theorem 3.3, we employ the formula

mp (xn) = 2e−T
(
x2

n − xn − e−xn
)

+e−xn
mvN

n+1 − 2mvN
n +m vN

n−1

h2 − 2 mvN
n , xn = nh, 1 ≤ n ≤M − 1. (19)

Once we find the values of mp (xn) at the grid points, we put them into difference scheme (16) and
difference scheme becomes direct. Then, we write it in the matrix form as

An mun+1 + Dn mun + Cn mun−1 = Gn, 1 ≤ n ≤M − 1, u0 = uM =
−→
0 , (20)
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where An, Cn were the matrices defined above and

Dn =



1 0 0 0 · · · 0
d bn 0 0 · · · 0
0 d bn 0 · · · 0
0 0 d bn · · · 0
...

...
...

. . .
. . .

...
0 0 0 0 d bn


,

Gn =


x2

n − xn

mφ1
n

mφ2
n
...

mφN
n


.

Applying the modified Gauss elimination method given above, matrix equation (20) is solved. In
computations the initial guess is chosen as identical zero grid function 0uk

n = 0 and when the maximum
error between two consecutive results of iterative difference scheme (16) becomes less than 10−8, the iterative
process is terminated.

In Tables 1-3, the numerical results where errors are computed by the formulas

Eum = max
1≤k≤N

1≤n≤M−1

∣∣∣muk
n − u(tk, xn)

∣∣∣ ,
Epm = max

1≤n≤M−1

∣∣∣mpn − p(xn)
∣∣∣

are presented. Tables are constructed for T = 1,T = 2 and T = 3, respectively. As can be seen from
tables, these numerical experiments support the theoretical the statements. The number of iterations and
maximum errors are decreasing with the increase of grid points.

Table 1. The error analysis for difference scheme (16) when T = 1
N = M = 20 N = M = 40 N = M = 80

Number of iterations (m) 7 7 6
Ep 0.1744 0.0871 0.0435
Eu 0.0052 0.0025 0.0012

Table 2. The error analysis for difference scheme (16) when T = 2
N = M = 20 N = M = 40 N = M = 80

Number of iterations (m) 10 9 9
Ep 0.1249 0.0632 0.0317
Eu 0.0073 0.0038 0.0019

Table 3. The error analysis for difference scheme (16) when T = 3
N = M = 20 N = M = 40 N = M = 80

Number of iterations (m) 22 21 20
Ep 0.1008 0.0529 0.0270
Eu 0.0075 0.0040 0.0021

5. Summary and Concluding Remarks

In the present study, the unique solvability of a source identification inverse abstract problem governed
by a semilinear equation under the Lipschitz condition is established. Furthermore, the unique solvability



A.U. Sazaklioglu et al. / Filomat 32:3 (2018), 847–858 858

of the corresponding first order of accuracy Rothe difference scheme is investigated. As an application, a
source identification inverse problem for a semilinear parabolic equation with final overdetermination is
considered. For numerically solving this problem the Rothe difference scheme is proposed. For showing
the efficiency of this difference scheme some numerical results are recorded. Obviously, these results in
error analysis validate the theoretical considerations of the paper. As expected, in the case when the value
of T is increased, so does the number of iterations. However, this situation does not cause any problem on
convergence of the iterations.
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