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On Some Generalizations of Properties of the Lowndes Operator and
their Applications to Partial Differential Equations of High Order
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Abstract. In this work we proved a composition of Lowndes’ operator with differential operators of the
high order, particularly, with iterated Bessel differential singular operator. Examples on applications of the
proved properties to partial differential equations of the fourth and high order with singular coefficients
were showed. By applying the proved theorems, explicit formulas of the solutions of considered problems
were constructed.

1. Introduction

Various modifications and generalizations of the classical fractional integration operators are known and
are widely used both in theory and applications. The Erdélyi-Kober operators concern such modifications
in particular, [1, 12, 16]. Their various modifications, generalizations and applications can be found in
works by Erdélyi [3–5], Sneddon [18, 19], Lowndes [13–15] and Kiryakova [12].

In the work [13] of Lowndes the following generalized Erdélyi-Kober operator with the Bessel function
in the kernel was introduced and investigated.

Jλ(η, α) f (x) = 2αλ1−αx−2α−2η

x∫
0

Jα−1

(
λ
√

x2 − t2
)

(x2 − t2)(1−α)/2
t2η+1 f (t)dt, (1)

where α, η,∈ R, λ ∈ C, such that α > 0, η > −(1/2), and Jν(z) is the Bessel function of the first kind, [6]. It
is obvious that if λ→ 0, then the operator in (1) coincides with the Erdélyi-Kober operator [1]:

Iη,α f (x) =
2x−2(η+α)

Γ(α)

x∫
0

(x2
− t2)α−1t2η+1 f (t)dt, (2)

where Γ(α) is the Euler gamma-function [6].
The basic properties of these operators can be found in the works [1–5, 7, 8, 12–16, 18, 19]
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Properties of operator (1) in weight spaces Lp(0,∞) were studied in works by Heywood [7] and by
Heywood and Rooney [8]. In these works, the generalized Erdélyi-Kober operators are named by Lowndes
operator.

Further, we need the following modified form of operator (1):

Jλ(η, α) f (x) =
2x−2(α+η)

Γ(α)

x∫
0

t2η+1(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
)

f (t))dt, (3)

where J̄ν(z) is the Bessel-Clifford function [12, 16] defined as

J̄ν(z) = Γ(ν + 1)(z/2)−ν Jν(z) = 0F1(ν + 1;−z2/4) =

∞∑
k=0

(−z2/4)k

(ν + 1)kk!
. (4)

Further, let Bx
η = x−2η−1 ∂

∂x
x2η+1 ∂

∂x
=
∂2

∂x2 +
2η + 1

x
∂
∂x

be the Bessel differential operator on the variable x.
For operators (1) and (2) holds the following theorem [16, lemma 40.2], [4], [14].

Theorem 1.1. Let α > 0, f (x) ∈ C2(0, b), b > 0, function x2η+1Bx
η f (x) is integrable at zero, and lim

x→0
x2η+1 f ′(x) = 0.

Then

(Bx
η+α + λ2)Jλ(η, α) f (x) = Jλ(η, α)Bx

η f (x) (5)

and, in particular, if λ = 0, then

Bx
η+αIη,α f (x) = Iη,αBx

η f (x).

In the given work these properties are generalized for iterated Bessel differential operator of the high
order. The obtained results are applied to the investigation of problems for partial differential equations of
the high order with singular coefficients.

2. Generalzaton of Propertes of Lowndes Operator

2.1. Composition of an Operator (3) with Iterated Bessel Differential Operator of the High Order

Let [Bx
η]0 = E,E is identity operator, [Bx

η]m = [Bx
η]m−1[Bx

η] = [Bx
η][Bx

η]...[Bx
η] be m-th power of Bessel operator.

Further m means natural number.

Theorem 2.1. Let α > 0, η > −(1/2), f (x) ∈ C2m(0, b), b > 0, functions x2η+1[Bx
η]k+1 f (x) is integrable at zero, and

lim
x→0

x2η+1 d
dx

[Bx
η]k f (x) = 0, k = 0,m − 1. Then

[Bx
η+α + λ2]m Jλ(η, α) f (x) = Jλ(η, α)[Bx

η]
m f (x) (6)

and, in particular, if λ = 0, then

[Bx
η+α]mIη,α f (x) = Iη,α[Bx

η]
m f (x).

Proof. We use a method of a mathematical induction on m. For m = 1 it is proved in the Theorem 1.1. We
assume that the equality (6) is true for m = k and we prove that the equality is true for m = k + 1.

The left hand side of (6) can be written as

(Bx
η+α + λ2)k+1 Jλ(η, α) f (x) = (Bx

η+α + λ2)(Bx
η+α + λ2)k Jλ(η, α) f (x),
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but by the inductive hypothesis,

(Bx
η+α + λ2)(Bx

η+α + λ2)k Jλ(η, α) f (x) = (Bx
η+α + λ2)Jλ(η, α)[Bx

η]
k f (x).

In last equality applying the Theorem 1.1 for function [Bx
η]k f (x) at realization of conditions lim

x→0
x2η+1 d

dx
[Bx
η] j f (x) =

0, j = 0, k − 1, we obtain equality (6) for m = k + 1.

Let function u(x, y) = u(x1, x2, . . . , xn, y) be continuously differentiable up to the order 2m on a variable
y and the order is not less than m on x. Lx is a linear differential operator of any order on a variable x ∈ Rn

and it does not depend on y.

Theorem 2.2. Letα > 0, η > −(1/2), functions y2η+1[By
η]ku(x, y) be integrable at y→ 0 and lim

y→0
y2η+1 ∂

∂y
[By
η]ku(x, y) =

0, k = 0,m − 1. Then

(By
η+α + λ2

± Lx)m Jy
λ(η, α)u(x, y) = Jy

λ(η, α)(By
η ± Lx)mu(x, y) (7)

and, in particular, if λ = 0, then

(By
η+α ± Lx)mIy

η,αu(x, y) = Iy
η,α(By

η ± Lx)mu(x, y),

where the indices y in the above operators imply a variable to which these operators are applied.

Theorem 2.2 is proved by means of formal expansion of the operator [(By
η + λ2) ± Lx]m by a binominal

formula [(By
η + λ2) ± Lx]m =

m∑
k=1

(
m
k

)
(±Lx)m−k

(
By
η + λ2

)k
and by applying Theorem 2.1.

Corollary 2.1. Let η = −1/2, α > 0, functions
∂2ku(x, y)
∂y2k

be integrable at y → 0 and lim
y→0

∂2k+1u(x, y)
∂y2k+1

= 0, k =

0,m − 1. Then (
∂2

∂y2 +
2α
y
∂
∂y

+ λ2
± Lx

)m

Jy
λ

(
−

1
2
, α

)
u(x, y) = Jy

λ

(
−

1
2
, α

) (
∂2

∂y2 ± Lx

)m

u(x, y).

2.2. Derivatives of Higher Order Lowndes Operator (3)

Let D0
η = E, Dη = x−2η

(
1
x

d
dx

)
x2η, Dm

η = Dm−1
η Dη = DηDη...Dη is m -th power of operator Dη which is

represented in the form Dm
η = x−2η

(
1
x

d
dx

)m

x2η.

Theorem 2.3. If α > 0, η > −(1/2), f (x) ∈ Cm(0, b), b > 0, functions x2η+1Dk+1
η f (x) are integrated in zero and

lim
x→0

x2ηDk
η f (x) = 0, k = 0,m − 1, then an equality

Dm
η+α Jλ(η, α) f (x) = Jλ(η, α)Dm

η f (x) (8)

is true.

Proof. This theorem is proved by the method of mathematical induction on m as well. We show that the
equality (8) is true for m = 1 :

Dη+α Jλ(η, α) f (x) = Jλ(η, α)Dη f (x). (9)
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Let’s consider function

Dη+α Jλ(η, α) f (x) =
2x−2(η+α)

Γ(α)
lim
ε→0

Fε(x),

where ε is enough small positive real number and

Fε(x) =

(
1
x

d
dx

) x−ε∫
0

(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
)

t2η+1 f (t)dt

by applying the rule of derivation of integral, we derive

Fε(x) =
εα−1

x
(2x − ε)α−1 J̄α−1

(
λ
√
ε(2x − ε)

)
(x − ε)2η+1 f (x − ε)

+

x−ε∫
0

(
1
x

d
dx

) [
(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
)]

t2η+1 f (t)dt.

Further, considering easily checked equality(
1
x

d
dx

) [
(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
)]

= −

(
1
t

d
dt

) [
(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
)]
,

we have

Fε(x) =
εα−1

x
(2x − ε)α−1 J̄α−1

(
λ
√
ε(2x − ε)

)
(x − ε)2η+1 f (x − ε)

−

x−ε∫
0

(
d
dt

) [
(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
)]

t2η f (t)dt.

Applying to the last integral a rule of integration by parts and considering the condition of the Theo-
rem 2.3, after canceling of the terms, we have

Fε(x) =
−εα

x(x − ε)
(2x − ε)α−1 J̄α−1

(
λ
√
ε(2x − ε)

)
(x − ε)2η+1 f (x − ε)

+

x−ε∫
0

[
(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
)]

t2η+1Dη f (t)dt.

From here, by virtue of α > 0, for ε→ 0 we obtain equality (9).
Let’s assume that the equality (8) is true for m = k. We prove that it is true for m = k + 1.
Consider left hand side of (8)

Dk+1
η+α Jλ(η, α) f (x) = Dη+αDk

η+α Jλ(η, α) f (x).

On the other hand, by the inductive hypothesis,

Dη+αDk
η+α Jλ(η, α) f (x) = Dη+α Jλ(η, α)Dk

η f (x).

By applying the (9) for Dk
η f (x) function in last equality, we get equality (8) for m = k + 1. The proof of the

Theorem 2.3 is finished.
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Corollary 2.2. Let η = 0, α > 0, f (x) ∈ Cm(0, b), b > 0, functions
d
dx

(
1
x

d
dx

)k

f (x) be integrable in zero and

lim
x→0

(
1
x

d
dx

)k

f (x) = 0, k = 0,m − 1. Then

(
1
x

d
dx

)m x∫
0

(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
)

f (t)tdt =

x∫
0

(x2
− t2)α−1 J̄α−1

(
λ
√

x2 − t2
) [(1

t
d
dt

)m

f (t)
]

tdt.

Considering easily checked equalities D0Bη = Bη+1D0, Bη = Dηx2D0, x2Dη = x
d

dx
+ 2η, Dη = D0 +

2η
x2 ,

DηBη = D2
η

(
x

d
dx

)
where D0 =

1
x

d
dx
, the other properties of operator 1 can be proved.

The proved theorems allow to reduce singular (or degenerated) equations of high order to equations
without singularity and thus, to formulate and investigate correct initial and boundary problems for such
equations.

3. Applications

The method of fractional integro-differentiation for the differential equations in generalized axially
symmetric potential theory was first considered by Weinstein [21–23]. In the paper [23] and [24], he proved
relations connecting the solutions of equation

Lλα,β(u) ≡
∂2u
∂t2 +

2β
t
∂u
∂t
−

n∑
k=1

∂2u
∂x2

k

+
2αk

xk

∂u
∂xk

 + λ2u = 0, (10)

for n = 1, α1 = λ = 0 and various values of parameter β by means of an integral of the fractional order. This
idea was developed by Erdélyi [3–5] who investigated the properties of the Bessel differential operator. In
particular, in the papers [3] and [4] he proved Theorem 1.1 in the case λ = 0.

The results of Erdélyi were generalized by Lowndes [14] who proved Theorem 1.1. Lowndes obtained
results applied to a solution of some boundary value problems for the equation of Laplace with the mixed
boundary conditions. Proved Theorem 1.1 enables to receive accordingly a fundamental solution of more
common of Helmholtz type equations from fundamental solutions of the Laplace equation accordingly.
Besides that in the work [15], applying the Theorem 1.1 he has solved a Cauchy problem for the equation
(10) for n > 1, β = 0, αk = 0, k = 1,n; λ , 0.

In this direction also it is necessary to note the work [20] in which, applying the Theorem 1.1, the Cauchy
problem for the equation (10) is investigated for n > 1, β , 0, λ , 0, αk = 0, k = 1,n. In this work, the
explicit formula of a solution of the studied problem is obtained at various values of parameter β.

In the works [9] and [10] the properties of many-dimensional generalized Erdélyi-Kober operator
(Lowndes) are investigated and the received results are applied to a solution of a Cauchy problem to the
equation (10) for n = 1, 2, and in work [11] it is solved for n = 3, β = 0, λ = 0 and αk , 0, k = 1, 2, 3.

Further, in this work, by examples, we will show application of the proved theorems to construction of
explicit formulas of a solution of problems for the equations of the fourth and high orders.

3.1. Application Lowndes Operator to Partial Differential Equation of the Fourth Order

In the domain Ω = {(x, y) : −∞ < x < +∞, 0 < y < +∞} for the equation of the fourth order

Lλβ (u) ≡
∂2u
∂y2 +

2β
y
∂u
∂y

+
∂4u
∂x4 + λ2u = 0 (11)
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it is possible to formulate and investigate a problem with initial conditions

u(x, 0) = f (x), lim
y→0

y2βuy(x, y) = 1(x), −∞ < x < +∞, (12)

where β, λ ∈ R, and 0 < β < (1/2), f (x), 1(x) are given smooth functions.
The given problem is not investigated earlier. First, we find a solution of the equation (11), satisfying to

homogeneous initial conditions

u(x, 0) = f (x), uy(x, 0) = 0, −∞ < x < +∞. (13)

Let’s assume that a solution of a problem (11), (13) exists. For this solution we search in the form of

u(x, y) = Jy
λ(−1/2, β)U(x, y), (14)

where U(x, y) is unknown smooth function.
Substituting (14) in the equation (11) and initial conditions (13), and then, using the Theorem 1.1, we

get the following problem of a determination of a solution U(x, y) of the equation

∂2U
∂y2 +

∂4U
∂x4 = 0 (15)

satisfying to initial conditions

U(x, 0) = k0 f (x), Uy(x, 0) = 0, x ∈ R, (16)

where k0 = Γ(β + (1/2))/
√
π.

The solution of a problem (11), (16) has a form [17]

U(x, y) =
k0
√

2π

+∞∫
−∞

f (x − 2ξ
√

y)
(
cos ξ2 + sin ξ2

)
dξ. (17)

Substituting (17) in (14), after change of the order of an integration and having calculated an interior
integral, we receive

u(x, y) = γ1

+∞∫
−∞

f (x + 2ξ
√

y)G(ξ, y; β)dξ, (18)

where γ1 = k0/
√

2π,

G(ξ, y; β) =
Γ(1/4)

Γ(β + (1/4))
K1

(
β +

1
4

;
3
4
,

1
2

; −
ξ4

4
, −

1
4
λ2y2

)
+

Γ(−1/4)
Γ(β − (1/4))

ξ2K1

(
β −

1
4

;
5
4
,

3
2

; −
ξ4

4
, −

1
4
λ2y2

)
.

Here K1(a, b, c; x, y) =
∞∑

m=0

ym

(a)mm! 1F2 (1 − a −m; b, c; x) , 1F2 (a; b, c; z) is the generalized hypergeometric

function [6].
For construction of a solution of the equation (11), satisfying to a half homogeneous initial conditions

u(x, 0) = 0, lim
y→0

y2βuy(x, y) = 1(x), −∞ < x < +∞. (19)

Let’s take advantage of the following property of the equation (11): If u(x, y; 1 − β) is a solution of the
equation Lλ1−β(u) = 0, satisfying to conditions (13), function w(x, y; β) = y1−2βu(x, y; 1 − β) at 0 < β < 1/2 will
be a solution of the equation Lλβ (u) = 0, satisfying to conditions

w(x, 0; β) = 0, lim
y→0

y2βwy(x, y; β) = (1 − 2β) f (x), −∞ < x < +∞.
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This property is proved by an immediate evaluation.
Considering this property and having substituted (1 − 2β) f (x) on 1(x), from equality (18), we receive

w(x, y; β) = γ2y1−2β

+∞∫
−∞

1(x + 2ξ
√

y)G(ξ, y; 1 − β)dξ, (20)

where γ2 = Γ((1/2) − β)/(π2
√

2).
Thus, the solution of a problem (11), (12) by virtue of formulas (18), (20) and a principle of linear

superposition look like

u(x, y) = γ1

+∞∫
−∞

f (x + 2ξ
√

y)G(ξ, y; β)dξ + γ2y1−2β

+∞∫
−∞

1(x + 2ξ
√

y)G(ξ, y; 1 − β)dξ.

3.2. Application Lowndes operator to Partial Differential Equation with the Square of the Bessel Operator
In the domain Ω+ = {(x, y) : 0 < x < +∞, 0 < y < +∞} for the equation of the fourth order

∂2u
∂y2 +

(
∂2

∂x2 +
2α
x
∂
∂x

)2

u = 0 (21)

it is possible to formulate and investigate a problem with initial

u(x, 0) = f (x), 0 6 x < +∞, uy(x, 0) = 0, 0 < x < +∞, (22)

and boundary conditions

ux(0, y) = 0, uxxx(0, y) = 0, 0 < y < +∞, (23)

where α ∈ R, and 0 < α < (1/2), f (x)− the set smooth function.
Equation (21), in particular, arises at study of the equation of a many-dimensional free transverse

vibration of a thin elastic plate uyy + ∆2u = 0 [17] at a rotational symmetry in a spherical frame, where
∆2 = ∆∆ is a biharmonic operator, and ∆ is a many-dimensional Laplace operator.

As well as in the previous example, for a solution of the equation (21) we search in the form of

u(x, y) = Jx
0(−1/2, α)U(x, y) = Ix

−1/2, αU(x, y), (24)

where Ix
−1/2, α is Erdéélyi-Kober operator (2), and U(x, y) is unknown smooth function.

Substituting (24) in the equation (21), initial conditions (22), and then, using the Theorem 2.1 for
λ = 0, m = 2 and considering boundary conditions (23), we obtain the following problem of a determination
of a solution U(x, y) of the equation (15) satisfying to initial conditions

U(x, 0) = F(x), 0 6 x < +∞, Uy(x, 0) = 0, 0 < x < +∞ (25)

and to homogeneous boundary conditions

Ux(0, y) = 0, Uxxx(0, y) = 0, 0 < y < +∞, (26)

where

F(x) =
1

Γ(1 − α)
d
dx

x∫
0

(x2
− s2)−αs2α f (s)ds.

To find a solution of the problem {(15), (25), (26)} it is impossible to take advantage immediately of the
formula (17), since for negative values of arguments the initial function F(x) is not defined.
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Let us extend F(x) to x < 0 by even reflection, and consider F0(x) as such extension. Thus, we ensure
realization of the conditions (26) and now we can use the formula (17) which looks like

U(x, y) =
1
√

2π

+∞∫
−∞

F0(x − 2ξ
√

y)
(
cos ξ2 + sin ξ2

)
dξ. (27)

Substituting (27) in (24) after simple transformations and change of the order of an integration, and also
having calculated an interior integral, we receive the explicit formula of a solution of a problem {(21) - (23)}
in the form of

u(x, y) =
x(1/2)−α

2y

+∞∫
0

f (ξ)ξ(1/2)+α Jα−(1/2)

(
xξ
2y

)
sin

[
x2 + ξ2

4y
+
π
2

(1
2
− α

)]
dξ.

Following example shows application of the Theorem 2.2.

3.3. Application Lowndes operator to the Polywave Equation with Bessel Operator

In the domain Ω = {(x, y) : −∞ < x < +∞, 0 < y < +∞} it is required to discover a classical solution of
the iterated equation(

∂2

∂y2 +
2β
y
∂
∂y

+ λ2
−
∂2

∂x2

)m

u(x, y) = 0, (x, y) ∈ Ω, (28)

satisfying to initial conditions

∂2ku
∂y2k

∣∣∣∣∣∣
y=0

= ϕk(x)
∂2k+1u
∂y2k+1

∣∣∣∣∣∣
y=0

= 0, x ∈ R, k = 0,m − 1, (29)

where β, λ ∈ R, and 0 < β < (1/2), and ϕk(x) (k = 0,m − 1) is the set smooth functions.
Similarly as in the subsection 3.1 we assume, that a solution of a problem (28), (29) exists. We search for

this solution in the form of

u(x, y) = Jy
λ(−1/2, β)U(x, y), (30)

where U(x, y) is unknown smooth function.
Substituting (30) in the equation (28) and initial conditions (29), and then, using a corollary 2.1 at

Lx =
∂2

∂x2 , we receive a following problem of a determination of a solution U(x, y) of the equation

(
∂2

∂y2 −
∂2

∂x2

)m

U(x, y) = 0, x ∈ R, y > 0 (31)

satisfying to initial conditions

∂2kU
∂y2k

∣∣∣∣∣∣
y=0

= Φk(x),
∂2k+1U
∂y2k+1

|y=0 = 0, x ∈ R, k = 0,m − 1, (32)

where Φk(x) =
k∑

j=0
γ jC

j
kλ

2(k− j)ϕ j(x), γ j = Γ

(
2 j + 1

2
+ β

)
/Γ

(
2 j + 1

2

)
, C j

k =
k!

j!(k − j)!
is binomial coefficient,

k! = 1 · 2 · 3 · · · · · (k − 1) · k.
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Let V0(x, y) = U(x, y) and Vn(x, y) =

(
∂2

∂y2 −
∂2

∂x2

)n

V0(x, y). Then the problem {(31), (32)} is reduced to an

equivalent problem of a determination of solutions Vn(x, y), n = 0,m − 1 of a set of equations
∂2Vn

∂y2 −
∂2Vn

∂x2 = Vn+1, n = 0,m − 2,

∂2Vm−1

∂y2 −
∂2Vm−1

∂x2 = 0
(33)

satisfying to initial conditions

Vn(x, 0) = pn(x),
∂Vn(x, 0)
∂y

= 0, x ∈ R, n = 0,m − 1, (34)

where pn(x) =
n∑

k=0
(−1)kCk

nΦ(2k)
n−k(x), Φ(2k)

n−k(x) =
d2k

dx2k
Φn−k(x).

At a solution of a problem (33), (34) we take advantage of the following lemma.

Lemma 3.1. If 1(x) ∈ L1(Ω), Ω = (a, b), −∞ 6 a < b 6 +∞, equalities take place

y∫
0

dη

x+y−η∫
x−y+η

[1(ξ + η) + 1(ξ − η)]dξ = y

x+y∫
x−y

1(ξ)dξ, (35)

y∫
0

ηdη

x+y−η∫
x−y+η

dξ

ξ+η∫
ξ−η

[η2
− (ξ − s)2]n1(s)ds =

y
2(n + 1)(n + 2)

x+y∫
x−y

[y2
− (x − s)2]n+11(s)ds, n = 0, 1, 2, . . . . (36)

Proof. In a left member of equality (35) in interior integrals accordingly having made a change of variables
s = ξ + η and s = ξ − η, we have

y∫
0


x+y∫

x−y+2η

1(s)ds +

x+y−2η∫
x−y

1(s)ds

 dη =

y∫
0


x+y∫

x−y

1(s)ds +

x+y−2η∫
x−y+2η

1(s)ds

 dη

= y

x+y∫
x−y

1(s)ds +

y∫
0

dη

x+y−2η∫
x−y+2η

1(s)ds. (37)

We calculate the second integral. Let G(z) =
z∫

0
1(s)ds, then G′(z) = 1(z) and

x+y−2η∫
x−y+2η

1(s)ds = G(x + y − 2η) − G(x − y + 2η).

Considering the last, we have

y∫
0

dη

x+y−2η∫
x−y+2η

1(s)ds =

y∫
0

[G(x + y − 2η) − G(x − y + 2η)]dη.
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In last integral having made a change of variables of integration, we get

y∫
0

dη

x+y−2η∫
x−y+2η

1(s)ds =
1
2

x−y∫
x+y

G(s)ds −
1
2

x−y∫
x+y

G(s)ds = 0.

Then from (37), validity of equality (36) follows.
Now we prove equality (36). In a left member of equality (36) sequentially having made permutation

of the order of an integration all over again on η and on ξ, and then on η and on s and having calculated
interior integrals on η, we have

J =

y∫
0

ηdη

x+y−η∫
x−y+η

dξ

ξ+η∫
ξ−η

[η2
− (ξ − s)2]n1(s)ds

=
1

2(n + 1)

x∫
x−y

dξ

2ξ−x+y∫
x−y

[
(s − x + y)(2ξ − s − x + y)

]n+1
1(s)ds

+
1

2(n + 1)

x+y∫
x

dξ

x+y∫
2ξ−x−y

[
(x + y − s)(s + x + y − 2ξ)

]n+1
1(s)ds.

In both last integrals we make permutation of the order of an integration on ξ and on s, and then, having
calculated interior integrals on ξ, we have

J =
1

4(n + 1)(n + 2)

x+y∫
x−y

(s − x + y)n+1(x + y − s)n+21(s)ds

+
1

4(n + 1)(n + 2)

x+y∫
x−y

(s − x + y)n+2(x + y − s)n+11(s)ds

=
y

2(n + 1)(n + 2)

x+y∫
x−y

[
y2
− (x − s)2

]n+1
1(s)ds.

Last proves validity of equality (36). The proof of the Lemma 3.1 is finished.

Sequentially solving each equation of system (33) in view of initial conditions (34) and Lemma 3.1, we
find a solution of the given system. Then, considering V0(x, y) = U(x, y), we get a solution of a problem
(31), (34) in the form of

U(x, y) =
1
2
[
p0(x + y) + p0(x − y)

]
+

m−1∑
n=1

y
22n(n − 1)!n!

x+y∫
x−y

[
y2
− (x − s)2

]n−1
pn(s)ds, (38)

where pn(s) =
n∑

k=0
(−1)kCk

nΦ(2k)
n−k(s), n = 0,m − 1.
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Substituting (38) in (30) after simple transformations and change of the order of an integration, and also
having calculated an interior integral, we obtain the explicit formula a solution of a problem {(28) - (29)} in
the form of

u(x, y) =

m−1∑
n=0

y1−2β

22nn!Γ(β + n)

x+y∫
x−y

J̄β+n−1

(
λ
√

y2 − (x − s)2
)

[
y2 − (x − s)2]1−β−n pn(s)ds.

Notice that except for the subsection 3.3 application of the Theorem 2.2 allows to reduce the equations
of the high order with singular coefficients to polyharmonic, polycaloric and to polywave equations and
by that to put and investigate correct initial and boundary problems for such equations.

4. Conclusion

In work generalized properties of Lowndes operator. It is proved a composition of this operator with
differential operators of the high order, in particular with degrees of Bessel operator. The received outcomes
are applied to a solution of boundary value problems to partial differential equations of the fourth and high
order. The offered approach is very effective and allows constructing an exact solution of the formulated
problems. These exact solutions allow understanding more deeply qualitative singularities of described
processes and appearances, properties of mathematical models, and also can be used as test examples for
the asymptotic, approximated and numerical methods.
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