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Abstract. In this paper we prove that the first s-number of the Cauchy-Dirichlet heat operator is minimized
in a circular cylinder among all Euclidean cylindric domains of a given measure. It is an analogue of the
Rayleigh-Faber-Krahn inequality for the heat operator. We also prove a Hong-Krahn-Szegö and a Payne-
Pólya-Weinberger type inequalities for the Cauchy-Dirichlet heat operator.

1. Introduction

The classical Rayleigh-Faber-Krahn inequality asserts that the first eigenvalue of the Laplacian with
the Dirichlet boundary condition in Rd, d ≥ 2, is minimized in a ball among all domains of the same
measure. However, the minimum of the second Dirichlet Laplacian eigenvalue is achieved by the union
of two identical balls. This fact is called a Hong-Krahn-Szegö inequality. In this paper analogues of both
inequalities are proved for the heat operator. That is, we prove that the first s-number of the Cauchy-
Dirichlet heat operator is minimized in the circular cylinder among all Euclidean cylindric domains of a
given measure and the second s-number of the Cauchy-Dirichlet heat operator is minimized in the union
of two identical circular cylinders among all Euclidean cylindric domains of a given measure.

Payne, Pólya and Weinberger (see [6] and [7]) studied the ratio λ2(Ω)
λ1(Ω) for the Dirichlet Laplacian and

conjectured that the ratio λ2(Ω)
λ1(Ω) is maximized in the disk among all domains of the same area. In 1991

Ashbaugh and Benguria [1] proved this conjecture for any bounded domain Ω ⊂ Rd. In the present paper
we also investigate that the same ratio for s−numbers of the Cauchy-Dirichlet heat operator and prove an
analogue of this Payne-Pólya-Weinberger inequality for the heat operator. These isoperimetric inequalities
have been mainly studied for the Laplacian related operators, for example, for the p-Laplacians and bi-
Laplacians. However, there are also many papers on this subject for other type of compact operators. For
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instance, in the recent work [8] the authors proved Rayleigh-Faber-Krahn type inequality and Hong-Krahn-
Szegö type inequality for the Riesz potential (see also [9], [10] and [11]). All these works were for self-adjoint
operators. Our main goal is to extend those known isoperimetric inequalities for non-self-adjoint operators
(see, e.g. [4]). The main reason why the results are useful, beyond the intrinsic interest of geometric
extremum problems, is that they produce a priori bounds for spectral invariants of operators on arbitrary
domains.

Summarizing our main results of the present paper, we prove the following facts:

• Rayleigh-Faber-Krahn type inequality: the first s-number of the Cauchy-Dirichlet heat operator is
minimized on the circular cylinder among all Euclidean cylindric domains of a given measure;

• Hong-Krahn-Szegö type inequality: the minimizer domain of the second s-number of the Cauchy-
Dirichlet heat operator among cylindric bounded open sets with a given measure is achieved by the
union of two identical circular cylinders ;

• Payne-Pólya-Weinberger type inequality: the ratio s2
s1

is maximized in the circular cylinder among all
cylindric domains of a given measure;

In Section 2 we discuss some necessary tools. In Section 3 we present main results of this paper and their
proofs.

2. Preliminaries

Let D = Ω × (0,T) be a cylindrical domain, where Ω ⊂ Rd is a simply-connected set with smooth
boundary ∂Ω. We consider the heat operator with the Cauchy-Dirichlet problem (see, for example, [12])
♦ : L2(D)→ L2(D) in the form

♦u(x, t) :=


∂u(x,t)
∂t − ∆xu(x, t),

u(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T).
(1)

The operator ♦ is a non-selfadjoint operator in L2(D). An adjoint operator ♦∗ to operator ♦ is

♦
∗v(x, t) =


−
∂v(x,t)
∂t − ∆xv(x, t),

v(x,T) = 0, x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T).
(2)

Recall that if A is a compact operator, then the eigenvalues of the operator (A∗A)1/2, where A∗ is the
adjoint operator to A, are called s-numbers of the operator A (see e.g. [2]). A direct calculation gives that
the operator ♦∗♦ has the formula

♦
∗
♦u(x, t) =



−
∂2u(x,t)
∂t2 + ∆2

xu(x, t),
u(x, 0) = 0, x ∈ Ω,
∂u(x,t)
∂t |t=T − ∆xu(x, t)|t=T = 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T),
∆xu(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T).

(3)

3. Main Results and their Proofs

We consider a (circular) cylinder C = B×(0,T) where B ⊂ Rd is an open ball. Let Ω be a simply-connected
set with smooth boundary ∂Ω with |B| = |Ω|, where |Ω| is the Lebesgue measure of the domain Ω.
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Let us introduce operators T,L : L2(Ω)→ L2(Ω)

Tz(x) =

−∆z(x),
z(x) = 0, x ∈ ∂Ω.

(4)

and we denote an eigenvalue of T by µ.
Similarly,

Lz(x) =


∆2z(x),
z(x) = 0, x ∈ ∂Ω,
∆z(x) = 0, x ∈ ∂Ω.

(5)

and we denote an eigenvalue of L by λ.

Lemma 3.1. The first eigenvalue of the operator L is minimized in the ball B among all domains Ω of the same
measure with |B| = |Ω|.

Proof. The Rayleigh-Faber-Krahn inequality is valid for the Dirichlet Laplacian, that is, the ball is a minimizer
of the first eigenvalue of the operator T among all domains Ω with |B| = |Ω|. A straightforward calculation
from (4) gives that

T2z(x) =


∆2z(x) = µ2z(x),
z(x) = 0, x ∈ ∂Ω,
∆z(x) = 0, x ∈ ∂Ω.

(6)

Thus, T2 = L and µ2 = λ. Now using the Rayleigh-Faber-Krahn inequality we establish λ1(B) = µ2
1(B) ≤

µ2
1(Ω) = λ1(Ω), i.e. λ1(B) ≤ λ1(Ω).

Theorem 3.2. The first s-number of the operator ♦ is minimized in the circular cylinder C among all cylindric
domains of a given measure, that is,

s1(C) ≤ s1(D),

for all D with |D| = |C|.

Proof. Recall that D = Ω × (0,T) is a bounded measurable set in Rd+1. Its symmetric rearrangement
C = B × (0,T) is the circular cylinder with the measure equals to the measure of D, i.e. |D| = |C|. Let u be
a nonnegative measurable function in D, such that all its positive level sets have finite measure. With the
definition of the symmetric-decreasing rearrangement of u we can use the layer-cake decomposition [5],
which expresses a nonnegative function u in terms of its level sets as

u(x, t) =

∫
∞

0
χ{u(x,t)>z}dz, ∀t ∈ (0,T), (7)

where χ is the characteristic function of the domain. The function

u∗(x, t) =

∫
∞

0
χ{u(x,t)>z}∗dz, ∀t ∈ (0,T), (8)

is called the (radially) symmetric-decreasing rearrangement of a nonnegative measurable function u.
Consider the following spectral problem

♦
∗
♦u = su,
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♦
∗
♦u(x, t) =



−
∂2u(x,t)
∂t2 + ∆2

xu(x, t) = su(x, t),
u(x, 0) = 0, x ∈ Ω,
∂u(x,t)
∂t |t=T − ∆xu(x, t)|t=T = 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T),
∆xu(x, t) = 0, x ∈ ∂Ω, ∀t ∈ (0,T).

(9)

Our domain D is the cylindrical domain, we can write u(x, t) = X(x)ϕ(t) and u1(x, t) = X1(x)ϕ1(t) is the first
eigenfunction of the operator ♦∗♦. We can rewrite above fact,

−ϕ
′′

1 (t)X1(x) + ϕ1(t)∆2X1(x) = s1ϕ1(t)X1(x). (10)

By the variational principle for the operator ♦∗♦, we get

s1(D) =
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

Ω
X2

1(x)dx +
∫ T

0 ϕ2
1(t)dt

∫
Ω

X1(x)∆2X1(x)dx∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
1(x)dx

=
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

Ω
(X1(x))2dx + µ2

1(Ω)
∫ T

0 ϕ2
1(t)dt

∫
Ω

(X1(x))2dx∫ T

0 ϕ2
1(t)dt

∫
Ω

(X1(x))2dx
,

where µ1(Ω) is the first eigenvalue of the operator Laplace-Dirichlet.
For each non-negative function X1 ∈ L2(Ω), we obtain (see [5])∫

Ω

|X1(x)|2dx =

∫
B
|X∗1(x)|2dx. (11)

where X∗1 is the symmetric decreasing rearrangement of the function X1.
Applying Lemma 3.1 and (11), we get

s1(D) =
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

Ω
(X1(x))2dx + µ2

1(Ω)
∫ T

0 ϕ2
1(t)dt

∫
Ω

(X1(x))2dx∫ T

0 ϕ2
1(t)dt

∫
Ω

(X1(x))2dx

≥

−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

B(X∗1(x))2dx + µ2
1(B)
∫ T

0 ϕ2
1(t)dt

∫
B(X∗1(x))2dx∫ T

0 ϕ2
1(t)dt

∫
B(X∗1(x))2dx

=
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

B(X∗1(x))2dx +
∫ T

0 ϕ2
1(t)dt

∫
B X∗1(x)(µ2

1(B)X∗1(x))dx∫ T

0 ϕ2
1(t)dt

∫
B(X∗1(x))2dx

=
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

B(X∗1(x))2dx +
∫ T

0 ϕ2
1(t)dt

∫
B X∗1(x)∆2X∗1(x)dx∫ T

0 ϕ2
1(t)dt

∫
B(X∗1(x))2dx

=
−

∫ T

0

∫
B u∗1(x, t)

∂2u∗1(x,t)
∂t2 dxdt +

∫ T

0

∫
B u∗1(x, t)∆2

xu∗1(x, t)dxdt∫ T

0

∫
B(u∗1(x, t))2dxdt

≥ inf
z(x,t),0

−

∫ T

0

∫
B z(x, t) ∂

2z(x,t)
∂t2 dxdt +

∫ T

0

∫
B z(x, t)∆2

xz(x, t)dxdt∫ T

0

∫
B z2(x, t)dxdt

= s1(C).

The proof is complete.
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Corollary 3.3. The norm of the operator ♦−1 is maximized in the circular cylinder C among all cylindric domains of
a given measure, i.e. ‖♦−1

‖D ≤ ‖♦
−1
‖C.

Theorem 3.4. The second s-number of the operator ♦ is minimized in the union of two identical circular cylinders
among all cylindric domains of the same measure.

Let D+ = {(x, t) : u(x, t) > 0}, and D− = {(x, t) : u(x, t) < 0}. In proofs we will use the notations

u+
2 (x, t) :=

u2(x, t), (x, t) ∈ D+,

0, otherwise,

and

u−2 (x, t) :=

u2(x, t), (x, t) ∈ D−,
0, otherwise.

To proof Theorem 3.4 we need the following lemma:

Lemma 3.5. For the operator ♦∗♦ we obtain the equalities

s1(D+) = s1(D−) = s2(D).

Proof. For the operator T we have the following equality [3]

µ1(Ω+) = µ1(Ω−) = µ2(Ω). (12)

Let us solve the spectral problem (9) by using Fourier’s method in the domain D±, so

−
∂2u(x,t)
∂t2 + ∆2

xu(x, t) = s(D±)u(x, t),
u(x, 0) = 0, x ∈ Ω±,
∂u(x,t)
∂t |t=T − ∆xu(x, t)|t=T = 0, x ∈ Ω±,

u(x, t) = 0, x ∈ ∂Ω±, ∀t ∈ (0,T),
∆xu(x, t) = 0, x ∈ ∂Ω±, ∀t ∈ (0,T).

(13)

Thus, we arrive at the spectral problems for ϕ(t) and X(x)
∆2X(x) = µ2(Ω±)X(x), x ∈ Ω±,

X(x) = 0, x ∈ ∂Ω±,
∆X(x) = 0, x ∈ ∂Ω±,

(14)

and 
ϕ
′′

(t) + (s(D±) − µ2(Ω±))ϕ(t) = 0, t ∈ (0,T),
ϕ(0) = 0,
ϕ
′

(T) + µ(Ω±)ϕ(T) = 0.
(15)

It also gives that

tan
√

s(D±) − µ2(Ω±)T = −

√
s(D±) − µ2(Ω±)

µ(Ω±)
. (16)
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Now for the domains D and D± we have
tan
√

s1(D+) − µ2
1(Ω+)T = −

√
s1(D+)−µ2

1(Ω+)
µ1(Ω+) ,

tan
√

s1(D−) − µ2
1(Ω−)T = −

√
s1(D−)−µ2

1(Ω−)
µ1(Ω−) ,

tan
√

s2(D) − µ2
2(Ω)T = −

√
s2(D)−µ2

2(Ω)
µ2(Ω) .

By using (12) we establish that
tan
√

s1(D+) − µ2
1(Ω−)T = −

√
s1(D+)−µ2

1(Ω−)
µ1(Ω−) ,

tan
√

s1(D−) − µ2
1(Ω−)T = −

√
s1(D−)−µ2

1(Ω−)
µ1(Ω−) ,

tan
√

s2(D) − µ2
1(Ω−)T = −

√
s2(D)−µ2

1(Ω−)
µ1(Ω−) .

Finally, we get

s1(D+) = s1(D−) = s2(D). (17)

Proof. [Proof of Theorem 3.4] Let us state the spectral problem for the second s−number of the Cauchy-
Dirichlet heat operator (that is, the second eigenvalue of (3)) in the circular cylinder C,

s2(C)v2(x, t) = −
∂2v2(x, t)
∂t2 + ∆2

xv2(x, t). (18)

where v2(x, t) is the second eigenfunction of the operator ♦∗♦ in the circular cylinder C.
Let B = B+

∪ B−. Then by multiplying v+
2 (x, t) to (18) and integrating over B+

× (0,T) we establish,

s2(C)
∫ T

0

∫
B+

v2(x, t)v+
2 (x, t)dxdt = s2(C)

∫ T

0

∫
B+

(v+
2 (x, t))2dxdt

= −

∫ T

0

∫
B+

v+
2 (x, t)

∂2v2(x, t)
∂t2 dxdt +

∫ T

0

∫
B+

v+
2 (x, t)∆2

xv2(x, t)dxdt

= −

∫ T

0

∫
B+

v+
2 (x, t)

∂2v+
2 (x, t)
∂t2 dxdt +

∫ T

0

∫
B+

v+
2 (x, t)∆2

xv+
2 (x, t)dxdt. (19)

After we get,

s2(C) =
−

∫ T

0

∫
B+ v+

2 (x, t) ∂
2v+

2 (x,t)
∂t2 dxdt +

∫ T

0

∫
B+ v+

2 (x, t)∆2
xv+

2 (x, t)dxdt∫ T

0

∫
B+ (v+

2 (x, t))2dxdt

≤ sup
z(x,t),0

−

∫ T

0

∫
B+ z(x, t) ∂

2z(x,t)
∂t2 dxdt +

∫ T

0

∫
B+ z(x, t)∆2

xz(x, t)dxdt∫ T

0

∫
B+ z2(x, t)dxdt

= s1(C+). (20)

Similarly, if (18) multiplying by v−2 (x, t) and intergrating over B− × (0,T), we haves2(C) ≤ s1(C+)
s2(C) ≤ s1(C−).

(21)
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From the Rayleigh-Faber-Krahn inequality Theorem 3.2, we obtains1(C+) ≤ s1(D+)
s1(C−) ≤ s1(D−).

(22)

By using Lemma 3.5 we arrive at

s2(C) ≤ min(s1(C+), s1(C−)) ≤ s1(D+) = s1(D−) = s2(D).

Theorem 3.6. The ratio s2(D)
s1(D) is maximized in the circular cylinder C among all cylindric domains of the same

measure, i.e.
s2(D)
s1(D)

≤
s2(C)
s1(C)

,

for all D with |D| = |C|.

Proof. Let us restate the second and the first s-numbers in the forms

s2(D) =
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

Ω
X2

2(x)dx +
∫ T

0 ϕ2
1(t)dt

∫
Ω

∆2X2(x)dx∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
2(x)dx

=
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

Ω
X2

2(x)dx + µ2
2(Ω)

∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
2(x)dx∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
2(x)dx

, (23)

and

s1(D) =
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

Ω
X2

1(x)dx +
∫ T

0 ϕ2
1(t)dt

∫
Ω

∆2X1(x)dx∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
1(x)dx

=
−

∫ T

0 ϕ
′′

1 (t)ϕ1(t)dt
∫

Ω
X2

1(x)dx + µ2
1(Ω)

∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
1(x)dx∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
1(x)dx

. (24)

From [1] we have

µ2(Ω)
µ1(Ω)

≤
µ2(B)
µ1(B)

. (25)

Applying this and (11) we obtain

s2(D)
s1(D)

=

−

∫ T
0 ϕ

′′

1 (t)ϕ1(t)dt
∫
Ω

X2
2(x)dx+µ2

2(Ω)
∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
2(x)dx∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
2(x)dx

−

∫ T
0 ϕ

′′

1 (t)ϕ1(t)dt
∫
Ω

X2
1(x)dx+µ2

1(Ω)
∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
1(x)dx∫ T

0 ϕ2
1(t)dt

∫
Ω

X2
1(x)dx

≤

−

∫ T
0 ϕ

′′

1 (t)ϕ1(t)dt
∫

B(X∗2(x))2dx+µ2
2(B)
∫ T

0 ϕ2
1(t)dt

∫
B(X∗2(x))2dx∫ T

0 ϕ2
1(t)dt

∫
B(X∗2(x))2dx

−

∫ T
0 ϕ

′′

1 (t)ϕ1(t)dt
∫

B(X∗1(x))2dx+µ2
1(B)
∫ T

0 ϕ2
1(t)dt

∫
B(X∗1(x))2dx∫ T

0 ϕ2
1(t)dt

∫
B(X∗1(x))2dx

=

−

∫ T
0 ϕ

′′

1 (t)ϕ1(t)dt
∫

B(X∗2(x))2dx+
∫ T

0 ϕ2
1(t)dt

∫
B X∗2(x)∆2X∗2(x)dx∫ T

0 ϕ2
1(t)dt

∫
B(X∗2(x))2dx

−

∫ T
0 ϕ

′′

1 (t)ϕ1(t)dt
∫

B(X∗1(x))2dx+
∫ T

0 ϕ2
1(t)dt

∫
B X∗1(x)∆2X∗1(x)dx∫ T

0 ϕ2
1(t)dt

∫
B(X∗1(x))2dx

=

−

∫ T
0

∫
B u∗2(x,t)

∂2u∗2(x,t)

∂t2
dxdt+

∫ T
0

∫
B u∗2(x,t)∆2

xu∗2(x,t)dxdt∫ T
0

∫
B(u∗2(x,t))2dxdt

−

∫ T
0

∫
B u∗1(x,t)

∂2u∗1(x,t)

∂t2
dxdt+

∫ T
0

∫
B u∗1(x,t)∆2

xu∗1(x,t)dxdt∫ T
0

∫
B(u∗1(x,t))2dxdt

=
s2(C)
s1(C)

. (26)
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