Isoperimetric Inequalities for the Heat Potential Operator

Tynysbek Sh. Kal'menov¹, Aidyn Kassymov², Durvudkhan Suragan³

¹Institute of Mathematics and Mathematical Modeling 125 Pushkin str., 050010 Almaty, Kazakhstan
²Institute of Mathematics and Mathematical Modeling 125 Pushkin str., 050010 Almaty, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi ave, 050040 Almaty, Kazakhstan
³Department of Mathematics School of Science and Technology, Nazarbayev University 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan; Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Abstract. In this paper we prove that the circular cylinder is a maximizer of the Schatten p-norm of heat potential operator among all Euclidean cylindric domains of a given measure. We also give analogues of a Rayleigh-Faber-Krahn and a Hong-Krahn-Szegő type inequalities.

1. Introduction

Spectral geometric extremum problems of compact operators is one of most popular research areas of modern mathematics and history of its scientific literature goes back to Rayleighs famous book The Theory of Sound (see e.g. [3]), in which it was stated that a disk minimizes (among all domains of the same area) the first eigenvalue of the Dirichlet Laplacian. This conjecture was proved after about a half century later, simultaneously (and independently) by G. Faber and E. Krahn. Nowadays, the Rayleigh-Faber-Krahn inequality has been generalised to many different operators; see e.g. [5–8] for further references. In the present paper we present an analogue of the Rayleigh-Faber-Krahn theorem for the heat potential operator H, i.e. it is showed that the first s-number of the integral operator H is maximized in a ball among all cylindric domains of a given measure in \mathbb{R}^d and corresponding Hong-Krahn-Szegő type inequality, that is, the maximum of the second s-number of the heat operator among all cylindric domains with a given measure is approached by the union of two identical circular cylinders with mutual distance going to infinity. Moreover, it is proved that the p-Schatten norm of the heat operator is maximized on the circular cylinder among all domains of a fixed measure. This paper is mainly inspired by recent works of Rozenblum, Ruzhansky and Suragan (see e.g. [5–8]) in which analogues of Rayleigh-Faber-Krahn type inequalities were studied for self-adjoint convolution type integral operators. Thus, in this paper we proved:

- Rayleigh-Faber-Krahn type inequality: the first s-number of H_2 is maximized on the circular cylinder among all Euclidean cylindric domains of a given measure;

2010 Mathematics Subject Classification. Primary 47G40; Secondary 47A30, 58J50
Keywords. Heat potential operator, s-number, Rayleigh-Faber-Krahn inequality, Hong-Krahn-Szegő inequality, Schatten p-norm
Received: 26 December 2016; Revised: 27 March 2017; Accepted: 19 April 2017
Communicated by Allaberen Ashyralyev
This paper was published under project AP05130981, AP05133239 and target program BR05236656 of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan. The third author was partially supported by NU SPG grant "Spectral geometric inequalities in PDE".
Email addresses: kalmenov@math.kz (Tynysbek Sh. Kal’menov), kassymov@math.kz (Aidyn Kassymov), durvudkhan.suragan@nu.edu.kz (Durvudkhan Suragan)
Hong-Krahn-Szegö type inequality: the maximum of the second s-number of \mathcal{H}_Ω among cylindric bounded open sets with a given measure is achieved by the union of two identical circular cylinders with mutual distance going to infinity;

- the p-Schatten norm of \mathcal{H}_Ω is maximized on the circular cylinder among all domains of a given measure;

In Section 2 we discuss some necessary tools. In Section 3 we present main results of this paper and their proofs.

2. Preliminaries

Let $D = \Omega \times (0, T)$ be a cylindrical domain, where $\Omega \subset \mathbb{R}^d$ is a simply-connected set with smooth boundary $\partial \Omega$. We consider the heat potential operator (see, for example, [9]) $\mathcal{H} : L^2(D) \rightarrow L^2(D)$ in the form

$$\mathcal{H} f(x, t) := \int_0^t \int_{\Omega} K(|x - \xi|, t - \tau) f(\xi, \tau) d\xi d\tau, \quad \forall f \in L^2(D), \quad t \in (0, T),$$

where $K(|x|, t) = \frac{\theta(t) }{t^{d/2}} e^{-|x|^2/4t}$, here $\theta(t)$ is the Heaviside’s function and $K(|x|, t)$ is the fundamental solution of the Cauchy problem for the heat equation, that is

$$\left(\frac{\partial}{\partial t} - \Delta \right) K(|x - \xi|, t - \tau) = 0,$$

its adjoint

$$\left(- \frac{\partial}{\partial \tau} - \Delta \right) K(|x - \xi|, t - \tau) = 0$$

and

$$\lim_{t \to \tau} K(|x - \xi|, t - \tau) = \delta(|x - \xi|),$$

for all $x, \xi \in \mathbb{R}^d$, where δ is the Dirac delta ‘function’.

The operator \mathcal{H} is a non-selfadjoint operator in $L^2(D)$. We introduce $P : L^2(D) \rightarrow L^2(D)$ by the following formula

$$Pu = u(x, T - t), \quad t \in (0, T).$$

This is also called “involution” operator and it has the properties

$$P^2 = E, \quad P = P^*, \quad P = P^{-1},$$

where E is the unit operator, P^* is the adjoint operator to the operator P and P^{-1} is the inverse operator to the operator P.

Definition 2.1. Let A be a compact operator. s-numbers are the eigenvalues of the operator $(A^* A)^{1/2}$, where A^* is the adjoint operator to A.

Definition 2.2. A Schatten p-norm of a compact operator A in Schatten class S_p is defined as

$$\| A \|_p = \left(\sum_{i=1}^{\infty} s_i^p (A) \right)^{1/p} < \infty, \quad 1 \leq p < \infty,$$

for $s_1 \geq s_2 \geq ... > 0$ being the s-numbers of A. For $p = \infty$, we understand

$$\| A \|_{\infty} := \| A \|,$$

i.e. the operator norm of A in $L^2(D)$.
The operator P acts to the operator \mathcal{H} in $L^2(D)$ by the formula

$$PHu = \int_0^T \int_\Omega K(|x-\xi|, T-t-\tau)u(\xi, \tau)d\xi d\tau.$$ \hspace{1cm} (3)

Lemma 2.3. The operator PH is a self-adjoint operator in $L^2(D)$.

Proof. A direct computation shows

$$\langle PHu, v \rangle_{L^2(D)} = \int_0^T \int_\Omega \left(\int_0^T \int_\Omega K(|x-\xi|, T-t-\tau)u(\xi, \tau)v(x, t)d\xi d\tau \right) dx dt = \int_0^T \int_\Omega \left(\int_0^T \int_\Omega K(|x-\xi|, T-t-\tau)v(x, t)d\xi d\tau \right) u(\xi, \tau)d\xi d\tau = \langle u, PHv \rangle_{L^2(D)}.$$

Thus, we arrive at $PH = (PH)^\dagger$ in $L^2(D)$, i.e., PH is a self-adjoint operator. \hfill \Box

Lemma 2.4. s-numbers of the operator \mathcal{H} coincide with eigenvalues of the operator PH.

Proof. We have $(PH)^\dagger = \mathcal{H}^*P^*$ and

$$(PH)^\dagger(\mathcal{H}^*P^*) = \mathcal{H}^*P^*PH.$$

By the properties of the operator P, we obtain

$$(PH)^\dagger(\mathcal{H}^*P^*) = \mathcal{H}^*P^*PH = \mathcal{H}^*P^2H = \mathcal{H}^*H.$$

\hfill \Box

Remark 2.5. As a consequence of Lemma 2.4 we obtain $\|\mathcal{H}\|_p = \|PH\|_p$, for $H \in S_p$.

3. Main Results and Their Proofs

We consider a (circular) cylinder $C = B \times (0, T)$ where $B \subset \mathbb{R}^d$ is an open ball. Let Ω be a simply-connected set with smooth boundary $\partial \Omega$ with $|B| = |\Omega|$, where $|\Omega|$ is the Lebesgue measure of the domain Ω.

Theorem 3.1. The first eigenvalue of the operator PH is maximized in the circular cylinder C, that is,

$$0 < \lambda_1(D) \leq \lambda_1(C),$$

with $|\Omega| = |B|$.

Applying (6) and (7), we get

$$u(x, t) = \int_0^\infty \chi_{|u(x,t)|>2} \, dz, \quad \forall t \in (0, T),$$

(4)

where χ is the characteristic function of the domain. The function

$$u'(x, t) = \int_0^\infty \chi_{|u(x,t)|>2} \, dz, \quad \forall t \in (0, T),$$

(5)

is called the (radially) symmetric-decreasing rearrangement of a nonnegative measurable function u. Consider the following spectral problem

$$PHu = \lambda u.$$

By the variational principle for the operator PH, we have

$$\lambda_1(D) = \frac{\int_0^T \int_0^{T-t} \int_0^T \int_{\Omega} K(|x-\xi|, T-t-\tau)u_1(\xi, \tau)u_1(x, t) \, dx \, d\xi \, d\tau \, dt}{\|u_1\|^2_{L^2(D)}},$$

where $u_1(x, t)$ is the first eigenfunction of the operator PH. For each non-negative function $u \in L^2(D)$, we obtain

$$\|u\|_{L^2(D)} = \|u'\|_{L^2(C)}.$$

(6)

By the Riesz inequality [4], we establish

$$\int_0^T \int_0^{T-t} \int_0^T \int_{\Omega} K(|x-\xi|, T-t-\tau)u_1(\xi, \tau)u_1(x, t) \, dx \, d\xi \, d\tau \, dt \leq \int_0^T \int_0^{T-t} \int_B K(|x-\xi|, T-t-\tau)u'_1(\xi, \tau)u'_1(x, t) \, dx \, d\xi \, d\tau \, dt.$$

(7)

Applying (6) and (7), we get

$$\lambda_1(D) \leq \frac{\int_0^T \int_0^{T-t} \int_B K(|x-\xi|, T-t-\tau)u'_1(\xi, \tau)u'_1(x, t) \, dx \, d\xi \, d\tau \, dt}{\|u_1\|^2_{L^2(D)}} \leq \frac{\sup_{v \in L^2(C), v \neq 0} \int_0^T \int_0^{T-t} \int_B K(|x-\xi|, T-t-\tau)v(\xi, \tau)v(x, t) \, dx \, d\xi \, d\tau \, dt}{\|v\|^2_{L^2(C)}} = \lambda_1(C).$$

The proof is complete. \(\square \)

Corollary 3.2. According to Lemma 2.4 we have the eigenvalues of the operator PH coincide with the s-numbers of the operator \mathcal{H}, in particular, $\lambda_1(PH) = s_1(H)$. This means $\|\mathcal{H}\| = \|P\mathcal{H}\|$, that is, the norm of the operator PH is maximized in the cylinder C, i.e. $\|\mathcal{H}_C\| \leq \|\mathcal{H}_0\|$.
Theorem 3.3. Let $PH \in S_{p_0}$. For each integer p, $p_0 \leq p < \infty$, we have
\[\|P^H_D\|_p \leq \|P^H_C\|_p, \]
for all Ω such that $|\Omega| = |B|$.

Proof. For all $p_0 \leq p < \infty$, we have
\[\sum_{j=1}^{\infty} \lambda_j^p(P^H) = \int_0^T \int_0^{T-\tau_1} \ldots \int_0^{T-\tau_{p-1}} \int_\Omega \ldots \int_\Omega \prod_{k=1}^p K(|\xi_k - \xi_{k+1}|, T - \tau_k - \tau_{k+1}) d\tau_1 \ldots d\tau_p d\xi_1 \ldots d\xi_p, \]
where $\xi_1 = \xi_{p+1}$ and $\tau_1 = \tau_{p+1}$. Using the Brascamp-Lieb-Luttinger inequality [1], we obtain that
\[\sum_{j=1}^{\infty} \lambda_j^p(D) = \int_0^T \int_0^{T-\tau_1} \ldots \int_0^{T-\tau_{p-1}} \int_\Omega \ldots \int_\Omega \prod_{k=1}^p K(|\xi_k - \xi_{k+1}|, T - \tau_k - \tau_{k+1}) dz \leq \sum_{j=1}^{\infty} \lambda_j^p(C), \]
where $\xi_1 = \xi_{p+1}$, $\tau_1 = \tau_{p+1}$ and $dz = d\tau_1 \ldots d\tau_p d\xi_1 \ldots d\xi_p$. Here we have used that
\[K(|x - y|, T - t - \tau) = K^*(|x - y|, T - t - \tau). \]
Thus
\[\sum_{j=1}^{\infty} \lambda_j^p(D) \leq \sum_{j=1}^{\infty} \lambda_j^p(C), \ p_0 \leq p < \infty. \]
Therefore,
\[\|P^H_D\|_p \leq \|P^H_C\|_p, \ p_0 \leq p < \infty, \]
completes the proof. \(\Box \)

Theorem 3.4. The maximum of the second eigenvalue λ_2 of PH among all cylindric domains D with a given measure is approached by the union of two identical circular cylinders with mutual distance going to infinity.

Proof. Let $D^+ = \{(x, t) : u(x, t) > 0\}$, $D^- = \{(x, t) : u(x, t) < 0\}$. Thus
\[u_2(x, t) > 0, \ t \in (0, T), \forall x \in \Omega^+ \subset \Omega, \ \Omega^+ \neq \emptyset; \]
\[u_2(x, t) < 0, \ t \in (0, T), \forall x \in \Omega^- \subset \Omega, \ \Omega^- \neq \emptyset. \]
Using the notations
\[u_2^+(x, t) := \begin{cases} u_2(x, t), & (x, t) \in D^+, \\ 0, & \text{otherwise}, \end{cases} \]
and
\[u_2^-(x, t) := \begin{cases} u_2(x, t), & (x, t) \in D^-, \\ 0, & \text{otherwise}, \end{cases} \]
Finally, we have
\[\lambda_2(D)u_2(x, t) = \]
\[\int_0^T \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(\xi, \tau) d\xi d\tau \]
\[+ \int_0^T \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(\xi, \tau) d\xi d\tau. \]

Multiplying by \(u_2^2(x, t) \) and integrating over \(\Omega^+ \times (0, T) \), we get
\[\lambda_2(D)\|u_2^2\|^2_{L^2(D^+)} = \int_0^T \int_0^{T-t} \int_{\Omega^*} \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(x, t)u_2(x, \xi, \tau) d\xi d\tau \]
\[+ \int_0^T \int_0^{T-t} \int_{\Omega^*} \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(x, t)u_2(x, \xi, \tau) d\xi d\tau, \]
\[\text{where } dz = d\xi dx dt. \]

We have \(\int_0^{T-t} \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(x, t)u_2(x, \xi, \tau) d\xi d\tau < 0 \). Thus,
\[\lambda_2(D)\|u_2^2\|^2_{L^2(D^+)} = \]
\[\int_0^T \int_0^{T-t} \int_{\Omega^*} \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(x, t)u_2(x, \xi, \tau) d\xi d\tau \]
\[+ \int_0^T \int_0^{T-t} \int_{\Omega^*} \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(x, t)u_2(x, \xi, \tau) d\xi d\tau \]
\[\leq \int_0^T \int_0^{T-t} \int_{\Omega^*} \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(x, t)u_2(x, \xi, \tau) d\xi d\tau. \]

From the latter, we get
\[\lambda_2(D) \leq \frac{\int_0^T \int_0^{T-t} \int_{\Omega^*} \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(x, t)u_2(x, \xi, \tau) d\xi d\tau}{\|u_2^2\|^2_{L^2(D^+)}}. \]

Applying Theorem 3.1, we get
\[\lambda_2(D) \leq \frac{\int_0^T \int_0^{T-t} \int_{\Omega^*} \int_{\Omega^*} K([x, \xi], T - t - \tau)u_2(x, t)u_2(x, \xi, \tau) d\xi d\tau}{\|u_2^2\|^2_{L^2(D^+)}} \]
\[\leq \sup_{v \in L^2(D^+)} \frac{\int_0^T \int_0^{T-t} \int_{\Omega^*} \int_{\Omega^*} K([x, \xi], T - t - \tau)v(x, t)v(x, \xi, \tau) d\xi d\tau}{\|v\|^2_{L^2(D^+)}} = \lambda_1(D^+). \]

Similarly, we get
\[\lambda_2(D) \leq \lambda_1(D^-). \]

Finally, we have
\[\lambda_2(D) \leq \lambda_1(D^-), \quad \lambda_2(D) \leq \lambda_1(D^+). \]

Due to Theorem 3.1, we establish that
\[\lambda_1(D^+) < \lambda_1(C^+), \quad \lambda_1(D^-) < \lambda_1(C^-). \]
Applying (10) and (11), we obtain
\[
\lambda_2(D) \leq \min(\lambda_1(C^+), \lambda_1(C^-)).
\]

We now introduce \(C^+ \) and \(C^- \), the circular cylinders of the same measure as \(D^+ \) and \(D^- \), respectively. Let \(l \) be distance between \(C^+ \) and \(C^- \), i.e. \(l = \text{dist}(C^+, C^-) \).

Define the first (normalized) eigenfunction \(u^\circ_1(x, t) \) of the operator \(P\mathcal{H}_{C^+\cup C^-} \) and take \(u_+, u_- \) being the first (normalized) eigenfunctions of each circular cylinder, i.e., of operators \(P\mathcal{H}_{C^+\cup C^-} \). The first eigenfunction of the corresponding operators \(P\mathcal{H}_x \). Let \(f^\circ \in L^2(C^+ \cup C^-) \) be a function such that
\[
f^\circ = \begin{cases}
 u_+(x, t), & (x, t) \in C^+, \\
 u_-(x, t), & (x, t) \in C^-.
\end{cases}
\]
where \(\gamma \) is real number, so that \(f^\circ \) orthogonal to \(u^\circ_1 \). \(u_+, u_-, u^\circ \) are positive functions.

Noticing that
\[
\int_0^T \int_0^{T-t} \int_{B^+ \cup B^-} \int_{B^+ \cup B^-} K(|x - \xi|, T - t - \tau) f^\circ(\xi, \tau) f^\circ(x, t) d\xi d\tau dt = \sum_{i=1}^4 U_i,
\]
where
\[
\begin{align*}
U_1 &= \int_0^T \int_0^{T-t} \int_{B^+ \cup B^-} \int_{B^+ \cup B^-} K(|x - \xi|, T - t - \tau) u_+(\xi, \tau) u_+(x, t) d\xi d\tau dt, \\
U_2 &= \int_0^T \int_0^{T-t} \int_{B^+ \cup B^-} \int_{B^+ \cup B^-} K(|x - \xi|, T - t - \tau) u_+ (\xi, \tau) u_+(x, t) d\xi d\tau dt, \\
U_3 &= \gamma \int_0^T \int_0^{T-t} \int_{B^+ \cup B^-} \int_{B^+ \cup B^-} K(|x - \xi|, T - t - \tau) u_-(\xi, \tau) u_-(x, t) d\xi d\tau dt, \\
U_4 &= \gamma^2 \int_0^T \int_0^{T-t} \int_{B^+ \cup B^-} \int_{B^+ \cup B^-} K(|x - \xi|, T - t - \tau) u_-(\xi, \tau) u_-(x, t) d\xi d\tau dt.
\end{align*}
\]

By the variational principle, we take
\[
\lambda_2(C^+ \cup C^-) = \sup_{v \in L^2(C^+ \cup C^-), \|v\|_1 = 1} \int_0^T \int_0^{T-t} \int_{B^+ \cup B^-} \int_{B^+ \cup B^-} K(|x - \xi|, T - t - \tau) v(\xi, \tau) v(x, t) d\xi d\tau dt
\]
\[
\geq \int_0^T \int_0^{T-t} \int_{B^+ \cup B^-} \int_{B^+ \cup B^-} K(|x - \xi|, T - t - \tau) f^\circ(\xi, \tau) f^\circ(x, t) d\xi d\tau dt = \sum_{i=1}^4 U_i.
\]

On other hand, \(u_+ \) and \(u_- \) are the first (normalized) eigenfunctions of each circular cylinder \(C^+ \) and \(C^- \), we have
\[
\lambda_1(C^+) = \int_0^T \int_0^{T-t} \int_{B^+} \int_{B^+} u_+(x, t) u_+(\xi, t) K(|x - \xi|, T - t - \tau) d\xi d\tau dt.
\]
Summarizing the above facts, we obtain
\[
\lambda_2(C^+ \cup C^-) \geq \frac{U_1 + U_2 + U_3 + U_4}{(\lambda_1(D^+))^{-1}U_1 + (\lambda_1(D^-))^{-1}U_2}.
\]
Since the kernel \(K(|x - \xi|, T - t - \tau) \) tends to zero as \(x \in B^+ \), \(\xi \in B^+ \) and \(l \to \infty \), we observe that
\[
\lim_{l \to 0} U_2 = \lim_{l \to 0} U_3 = 0.
\]
Therefore,
\[
\lambda_2(C^+ \bigcup C^-) \geq \max\{\lambda_1(C^+), \lambda_1(C^-)\},
\]
where \(l = \text{dist}(C^+, C^-) \). From inequalities (10) and (12), we get
\[
\lim_{l \to \infty} \lambda_2(C^+ \bigcup C^-) \geq \min\{\lambda_1(C^+), \lambda_1(C^-)\} = \lambda_1(C^+) = \lambda_1(C^-)
\]
and this implies that the maximising sequence for \(\lambda_2 \) is given by a disjoint union of two identical circular cylinders with mutual distance going to \(\infty \).

Acknowledgements

The authors also thank all the active participant of the Third International Conference on Analysis and Applied Mathematics - ICAAM 2016 (September 7–10, 2016, Almaty, Kazakhstan) for a useful discussion of the results.

References