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Abstract. We investigate a new type boundary value problem consisting of a differential-operator equation,
eigendependent boundary conditions, and two supplementary conditions so-called interface conditions.
We give a characterisation of some spectral properties of the considered problem. Particularly, it is estab-
lished such properties as isomorphism and coerciveness, discreteness of the spectrum and found asymptotic
formulas for eigenvalues.

1. Introduction

The classical boundary value problems (BVP’s) arise as a mathematical modeling of many systems
and processes in the fields of physics, chemistry, aerodynamics, fluid dynamics, diffusion etc. But some
mechanical and physical systems lead to various non-classical forms of BVP’s. For example, Sturm-
Liouville problems with eigenparameter appearing in the boundary conditions, and with supplementary
interface conditions at some interior singular points arise in non-classical problems of physics, namely in
vibrating string problems when the string loaded additionally with point masses, in problems involving
heat conduction through a liquid-interface, in diffraction problems of water vapour through a porous
membrane (for other examples see [14, 22–24]).

In this study, we consider new type of non-classical boundary value problems consisting of a ”Sturm-
Liouville equation” involving an abstract linear operatorA given by

` f := − f ′′ + q(x) f +A f |x = λ f , x ∈ [−π, 0) ∪ (0, π] (1)

together with eigenparameter-dependent boundary conditions given by

`1 f := δ10 f (−π) − δ11 f ′(−π) = 0, (2)

`2(λ) f := δ20 f (π) − δ21 f ′(π) + λ(δ′20 f (π) − δ′21 f ′(π)) = 0, (3)
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and two supplementary interface conditions at one interior singular point x = 0, given by

`3 f := γ−11 f ′(0−) + γ+
10 f (0+) = 0, (4)

`4 f := γ−21 f ′(0−) + γ−20 f (0−) + γ+
21 f ′(0+) + γ+

20 f (0+) = 0, (5)

where the function q(x) is continuous in the intervals [−π, 0) and (0, π] for which there are finite left and right
limits q(0±) at the singular point x = 0, λ ∈ C is a eigenvalue parameter, δi j, δ′i j γ

±

i j, (i = 1, 2 and j = 0, 1)
are real numbers, A is an abstract linear operator which is non-self-adjoint and unbounded in general in
the Lebesgue space L2[−π, π]. Naturally we shall assume that |δ10| + |δ11| , 0, |δ20| + |δ21| + |δ

′

20| + |δ
′

21| , 0,
|γ−11| + |γ

+
10| , 0 and |γ−21| + |γ

−

20| + |γ
+
21| + |γ

+
20| , 0. Note that the considered boundary-value problem

covered a wide class of non-standard Sturm-Liouville type problems. For example, the results of this study
is applicable to the problem consisting of the equation

− f ′′(x) + q(x) f (x) +

n∑
k=1

uk(x) f (ck) +

m∑
k=1

vk(x) f ′(dk) +

1∑
k=0

(

0∫
−π

Rk(x, t) f (k)(t)dt

+

π∫
0

Tk(x, t) f (k)(t)dt) = λ f (x), x ∈ [−π, 0) ∪ (0, π],

and the same boundary and interface conditions (2) − (5), where uk(x) and vk(x) are piecewise continuous
functions on [−π, π] having discontinuities only at the point x = 0 and only of the first kind, the kernels
Rk(x, t) and Tk(x, t) are defined and continuous in [−π, π]× [−π, 0] and [−π, π]× [0, π], respectively. Note that
some non-classical Sturm-Liouville differential operators have been investigate extensively in the recent
years [1–5, 7–11, 13, 15–21, 25].

2. Construction of the Adequate Hilbert Spaces

Let us consider boundary value problems (1) − (5). For operator-treatment of this problem we shall
introduce a new inner-products in the classical Sobolev spaces. To this we shall assume everywhere in
below that

θ :=
∣∣∣∣∣ δ21 δ

′

21
δ20 δ

′

20

∣∣∣∣∣ > 0 and ∆ :=
∣∣∣∣∣ γ−21 γ+

21
γ−20 γ+

20

∣∣∣∣∣ > 0.

Let Ω ⊂ R be any closed bounded interval. Recall that the Sobolev space Wk
2(Ω)(k = 0, 1, 2, ...) is the Hilbert

space consisting of all functions f ∈ L2(Ω) that have generalized derivatives f ′, f ′′, ..., f (k)
∈ L2(Ω) with the

inner product

< f , 1 >Wk
2(Ω)=

k∑
n=0

(< f (n), 1(n) >L2(Ω),

where L2(Ω) is the usual Lebesgue space, i.e. the Hilbert space of measurable and square-integrable complex
valued functions on the interval Ω with the inner product

〈 f , 1〉L2(Ω) :=
∫

Ω

f (x)1(x)dx.

Of course, here by f (0), 1(0), and W0
2(Ω), we mean f , 1, and L2(Ω), respectively.

The standard inner product in direct sum spaceH0 = (L2(−π, 0) ⊕ L2(0, π)) ⊕ Cwhich is given by

< U,V >H0 :=< u(.), v(.) >L2 +u1v1
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for U = (u(.),u1), V = (v(.), v1) ∈ H0, we shall replace by the ”weight” inner product on the direct sum space
H = H1 ⊕ C by

〈F,G〉H := 〈 f , 1〉H1 +
∆

θ
f111 (6)

for F = ( f (x), f1) and G = (1(x), 11) ∈ H , where byH1 we mean the linear space L2[−π, 0)⊕L2(0, π] equipped
with modified the inner product

〈 f , 1〉H1 := ∆

∫ 0−

−π
f (x)1(x)dx +

∫ π

0+

f (x)1(x)dx

and apply operator theory in the Hilbert space

H := (L2(−π, 0) ⊕ L2(0, π)) ⊕ C, < ., . >H ).

Remark 2.1. It is readily seen that modified inner product (6) is equivalent to standard inner product of
(L2(−π, 0) ⊕ L2(0, π)) ⊕ C, so H is also Hilbert space and can be seen as different realization of the Hilbert
spaceH0.

3. Operator-Theoretical Interpretation of the Problem

Denoting
Bπ[ f ] := δ20 f (π) − δ21 f ′(π),

B′π[ f ] := δ′20 f (π) − δ′21 f ′(π),

and
Φu := −u′′ + q(x)u,

we shall define the linear operator L : H →H with action low

L( f (x),−B′π[ f ]) := (` f ,Bπ[ f ])

and domain of definition

dom(L) :=
{

F = ( f (x), f1) : f (x), f ′(x) ∈ ACloc(−π, 0) ∩ ACloc(0, π), `F ∈ L2(−π, 0) ⊕ L2(0, π),

there are finite limits f (0∓) and f ′(0∓), `1( f ) = `3( f ) = `4( f ) = 0, f1 = −B′π[ f ]
}

Then problems (1) − (5) is acquired to the operator equation form

LF = λF, F = ( f (x),−B′π[ f ]) ∈ dom(L)

in the Hilbert spaceH . Consequently the eigenvalues of the operator L and those of considered problems
(1) − (5) are coincide.

Lemma 3.1. The set dom(L) is dense in the Hilbert spaceH .

Proof. Let, Y0 = (y0(.), y1) ∈ H be any element satisfying the orthogonality relation

〈X,Y0〉H := ∆

∫ 0−

−π
x(s)y0(s)ds +

∫ π

0+

x(s)y0(s)ds −
∆

θ
B′π[x]y1 = 0 (7)
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for all X = (x(.),−B′π[x]) ∈ D(L). Let f1 ∈ C∞0 [−π, 0] and f2 ∈ C∞0 [0, π] be arbitrary functions and let

f =

{
f1(x) f or x ∈ [−π, 0)
f2(x) f or x ∈ (0, π] .

Obviously F := ( f (.), 0) ∈ D(L). Putting in (7), we get

∆

∫ 0−

−π
f1(s)y0(s)ds +

∫ π

0+

f2(s)y0(s)ds −
∆

θ
B′π[ f ]y1 = 0.

By taking f2 = 0, we see from the last equality that

∆

∫ 0−

−π
f1(s)y0(s)ds = 0

for all f1 ∈ C∞0 [−π, 0]. Since C∞0 [−π, 0] is dense in L2(−π, 0), this leads to y0(s) = 0 on [−π, 0). Similarly, by
taking f1 = 0, we have that ∫ π

0+

f2(s)y0(s)ds = 0

for all f2 ∈ C∞0 [0, π], from which it follows that y0(s) = 0 on (0, π].
We can choose an element X̃0 := (x̃0(.),−B′π(x̃0)) ∈ D(L̃) such that −B′π(x̃0) = −y1. Putting in (7) we get

〈X̃0,Y0〉H = −
∆

θ
| y1 |

2= 0

and so y1 = 0. Consequently, Y0 = 0 which proves that the orthogonal complement of D(L) is null element
of the spaceH . Hence D(L) is dense inH . The proof is complete.

4. Topological Isomorphism and Coerciveness

To establish the topological isomorphism and coerciveness we shall define a new inner product space
H2 as the linear space{

U = ( u(.),u1 ) : u(.) ∈W2
2(−π, 0) ⊕W2

2(0, π), `1(u) = `3(u) = `4(u) = 0, u1 = −B
′

π(u)
}

equipped with inner product

< (u(.),u1), (v(.), v1) >H2=< u(.), v(.) >W2
2

(8)

and corresponding norm

‖(u(.),u1)‖H2 = ‖u(.)‖W2
2
.

Lemma 4.1. H2 is a Hilbert space.

Proof. Let Un = (un(.),−B′π[un]),n = 1, 2, ... be any Cauchy sequence in the inner-product spaceH2. Since

‖un − um‖W2
2

= ‖Un −Um‖H2

by (8) we see that the first components (un(.)) of the sequence (Un) forms a Cauchy sequence of the Hilbert
space W2

2(−π, 0)⊕W2
2(0, π), therefore is convergent. Let u = u(x) be the limit of this sequence. By virtue of the

well-known properties of the Sobolev spaces, the embeddings W2
2(−π, 0) ⊂ C[−π, 0] and W2

2(0, π) ⊂ C[0, π]
are compact and therefore the reel sequences `1(un), `2(un), and `4(un) converge to `1(u), `2(u) and `4(u)
respectively. By the definition of the space H2 we know that `1(un) = `2(un) = `4(un) = 0 for all n.
Consequently, `1(u) = `2(u) = `4(u) = 0. Hence U := (u(.),−B′π[u]) ∈ H2 and

‖Un −U‖H2 = ‖un − u‖W2
2
→ 0 as n→∞

so (Un) is convergent. Since the sequence (Un) is an arbitrary Cauchy sequence,H2 is complete. Thus this
inner product space is a Hilbert Space.
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Now, consider nonhomogeneous boundary value transmission problem

Φu − λu = f (x), x ∈ [−π, 0) ∪ (0, π] , `1(λ)u = f1, `2u = `3u = `4u = 0, (9)

for f ∈ L2(−π, 0) ⊕ L2(0, π), f1 ∈ C. Denote U(x) := (u(x),−B′π(u)) ∈ D(L) and F := ( f (x), f1) ∈ H . Then
problem (9) reduces to operator equation

(λI − L)U = F, F ∈ H (10)

in the Hilbert spaceH . For convenience, in below we use the notations

Gε = {λ ∈ C | ε < ar1µ < 2π − ε}, 0 < ε < 2π,

and
U∞(r) = {λ ∈ C :| λ |> r}, r > 0.

Theorem 4.2. Suppose that the operator A acted compactly from W2
2(−π, 0) ⊕W2

2(0, π) into L2(−π, 0) ⊕ L2(0, π).
Then, for any ε > 0 there exists sufficiently large rε > 0 such that for all λ ∈ Gε ∩U∞(rε) the operator L− λI is an
isomorphism fromH2 ontoH and following coercive estimate

||U(λ,F)||H2 + |λ| ||U(λ,F)||H ≤ C(ε) ||F||H (11)

holds for the solution U = U(λ,F) of operator equation (10) where C(ε) is a constant, which depend only of ε.

Proof. It is obvious that the operatorL−λI is bounded fromH2 intoH for all complex number λ.Applying
the same argument from [19], we have that for arbitrary ε > 0 , small enough, there are positive numbers
rε and Cε such that for all λ ∈ Gε ∩U∞(rε) the linear operator T(λ) defined by

T(λ)u = (λu −Φ(λ)u, `1u)

is an isomorphism between the Hilbert spaces W2
2(−π, 0) ⊕W2

2(0, π) and (L2(−π, 0) ⊕ L2(0, π)) ⊕ C and for
these λ, coercive estimate

||u||W2
2

+ |λ|( ||u||L2 + |B
′

π(u)|) ≤ Cε(|| f ||L2 + | f1|) (12)

holds for the solution of the nonhomogeneous boundary-value-transmission problem (9). This proves that
the linear operatorL−λI is an isomorphism between the Hilbert spacesH2 andH . The claimed inequality
(11) follows immediately from estimate (12). The proof is complete.

Remark 4.3. From coercive estimate (11), in particular follows the maximal decreasing of the resolvent
operator R(λ,L) = (λI − L)−1, namely the estimate

‖R(λ,L)‖H→H ≤ C(ε) |λ|−1

holds for all complex numbers λ as in the formulation of the last Theorem.

Theorem 4.4. If the operator A acts compactly from W2
2(−π, 0) ⊕ W2

2(0, π) into L2(−π, 0) ⊕ L2(0, π) then the
spectrum of problems (1) − (5) consists of isolated eigenvalues.

Proof. By virtue of Theorem 4.2 for any ε > 0 , small enough, there are a positive numbers rε and Cε such
that for all F ∈ H2 and for all λ ∈ Gε with |λ| > rε the estimate

||U(λ,F)||H2 ≤ Cε||F||H

holds. Consequently, the resolvent operator R(λ,L) = (λI − L)−1 acted continuously from H onto H2.
Since the embedding operatorH2 ⊂ H is compact, this resolvent operator acted compactly fromH intoH .
Then by virtue of the well-known theorems about linear operators with compact resolvent in the Hilbert
space (see, [12], Chapter III, Section 6) the spectrum of L consist of isolated eigenvalues. The proof is
complete.
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5. Asymptotics of the Eigenvalues

Consider the pure differential part (i.e. without operatorA) of the considered problem (1) − (5). Let L0
be linear differential operator in the Hilbert spaceH with domain D(L0) = D(L) given by

L0(u(x),−B′π[u]) = (Φu,Bπ[u]).

Theorem 5.1. L0 is a self-adjoint linear operator.

Proof. Since the operatorL0 is symmetric, we must show that D(L∗0) = D(L0). Let X ∈ D(L∗0) be any element
and λ0 be any non-real regular value of L0. Then we get

〈(λ0I − L0)Y,X〉H = 〈Y, (λ0I − L∗0)X〉H , for all Y ∈ D(L0).

Denoting
X0 := (λ0I − L0)−1(λ0X − L∗0X)

we have that X0 ∈ D(L0) and
(λ0I − L0)X0 = λ0X − L∗0X.

Taking in view these equalities and then applying the Theorem 4.4 we have that

〈(λ0I − L0)Y,X〉H = 〈Y, (λ0I − L∗0)X〉H
= 〈Y, λ0X0 − L0X0〉H

= λ0〈Y,X0〉H − 〈Y,L0X0〉H

= 〈λ0Y,X0〉H − 〈L0Y,X0〉H

= 〈(λ0I − L0)Y,X0〉H

for all Y ∈ D(L0). This shows that the equality

〈(λ0I − L0)Y,X − X0〉H = 0

holds for arbitrary Y ∈ D(L0). Choosing Y = (λ0I − L0)−1(X − X0) and putting in the last equality yields
‖X−X0‖H = 0.Thus X = X0 ∈ D(L0) which proves that D(L∗0) = D(L0) as desired. The proof is complete.

Corollary 5.2. All eigenvalues of the differential operator L0 are real.

Lemma 5.3. The pure differential operator L0 has precisely denumerable many eigenvalues λn(L0), n = 1, 2, ...,
which are real and satisfy the asymptotic formula

λn(L0) =
n2

4
+ O(n).

Proof. Let ϕ1(x, λ) be the solution of the differential equation

τ f := − f ′′ + q(x) f = λ f , x ∈ [−π, 0) ∪ (0, π] (13)

satisfying the initial conditions

f (−π) = δ11 , f ′(−π) = δ10.

Now we proceed from ϕ1(x, λ) to define the solution ϕ2(x, λ) of the same equation (13). Namely, we shall
define by ϕ2(x, λ) the solution of equation (13) satisfying the initial conditions

f (0+) = −
γ−11

γ+
10
ϕ1(0−, λ),
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f ′(0+) = −
γ+

20γ
−

11 − γ
+
10γ
−

20

γ+
10

ϕ1(0−, λ) − γ−21ϕ
′

1(0−, λ).

It is easy to see that the function ϕ(x, λ) defined by

ϕ(x, λ) =

{
ϕ1(x, λ) f or x ∈ [−π, 0)
ϕ2(x, λ) f or x ∈ (0, π]

satisfies equation (13), first boundary condition (2) and both interface conditions (4) and (5). Therefore, by
substituting ϕ(x, λ) in condition (3) we find the eigenvalues, i.e. the eigenvalues consist of the solutions of
equation

ω(λ) := `2(ϕ2(., λ)) = 0. (14)

Let λ = µ2. It is easy to verify that the solution ϕi(x, λ) satisfies the next integral equations:

ϕi(x, λ) = ϕi(ai, λ) cos
[
µ (x − ai)

]
+

1
µ
ϕ′i (ai, λ) sin

[
µ (x − ai)

]
+

1
µ

x∫
ai

sin
[
µ (x − t)

]
q(t)ϕi(t, λ)dt

and

ϕ′i (x, λ) = −µϕi(ai, λ) sin
[
µ (x − ai)

]
+ ϕ′i (ai, λ) cos

[
µ (x − ai)

]
+

x∫
ai

cos
[
µ (x − t)

]
q(t)ϕi(t, λ)dt

for i = 1, 2; a1 = −π, a2 = 0 + . Then, by using the approach in [17] we can find

ϕ2(x, λ) = −
γ+

11γ
+
21

γ−21
δ10µ sin[πµ] cos[µx] + O(e|Reµ|(x+π)) (15)

and

ϕ′2(x, λ) =
γ+

11γ
+
21

γ−21
δ10µ

2 sin[πµ] sin[µx] + O(|µ|e|Reµ|(x+π)) (16)

as |λ| → ∞. Substituting (15) and (16) in the equation (14) we arrive at the asymptotic equation

µ4 sin2[πµ] + O(|µ|3e2π|Reµ|) = 0

Take a circle Γn := {µ ∈ C | |µ| = n + 1
2 } of radius n + 1

2 in the µ− plane, where n is a natural number. By
applying the well-known Rouche theorem, we have that there are as many zeros of ∆(µ) := ω(µ2) inside Γn
as the function ∆0(µ) := µ4 sin2[πµ] for sufficiently large n, provided that each zero is counted according
to its multiplicity, i.e., 4n + 6. Since the function ∆0(µ) is even, we only need consider its positive zeros.
Consequently there are 2n + 3 positive roots µk of function ∆(µ) less than n + 1

2 for sufficiently large n. Then
we have µn = n

2 + O(1) as n→ ∞, from which it follows immediately the needed asymptotic formula (13).
The proof is complete.

Let us define a new operatorA0 : H →H by

A0(F) =
(

(AF)(x), 0
)

(17)

and domain of definition D(A0) = D(L0). Then, the main problem is acquired to the operator-equation
form

(L0 +A0)U = λU, U ∈ D(L0) (18)

in the Hilbert spaceH .
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Remark 5.4. The eigenvalues of problems (1)-(5) and (18) are coincide, and the corresponding eigenfunc-
tions of (1)-(5) are the first components of the eigenelements of the operator L given by L = L0 +A0.

For further investigation, we need to use some definitions and facts. Let A be closed linear operator in a
Hilbert space E. A regular value λ of A is a complex number such that the resolvent operator (A − λI)−1

exists, is defined on a dense set and is bounded. The resolvent set ρ(A) of A consist of all regular values of
A. The set C − ρ(A) is called a spectrum of A and is denoted by σ(A). If the resolvent operator (A − λI)−1

does not exist then the value λ is called an eigenvalue of A. The algebraic multiplicity of the eigenvalue λ
is the dimension of the linear subspace

Kλ0 :=
∞⋃

n=1

{ f ∈ D(An), (A − λ0I)n f = 0}.

Let G be any subset of complex plane C and r > 0 be any real number. By N(r,G,A) we shall denote the
number of eigenvalues of A belonging to G, which are smaller than r and are counted according to their
algebraic multiplicity, i.e.

N (r,G,A) :=
∑

n∈{k:λk∈G, |λ|>r}

1.

Definition 5.5. Let A1 be any closed linear operator having at least one regular point. A linear (in general,
unbounded) operator A2 is said to be A1-compact if D(A2) ⊇ D(A1) and if for some regular point λ0 ∈ ρ(A1)
the operator A2R(λ0,A1) = A2(A1 − λ0I)−1 is compact (see, for example [6]).

Theorem 5.6. Let S be self-adjoint operator in a Hilbert space the spectrum of which is discrete, A be S-compact
operator and £ = S +A. Then if S has a precisely numerable many positive eigenvalues and

N (r(1 + ε),R+,S) ∼ N(r,R+,S), as r→∞, ε→ 0

then for any α (0 < α < π
2 )

N (r,Gα, £) ∼ N(r,R+,S), as r→∞

where R+ = (0,∞), Gα is the angle as in the previous section and f (λ) ∼ 1(λ) as r→∞ is the abbreviation for

lim
r−→∞

f (r)
1(r)

= 1.

Proof. The proof of this theorem follows immediately from the results of [6].

Lemma 5.7. Let the operatorA beL0-compact in the Hilbert spaceH . Then the spectrum ofL = L0 +A0 is discrete
and consist of precisely denumerable many eigenvalues. For any arbitrary small α > 0 all eigenvalues of L with the
possible exception of a finite number lie in the sector ψα = {λ ∈ C : |ar1λ| < α} of angular 2α and for the sequence
of eigenvalues (λn,α),n ≥ 0, belonging to the sector ψα, which, when listen according to nondecreasing modulus and
repeated according to algebraic multiplicity, satisfies the following asymptotic formula:

|λn,α| =
n2

4
+ o(n2), n −→ ∞ . (19)

Proof. Let λ1(L0) ≤ λ2(L0) ≤ ... be the sequence of eigenvalues of L0 which counted with their algebraic
multiplicity. By Lemma 5.3 there are real numbers m1, m2, such that

m1n +
n2

4
≤ λn(L0) ≤ m2n +

n2

4

for all n = 1, 2, .... From this relation it follows that

N (r, R+,L0) = 1 +
√

r + O(
1
√

r
) as r→∞.
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Since for arbitrary ε > 0
√

r + ε =
√

r + O(
1
√

r
) as r→∞

and
1

√
r + ε

=
1
√

r
+ O(

1√
r

3
2

) as r→∞,

we have that

N (r(1 + ε), R+,L0) −N (r, R+,L0) = O(
1
√

r
) as r→∞.

Consequently,

N (r(1 + ε), R+, L0) ∼ N(r, R+, L0) as r→∞ .

Then by virtue of the Theorem 5.6 we have

N (r, α, L0 + A0) ∼ N(r, R+, L0) as r→∞ .

Thus, we get

N
(
r, ψα, L0 + A0

)
= N(r, R+, L0) + o(N(r, R+, L0)) as r→∞ . (20)

Here, as usual, the expression f (r) = o(1(r)), as r → ∞ means that lim
r−→∞

f (r)
1(r) = 0. Now, writing (20) for

r = |λn,α| yields the desired formula (19). The proof is complete.

Theorem 5.8. Under condition of previous Lemma the spectrum σ(L) of the operator L is discrete and consist
of denumerable many eigenvalues (λn(L)) (is several non- real) which, when arranged in decreasing modulus and
counted to their algebraic multiplicity, has the following asymptotic representations

Reλn(L) =
π2n2

4
+ o(n2) and Imλn(L) = o(n2) as n −→ ∞. (21)

Proof. We know that the number of eigenvalues of the operator L for which |ar1λ| > α is finite. Taking in
view this fact and using Lemma 5.7 yield

|λn,α(L)| =
n2

4
+ o(n2) as n −→ ∞. (22)

By virtue of Theorem 4.2, there is a natural number nα such that the inequalities

Reλn(L) > |λn(L)| cosα

and
|Imλn(L)| < |λn(L)| sinα

are hold for all n ≥ nα, from which it follows easily that

Reλn(L) ∼ |λn(L)|

and
|Imλn(L)| = o(|λn(L)|)

as n −→ ∞. Together with (22), this shows that the asymptotic formulas (21) are true. The proof is
complete.

The main result of this section is the the following theorem.
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Theorem 5.9. Let the operatorA acted compactly from W2
2(−π, 0)⊕W2

2(0, π) into L2(−π, 0)⊕ L2(0, π). Then, the
spectrum of BVTP (1)-(5) is discrete and consist of precisely denumerable many eigenvalues λn, n = 1, 2, ... (is several
non-real) which, when listed according to decreasing real parts and repeated according to algebraic multiplicity has
the following asymptotic representation:

λn =
π2n2

4
+ o(n2) as n −→ ∞.

i.e.

lim
n→∞

| λn −
π2n2

4 |

n2 = 0.

Proof. By virtue of the Theorem 4.4 the resolvent operator R(λ,L) = (λI − L)−1 maps the Hilbert space H
continuously into the H2. At the other hand, the operator A0, defined by (17) is compact from H2 to H0,
by assumption on L0. Consequently the operator A0(λI − L)−1 is compact in the Hilbert space H , and so
A0 is L-compact operator. Now, to complete the proof it is enough to apply the Theorem 5.8.

Remark 5.10. Note that the operator A satisfying the conditions of this theorem may be non-self-adjoint
and/or unbounded in the Hilbert space L2[−π, 0) ⊕ L2(0, π] ≡ L2[−π, π].

6. Conclusion

In this paper we have discussed new type of discontinuous Sturm-Liouville problem (1)-(5) involving
an abstract linear operator in equation (1). The pure differential part of this problem is not self-adjoint in
the usual Hilbert space L2[−π, π]. For operator treatment in appropriate Hilbert space we have defined an
alternative inner product (6) in terms of transmission conditions (4)-(5). We want to emphasize that the
spectral properties of our problem (1)-(5) is essentially different from the spectral properties of classical
Sturm-Liouville problem. For instance, it is well-know that the eigenvalues of classical Sturm-Liouville
problem are real and the second asymptotic term in asymptotic expansion of eigenvalues has the form
O(n). But the eigenvalues of our problem (1)-(5) may be also non-real complex numbers and the second
asymptotic term appears in more weak form as o(n2). Moreover, we have proved such non-usual results as
topological isomorphism and coercive solvability for corresponding non-homogeneous problem (9).
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